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We study the Hebb rule for learning several Boolean functions (random and linearly separable
functions) defined on the hypercube of dimension N. Learning and generalization rates are derived
in the N— oo limit versus a=P/N, where P is the number of learned patterns. In the linearly
separable case, the generalization rate grows monotonically from % to 1, whereas the learning rate
first decreases from 1 to a minimum value, and then increases again towards 1. This result is inter-
preted as an interference phenomenon, like in the learning for associative memories implemented
with the same rule. Comparisons are then made with the case of random Boolean functions, associ-
ative memories, and their clipped version. The behavior of the Hebb rule is decomposed in two dis-
tinct contributions, referred to as the “rote” and the “conceptual” learnings. Illustrative numerical

simulations are given.

I. INTRODUCTION

In the area of automatic learning (memorization of pat-
terns, learning of rules, etc.), neural networks have al-
ready provided quite interesting performances.! As a
very simple neuronal model, the perceptron architecture
has been widely investigated by neurobiologists, physi-
cists, and mathematicians. A perceptron is a neuronal
architecture that is defined by only one layer of adaptive
synaptic weights and that performs a simple mathemati-
cal transformation on an input vector. As we are in-
terested here in learning Boolean functions, only one out-
put bit is required in the architecture. According to the
perceptron-type model,>”* the output bit Py of a per-
ceptron is given versus the input vector |X ) by

1X) —>Py(1X))=sgn{ WX ))==+1, (1)

where |W) is the perceptron weight vector ({ W] is its
transposed vector, so that { W|X ) is the inner product).

In this paper we address the issue of the performances
of the Hebb rule, implemented on a perceptron-type net-
work, for the learning of several Boolean functions
defined on the N-hypercube { —1,+1}%.

The general problem addressed here is to approximate,
with a perceptron of the form (1), a given Boolean func-
tion B, from the knowledge of a set L of patterns
L={|X,)},= . p (called the learning set, and com-
posed of P =aN patterns) with their corresponding
desired output values B(| X, ))=%1.

We define two recognition rates. The learning rate is
defined as the probability for a learned pattern |X,, ) to be
recognized well [i.e., to verify Py (|1X,))=8B(|X,))]; and
the generalization rate as the probability for an arbitrary
pattern |X ) taken randomly in { —1,+1}" to be recog-
nized well.

The Hebb rule gives the simplest way for correlating
the effective output sgn( W|X,, ) of the perceptron to the
desired one $|Xﬂ); it is defined by its weight vector
| Wiens > computed from the learning set L :3

aN
!WHebb>: 2 !X#>B|X}l) . (2)

pn=1

In this paper, we will study the recognition perfor-
mances of this Hebb solution in two cases:

(1) B is a linear separable Boolean function
(B|X)=sgn(B|X ), where |B)ER" is a given weight
vector defining the Boolean function), and

(2) B is a random function (B|X ) ==1, the two values
being chosen randomly and independently, with equal
probability 1).

We do not address here the general problem of the op-
timal capacity of perceptrons for learning Boolean func-
tions,®” or the performances of more complicated learn-
ing rules such as the pseudo-inverse® !© or iterative
rules.'" For example, results about the relationship be-
tween the learning and the generalization rates have been
given in the literature!? which provide a lower bound for
the generalization rate when the learning rate is good
enough. These results are of course in agreement with
those presented here, for which the learning rate is never
optimal (for a given a), because of the raw form of the
Hebb rule.

The input patterns belong to the hypercube of dimen-
sion N. The learning set is composed of P =aN random
patterns { IX# ) }u=1,...,p Whose components are random-
ly and independently taken in {+1,—1}, with equal
probability 1. For the generalization, the test patterns
are chosen with the same rule.

II. THE TECHNIQUE OF DERIVATION
OF THE RECOGNITION RATES

The rates we are looking for in this paper are averaged
rates. That is to say that for a given Boolean function B,
we want to evaluate the probability over all learning sets
and all test patterns, that this pattern is recognized well.
We will decompose this problem into two distinct steps:
we derive first the probability, over all learning sets, for a
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given pattern |X ) to be recognized well. We then aver-
age this recognition rate over all the | X )’s.
If | X ) is a test vector, the Hebb solution gives, for the
output bit,
aN
sgn({ X| Wy ))=sgn | 3 (X|X,)B|X,) 3)

p=1

so that this pattern is recognized well by the Hebb solu-
tion if this expression has the same sign as B|X ), that is
to say if

aN
zlszmzo where zty, =(X|X,)B|X,)BIX) . @)
P

We then deduce the mean recognition rate Ry for this
particular vector |X ), by deriving the probability aver-
aged over all the Hebb vectors |Wy,,, ) (each one defined
by a particular choice of the learning set L given by the P
randomly chosen |X, )’s) that the Hebb solution gives the
right answer:

aN

2 er) >0

pu=1

R|X)(a)=PrObHX)“}#:1 ) (5)

and then the average recognition rate is derived by in-
tegrating this rate over all the possible values of | X ):

R(@)=— 3 Ripla) . ©)
27 o

If the learning set L is chosen independently of |X ), we
obtain for R (a) the mean generalization rate noted here-
after G (a); if L always contains |X ) [say |X,)=|X) in
(3)-(5)] we obtain the mean learning rate [in that case, we
have z|y, =Nin (5)].

III. THE HEBB RULE FOR LEARNING
LINEARLY SEPARABLE FUNCTIONS

We are interested here by the linearly separable case:
B|X )=sgn(B|X ), and focus our attention on two limit
cases, for which the recognition rates can be derived ex-
actly, and only depend, in the N — < limit, on the ratio
a=P /N (P is the number of patterns taken into account
during the learning phase).

(1) The first one corresponds to the situation in which
only one input bit is taken into account for the evaluation
of the Boolean function, that is to say that
|B)=(1,0,0,...,0); this case will be referred to as the
“easy case” (we will see later that the recognition rates
are the highest for this problem). The average learning
and generalization rates are found to be, respectively (see
Sec. 1 of the Appendix),

—L _van
V2a

G oy (@)= Lerfc(—Va/2) , (8)

L., (a)=jerfc , (N

where we use the complementary error function defined
as follows:

_ 2 © 2
erfc(x)—‘/—-;rfx e “du . 9)
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(2) In the second one, all the input components of | X )
have an equivalent role, and |B ) is of the following form:

|B)=(B,,...,By;By,...,By.. ;B ...,B), (10

each value B,ER being repeated N /q times, so that
|B)YERY (g is a fixed integer value, whereas N will tend
towards infinity). Here, the result is independent of the
specific form of |B ) (it does not depend on g, nor on the
B;’s). This case will be referred to as the ‘“hard case.”
The average learning and generalization rates are found
to be, respectively (see Sec. 2 of the Appendix or Ref. 5),

—uV2a/m—1/V2a |du ,

Lhard(a)—ﬁfo e “erfc

(1n

l o _ul —
Gha,d(a)-——ﬁfo e “erfc(—uV2a/m)du . (12)

We give in Sec. 5 of the Appendix the asymptotic limits
of these rates for a— o« and a—0. We stress that in
both cases

L(0)=L(»)=G(x)=1, G(0)=1. (13)

These rates have been plotted in Fig. 1. We remark
that the generalization rates grow monotonically from
to 1, whereas the learning rates first decrease from 1 to a
minimum value and then tend again towards 1 when a
goes toward infinity. The first result shows that the
direction of the Hebb vector | Wy, ) tends towards the
good solution |B) when a goes to infinity. Concerning
the learning rate, for small values of «, although the
Hebb vector | Wy, ) is still far from the real value |B),
it is well suited for the special vectors belonging to the
learning set, whereas for intermediate values of a, it is
still far from this good solution (the learning patterns are
not numerous enough to evaluate |B) correctly because
of incomplete information), but gives rise to interferences
between the learned patterns (as for the associative
memories implemented with the same rule) and causes
confusion. The terms proportional to V'a in Egs. (7), (8),
(11), and (12) correspond to the generalization effect by
which the system learns the coherence between all the ex-
amples it learns (| Wy, ) —|B ) when a grows), and the
term proportional to 1/V'a in (7) and (11) (present only in
the learning rates) corresponds to the “rote” learning,
which provides a high contribution when « is small, and
tends to disappear when a— « because of the interfer-
ence effects between the learned patterns. The generali-
zation term V'a reflects the fact that the system gets a
correct view of the problem (a “conceptual” one) which
improves when more examples are presented, whereas the
1/Va term corresponds to the “rote” learning, which
saturates (confusion) when too many patterns are learned.

This interpretation can be illustrated in another way,
by “clipping” the solution of the hard case, when the vec-
tor to be found has all its components equal to the same
value +1: |By)=(1,1,...,1). The “clipping” transfor-
mation keeps only the signs of the components of the
Hebb vector:
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FIG. 1. Learning rate (a) and generalization rate (b) vs

a=P/N, with the Hebb rule, of two linearly separable Boolean
functions. The directions to be found are |B)=(1,0,0,..,0) for
the ‘‘easy case,” and |B)=(B,,...,B;B,,...,By;..;
B,,...,B,) for the “hard case” (each component B, being re-
peated N /q times, so that |B) €RY; the curves do not depend
on the particular values of the B,’s). The “random case” refers
to the case when the output bit is no longer correlated to the in-
put vector, and is randomly chosen.

[ Wtes ? = [ Weiip ) =sgn| Wiy ) (14)

As |B,) is invariant by this transformation, it could be
expected that applying the clipping transformation on the
Hebb solution improves the recognition rates. Numerical
simulations (Fig. 2) show that this is not true for the
learning rate in the region of small values of a. In that
region, the transformation lowers the learning rate: the
Hebb solution is then overfitted to the particular shape of
the learning set, and does not contain enough informa-
tion about the real direction |B,) to be found, so that
clipping only leads the solution to forget a little about the
learned patterns without bringing it closer to the exact
solution because of lack of information. In the region of
large values of a, clipping becomes efficient because the
Hebb solution is near the exact one.

Concerning |B.,, ) =(1,0,0,...,0), the clipping is

dramatically bad, because in its new clipped form, |Beasy )
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FIG. 2. Numerical simulations for the learning (upper curve)
and generalization (lower curve) rates vs a, for the Hebb rule
(continuous line) and its “clipped” form (dashed line) when the
direction to be found is given by |By)=(1,1,...,1). Two re-
gions appear: for small values of a, the “clipping” lowers the
learning performances, whereas for large values it improves it.
The simulation has been done in dimension N=400, averaged
over 100 draws. Concerning the nonclipped version, the perfect
fitting with the theoretical curve of Fig. 1 is worth noticing.

becomes (1,+1,%1,...,+1) which is completely
different from the direction to evaluate IBeasy ). We give
in Sec. 3 of the Appendix the calculation which leads to
the following rates in this case (see, for example, Ref. 13):

Lclip(a)=%erfc — ; Gdip(a)Z%. (15)

Vira

It is clear here that only the rote contribution can subsist
[the 1/Va contribution in (15)], for the clipping prevents
any correct generalization from occurring.

In fact the results (11) and (12) concerning the hard
case should still be exact when |B) has a more general
form, corresponding to components which are randomly
and independently chosen in R with a given probability
distribution p (x): the probability for the ith component
of |B) to lie in [x,x +€] is given by ep(x). Indeed we
can approximate the probability law p(x) by a discrete
law,

q
px)~= 3 8(x —C,) (16)
i=1

*-Q|'—-

(8 is the Dirac function) which corresponds to the case
studied here. We can then take the g — o« limit to obtain
the equality in (16). It is worth emphasizing that the easy
case is not of course induced by any probability law p (x).

Finally, we claim that the two cases under focus here
(““easy” and ‘‘hard” cases) represent the extreme possibili-
ties for the vector |B) to be learned; for example, the
vector (1,1,1,0,0,0, . . .,0) gives recognition rates which
lie between these two extremes (see Fig. 3).
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FIG. 3. Numerical simulations for the learning rate (a) and
generalization rate (b) vs a=P /N, with the Hebb rule, of three
linearly separable Boolean functions, defined, respectively, by
their weight vector: “easy case:” |B., )=(1,0,0,0,...,0,0);
“hard case:” |By,q)=(0,1,1,5), each of the four components
being repeated 100 times (then N=400, ¢=4, B,=0,
B,=B;=1, B,=5); and “intermediate case:”
|[B)=(1,1,1,0,...,0). Theoretical results have been plotted
simultaneously for comparison for the two first cases (we do not
have any theoretical result for the third one). Simulations are
done with dimension N=400, and results averaged over 100
draws.

1V. THE HEBB RULE FOR LEARNING
RANDOM BOOLEAN FUNCTIONS

‘We will see now that the “conceptual” contribution
V'a /2 can be eliminated in the easy case (7) by choosing a
random Boolean function for the output bit, so that no
generalization can occur. B|X) is no longer correlated
to |X) and is chosen randomly in {—1,+1}, with equal
probability 1, independent of the other patterns. The
derivation of the learning rate is straightforward (Sec. 4
of the Appendix) and leads to the following expression
(see Fig. 1):

(17)

L, 4(a)=1erfc 75
a

No generalization rate can now be defined because of the
random choice of the output values. We see clearly now
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the effect of interferences between learned patterns with
one another, as only the rote part remains, which van-
ishes when a grows.

We see that the randomness of the choice for the
Boolean function is well “understood” by the system.
This simple remark could provide an efficient way to de-
cide if a Boolean function given by its output bits on a
given number of input patterns is linearly separable or
not: draw the curve A(a) of the learning rate versus a
with the Hebb rule (each value of @ must be represented
by averaging the results over many different draws). If
A=L_, 4 then probably the function is not linearly separ-
able; if Ly, A =L, then it is certainly linearly separ-
able.

Note that in the a—0 limit, the three rates Ly,,,
L.,y and L,,4 are equivalent to 1—CVae V2@ each
learning rate having its own constant value
(Ceasy ~0.1467, Cy,pg ~0.2330, C,p,g ~0.3989). That is to
say that the learning performances of the Hebb rule for
small values of a depend weakly (not by the form of the
principal term, and only by the multiplicative constant of
that term) on the particular shape of the learned Boolean
function. But in this region of a, the coherence between
the output values of B for the learning set is already
detected, and the rote learning which occurs is better for
the easy case than for the hard case, and better for this
last one than for the “random case.” This remark com-
pletes the one about the conceptual and the rote contri-
butions in the recognition rates.

V. RELATION WITH ASSOCIATIVE MEMORIES

Concerning the easy case, we can remark that the
problem is in fact strongly related to that of associative
memories. #1315 Indeed in that case, we look for an
N XN weight matrix, denoted J, for which the learned
patterns are invariant for the relaxation dynamics defined
by

X (1)) —|X(t+1))=sgn(J|X)). (18)

That is to say that the learned patterns |X,) must be
fixed points for the dynamics

sgn(J1X,))=1X,) . (19
The first component of Eq. (19) reads
sgn{J,|X,) =X, =sgn(B,,|X,) (20)

(where |J, ) is the vector composed by the first row of the
J matrix, the N —1 other equations corresponding to the
other components are all similar and independent). We
then see clearly that the learning for associative
memories is equivalent to the “easy” problem. So, as
when a goes to infinity, the Hebb solution for the learn-
ing of |B.,, ) tends towards |B.,, ) (modulo one multi-
plicative term), we deduce easily that the J matrix given
by this rule tends towards the identity matrix (modulo a
multiplicative term), and all patterns become invariant
under the dynamics (18).

If we now look for a J matrix with diagonal elements
which are constrained to be zero (J; ;=0 for every i), we
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see that it is equivalent to the random case. Indeed the
constraint J;; =0, when expressed in (20), says that the
desired output bit X"L is now random in regard to the in-
put ones Xi,Xi,..,Xﬁ’ (XL is no longer an input bit, due
to the J, ;=0 constraint). The difference between L.,
and L., shows that the behaviors of associative
memories implemented with the Hebb rule, with or
without diagonal elements are not similar; in the first
case, when a— o, the Hebb solution tends to make all
patterns invariant under the dynamics (18) because of the
conceptual effect (J tends towards identity), whereas in
the second case, the solution becomes random, due to the
interferences of the independent learned patterns (as
there is only the rote contribution) which leads to con-
fusion.

We remark that L, (a)=L,4(7ma/2). We can ex-
pect from this that the results versus a concerning the as-
sociative memories implemented with the Hebb rule
without diagonal terms can be similar to its clipped ver-
sion, modulo the multiplicative transformation
a—(7/2)a. b

VI. CONCLUDING REMARKS

In this paper, we have seen how the Hebb rule (imple-
mented in a perceptron-type architecture) used for the
learning of Boolean functions provides two types of con-
tributions. The first one is the rote learning (this contri-
bution depends only weakly on the specified form of the
function to be learned). It quickly saturates when the
number of learned patterns grows, giving rise to con-
fusion between them.

When the Boolean function to be learned is well suited
to the perceptron-type architecture (for example linearly
separable, like here) another contribution occurs (the
“conceptual” one) which reflects the fact that the inner
coherence of the Boolean function is detected and learned
by the system. This contribution provides a generaliza-
tion ability to the system: it not only learns one by one
the presented patterns, but also the common coherence
between them, when they are numerous enough.

This approach is shown in three simple cases (linearly
separable or random) for which analytical results are
given. All this is illustrated by numerical examples.
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APPENDIX: LEARNING AND
GENERALIZATION RATES

We recall here a simple result coming from the central
limit theorem, that we will frequently use in this appen-
dix. If g”s are independent random variables, with the
same distribution law, whose mean value is m, and stan-
dard deviation o2, then

A —qm

q
>4 =
28 oV'2g

i=1

Prob =terfc R (A1)
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where we use the complementary error function, defined
as follows:

_ 2 o0 _u2
erfc(x)—‘/—;fx e “du . (A2)

In this appendix, upper indices refer to components,
lower ones to the learning pattern numbering.

1. “Easy case”

For evaluating the generalization rate, we have to cal-
culate the probability that 32Y,z, >0, where

2, =sgn({ B, | X, ))sgn({ B, [ X)X, |X) (A3
[|Beasy ? =(1,0,0,...,0)]. We can write
N .
z,=X,X'3 XX/, (A4)
J=1
1\; .
z,=1+ 3 X, X'X/x/ . (A5)

j=2
The variables X LX 'x {IX J are independent random vari-
ables, equal to 1 or —1 with probability 1. So 3%z,
can be written as
aN aN(N—1)

S z,=aN + Sy g

u=1 1=1

(A6)

where the g' are random and independent variables, with
mean value 0, and standard deviation 1. Using Eq. (A1),
we can deduce the generalization rate, in the N — o lim-
it:

G usy(@)=erfc(—Va/2) . (A7)

In a similar way, with z, =N and the other z, given by
(A5), we deduce the learning rate:

Ly (@) =erfc(—Va/2—V1/2a) . (A8)

2. “Hard case”

We refer to the text for the notations. We begin by
evaluating the mean value and the second moment of the
random variable z,, defined as

z, =sgn({B|X )){(X|X,)sgn({B|X,)) , (A9)

where |X ) is fixed (it is the test vector), and ]Xu> is a
random vector on the N-hypercube (its components are
independently and randomly chosen equal to *+1, with
equal probability J). We denote the averaging over the
|X,)’s by « ). We will then average the result over
1X).

We define a linear operator (reducer matrix) R from R"
to R? (g is the number of real values defining |B ), each
one repeated NV /g times) by its coordinates:

1 if i—1)N/q<j<iN/q

ii~ |0 otherwise . (A10)

For example, if N=20 and ¢g=4 we have
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11111 00000 00000 00000
00000 11111 00000 00000

R= 100000 00000 11111 00000 (AlD)
00000 00000 00000 11111
Indeed, R(|B))=(N/q)B,B,,...,B,). We define

another linear operator (duplicator matrix )D from R? to
RY,
=9 p!
D e

For example, D R(|B))=|B), R D is the identity matrix
in R

Taking into account symmetry arguments, we can
write the following equalities:

«Ix, )sgn({BlX,))) =D R |X,)sgn({B|X,)))
(A13)

(A12)

«1, Ysgn((BIX,)) ) =D R IX,)sgn({ BIR'R|X,))).

(Al14)

The principal remark now is that the random vector
R|X,) has, in the N— oo limit, its ¢ components (g is
fixed) which tend to have the same Gaussian distribution,
centered on the origin, and of standard deviation N /q
(central limit theorem). We deduce from this

- R|B)
«1x,)sgn({B|X,))» ZN/ﬂq—D'((Bm'R;IB))'/z ,
(A15)
«IX, Ysgn((BIX, ) =v77r—2) (A16)

V{BIB)

(we can remark here that this result proves that the Hebb
vector tends to have the right direction |B) when

a— o). One deduces from this

(zH ) =sgn({(BIX))WV2/m ‘/%X_'lﬂ . (A17)
It is straightforward to show that

((z*)?N=N, (A18)

and as {{z*)) is of order 1 ({(X|B ) has a significant prob-
ability only when inferior to or of the same order as v'N R
and V' (B|B)=constV N ), the standard deviation of z*
tends to be equal to {((z#)?*)) =N. So the generalization
rate can be calculated, referring again to (A1),

aN
Prob | ¥ z#>0
p=1
=lerfc —Va/vé%sgn(B!X) (A19)

This expression is the average value, taken over all the
possible learning sets (each composed by aN random pat-
terns) of the probability for a given pattern |X) to be
recognized well. To get the global generalization rate,
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one must now average this result over |X ).
With similar arguments as the preceding ones, we can
show that the random variable u defined by

(X|B)

V' (BIB)

has the following probability law (we remember that | X )
is a random test vector on the hypercube):

=sgn{B|X) (A20)

P(u)=0(uWV2/me "2, (A21)

where O(u) is the Heaviside function [O(u)=1if >0, 0
if u <0].
We can then deduce the global generalization rate, in

the N — oo limit:

G(a)———f erfe( —vV2a/me "V dv (A22)
(v=u/V2). In the same way, the learning rate is shown
to be

_ 1 _,2

L(a)—?‘—;fo erfc ——‘/:a—v\/Za/ﬂ dv .

(A23)

In fact, the generalization rate can be simplified as fol-
lows:!®

Gla)=1 ——%arctan(\/ﬂ/Za) . (A24)

3. “Clipping” for the “easy case”

For a test vector |X ), we want to evaluate the proba-
bility that X '(X|W ;) >0,

N :
XUXIW i )=1+ 3 X'X/sgn (A25)

j=2

chp

aN
3 X'xJ
p=1

the terms in this summation are independent random
values equal to 1 with equal probability. After Eq.
(A1), we deduce

G ana(@)=terfc —1. (A26)

—1
V2N
Concerning the learning rate, the test vector is | X, ):

X (X, | Wy, ) =1+ Esgn
=2

1+ 2 X, XX\ X{
pn=2

(A27)

N .
hp l+2gj’
j=2

XX, |w, (A28)

with straightforward notation for g/.
Eq. (A1), we deduce

Referring again to

Prob(g/=1)=lerfc (A29)

V2aN

that we can simplify by developing erfc(x) when x is close
to 0 (N— 0 ):
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Prob(g/=1)~1[1+V2/(maN)] . (A30)

So, the mean value of g/ is V2/(waN), and its standard
deviation tends towards 1 when N — . Equation (Al)
leads then to the following learning rate:

L ,q(a)—Jerfc . (A3D)

Vira

4. Random case

In the case of a random Boolean function, only the
learning rate is meaningful. For the test pattern | X, ), we
have

2, =BUX,NBUX X, X)), (A32)

where B is the random Boolean function. Equation (A4)
now becomes

N
z,= 3 X X{BUIX,NBUX,)),

j=1

(A33)

which is a sum of random variables =1 for p>2. As
z; =N, one deduces the learning rate in the random case,
referring again to (A1):

L aa(@)=erfc(—V'1/2a) . (A34)
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5. Asymptotic developments
We list the limits when a— o :
1 e—a/2
~l——== A35
Leyla)~1 e v (A35)
e A36
Lyargla)~1— 7= (A36)
1
~1 A37
Lrand(a) 2+ ‘/217_(1 ’ ( )
1 e*a/Z 8
~]—— A3
Gepsy(a)~1 e v (A38)
1
~l——. A39
Gharala)~1 Vora ( )
We remark that Gy, 4(a)~ Ly, 4(@).
The limits when a—0 are
~1— 1 o —1/(2a)
Leysy(a)~1 Vo Vae , (A40)
/7 VY —
Lhard(a)~1__‘%f/c;:1/_l)_\/aevl/(2a) , (A41)
T
1 ~
L,and(a)~1——‘/——2—_1;\/ae 1/Q2e) N (A42)
Gopyla)~1+Va/(2m), (A43)
5 12
Gparg(@)~1+ | =5 (A44)
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