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Random-walk calculation of conductivity in continuum percolation
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Random walks are used to obtain the diffusion constant for continuum percolation models of
composite materials in two and three dimensions. An Einstein relation is then used to find the con-

ductivity. The same calculation gives the dielectric constant for the composite. First-passage-time

methods and special boundary conditions are used for systems where both materials have finite con-

ductivity, where one component is a superconductor, and where one component does not conduct.
The percolation models consist of randomly placed overlapping spheres in three dimensions or disks
in two dimensions. Our results are consistent with known results where applicable and are far
better than effective medium theories. Estimates for anomalous diffusion exponents at percolation
were also found.

I. INTRODUCTION

We provide a systematic methodology for computing
the conductivity and dielectric constant for continuum
models of composite materials. Mixtures of two sub-
stances are considered where the inhomogeneities are
large enough such that within each part of the material
its properties are determined by macroscopic constitutive
relations. Examples of such systems include porous rocks
filled with brine, dielectrics with metallic inclusions
separated by insulating material and possibly granular
superconductors. The method we use is an extension of
the procedure employed by Schwartz and Banavar for
the grain consolidation model of porous rocks and later
used by Tobochnik et al. to model conduction in a plane
containing random cuts. The method involves extracting
the diffusion constant from a computation of the mean-
square displacement of many random walkers. The con-
ductivity is then determined via an Einstein relation. The
same calculation gives the dielectric constant of the com-
posite.

Other methods for dealing with composite materials ei-
ther rely on an underlying lattice or are restricted to low
densities of inclusions or inclusions of simple shapes that
do not overlap. In the former case the lattice is replaced
by a random resistor network and the equivalent resis-
tance is then found using relaxation methods or solving
Kirchloff's equations for the network. More recently the
Y—6 transfermation for two-dimensional (2d) lattices
and multigrid techniques have improved the numerical
efficiency tremendously. However, it is important to be
able to solve these problems in a continuum using more
realistic models such that results away from the percola-
tion threshold are meaningful. Also, at the threshold the
critical transport properties of some continuum systems
are expected to differ from their lattice counterparts,
even though the static exponents are the same.

At low densities, effective medium theories (EMT) can
be used Two common versions are the symmetric ver-
sion of Bruggemann's (SB) theory where the composite
conductivity a., is found from the solution of

cr, +(d —1)o, tr&+(d —1)o,

In the CM approximation the fraction of material two
must be small. In the case where o.2=0, these approxi-
mations reduce to
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Unlike the SB approximation the CM result does not pre-
dict a percolation threshold. The above results assume
spherically symmetric inclusions.

In addition to EMT another approach is to do a mul-
tipole expansion. ' ' These expansions work for non-
overlapping inclusions of simple shapes, when the density
of inclusions is not too large. However, for high densities
and large differences between the dielectric constants (or
conductivities) of the components too many multipoles
are needed to make the numerical calculation feasible.
One advantage of the multipole method, however, is that
one can calculate the frequency dependence of the dielec-
tric constant.

II. GENERAL SIMULATION PROCEDURE

The model we used consisted of a collection of spheres
(disks in 2d) placed randomly in an L d-dimensional
box. The spheres are allowed to overlap. We define the
radius of each sphere to be unity and define the conduc-
tivity of the spheres to be cr2. The conductivity of the re-
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o, +(d —1)tr, o&+(d —1)tr,

where P, is the fraction of material with conductivity tr;
and d is the spatial dimensionality. An alternative EMT
is the Clausius-Mossotti (CM) approximation derived for
dielectrics in most electricity and magnetism texts which
gives
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gion between the spheres is denoted by 0, . In all cases ei-

ther o, or o2 is defined to be unity. We will define the
overall conductivity of the composite system to be o,
We have considered cases for which a, =0, 2, 5, 10, and
oo. The volume fraction of the background, P&, is related
to the number density of the spheres n by

—nV

where V is the volume of a sphere or in 2d, V would be
replaced by the area of a disk.

There are three cases to consider for the random-walk
algorithm depending on whether the conductivity for one
component is zero, finite, or infinite. Here we will discuss
those parts of the algorithm that are common to all cases.
In the standard random walk the mean-square displace-
ment of a walker from its original position is

(r2) =N(s2)

where N is the number of steps and (s ) is the mean-
square step size. In a continuum a Brownian particle
would move such that

where D is the diffusion constant. Thus the random walk
is equivalent to Brownian motion if we identify the time
for one step to be equal to (s )/(2dD). We are always
interested in the diffusion constant of the composite sys-
tem relative to that of a pure system with no inclusions.
We denote this relative diffusion constant by D, . We are
free to choose our diffusion constant in the pure system
and our units of time such that

ary conditions at the surface of a sphere (r =1) centered
at the particle s initial position. From this one can com-
pute the probability of being absorbed in a time t to
t +dt. In the numerical approach one simply starts with
many walkers at the origin and computes the number of
walkers which take a time t to t +dt to reach the surface
of a sphere centered at the origin. Once these probabili-
ties are known it is straightforward to create an array of
times such that a random choice among the array ele-
ments gives a first-passage time with the correct probabil-
ity of occurring. These times are then scaled by the
square of the radius of the first-passage sphere. This kind
of move is not constrained to any lattice. When a walker
is close to a boundary, typically we use a distance of
0.001, the next move must be determined by the relative
conductivities on each side of the boundary. In the next
section we discuss what the walker does near a boundary.

An alternative method of computing the diffusion con-
stant is to put on a small bias on the walk and compute
the mean distance moved in the direction of the bias.
This mean distance will be proportional to the bias and
the diffusion constant. This method has been used for
calculations in macroscopically inhomogeneous sys-
tems. ' We have also done some preliminary calculations
and have found that because weak biases are necessary,
there is no improvement in computation time. In addi-
tion, it would be much harder to use the first-passage al-
gorithm for speeding up the calculation since one could
not move the walkers to a random spot on the surface of
a sphere and the distribution of times would depend on
where you moved the walker.

III. BOUNDARY CONDITIONS

in the composite system, where D, =1 for the pure sys-
tem with 0 =1.

Most of the data reported in this paper are based on
averages over 1000 walkers. A new configuration of
spheres or disks was created for each walker to ensure
that each walk was totally independent of the others.
The computer time to create the configurations is gen-
erally much less than that to simulate the walks.

The algorithm initially used for this problem was to al-
low the random walkers to move with a small step size s
with the boundaries treated in a special way. Using only
small steps, this approach is very inefficient since much of
a walker's time is spent in regions far from any boun-
daries. Since only in the limit as s~0 is the continuum
result reached, one can run into severe computational
costs. Thus it is advantageous to treat the part of the
walk away from boundaries in a different manner. To do
this we determine the largest sphere (or disk in 2d) cen-
tered at the walkers position that does not intersect any
boundaries. Then we move the walker immediately to a
random point on the surface of this sphere. Finally, we
update the time according to the first-passage-time distri-
bution which is stored in an array. This distribution can
be determined numerically or analytically. ' In the
analytical calculation one solves the diffusion equation
for the probability of a particle being a distance r away
from its initial position at a time t, with absorbing bound-

The key notion in using random walkers when there
are media of different conductivities is that (i) either the
time for each step or the step size varies with the conduc-
tivity and (ii) when one is at the border between two re-
gions the probabilities of moving in different directions
depends on the relative conductivities. Various algo-
rithms for random walks on lattice systems have already
been discussed in the literature, ' but the continuum sit-
uation has not been discussed in detail.

A. a=0

In the case where one material has zero conductivity
clearly the walker cannot enter the zero conductivity re-
gions. The only issue is what is to be done when the
walker is very close to the border. The two possible solu-
tions are called the "blind ant" and the "myopic ant"
boundary conditions. In the blind ant case the walker
moves in any direction and if it crosses a forbidden zero
conductivity region, the walker is returned to its original
place and the time is incrernented. In the myopic ant
case, the walker walks with equal probability in only
those directions which do not cross the forbidden region.
We chose the blind ant boundary condition. One way of
seeing this as preferable is to imagine infinitesimal steps.
In this case the walker would sometimes move in the
direction forbidden by the myopic ant and bounce off the
forbidden region returning to its original position, just as
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Here walkers can be in any region. However, if the
walker is in the superconducting region, then assuming
fixed steps, time does not change. Thus the walker can
move anywhere within the superconducting region in
zero time. Near the border between two regions of con-
ductivity 0.

, the probability for taking a step in the ith
direction into a region where the conductivity is 0.

, is

p; =cr;/g o, ,
J

(9)

where the sum is over all possible steps. If one is just out-
side the superconducting region, then this implies the
next step must be inside that region. If one is inside the
superconducting region, then it appears that there is no
way to step out since from Eq. (9) only steps inside the
superconductor have a finite probability of occurring.
However, since time does not change when one is inside
the superconducting region, the walker can try to escape
an infinite number of times, and there is thus a finite
probability of stepping out somewhere. Thus our algo-
rithm consists of taking a walker that is close to a super-
conducting region and moving it in one step a small dis-
tance, typically around a, =0.05, outside of this region at
random anywhere on the connected cluster of supercon-
ducting spheres. In practice this means pick one of the

is prescribed by the blind ant boundary condition.
An alternative way to see the correctness of the blind

ant boundary condition is to relate it to the boundary
condition that the normal component of the electric field
at the surface of a sphere should be zero. In our case the
electrostatic potential would correspond to the density of
walkers if one imagined a very large number of walkers
diffusing simultaneously. For simplicity consider the
one-dimensional case where we wish to find the density of
walkers next to the boundary Vo and one step away from
the boundary V&. We want our boundary condition to
lead to Vo= V, in the steady-state limit. For the blind
ant case the time rate of change of Vo is given by
dVO/dt ~ —

—,
' Vo+ —,

' V„because half the time a walker

right at the boundary will move one step away and half
the time it stays still, and half the time a walker at one
step away will move to the boundary and half the time it
moves to two steps out. In the steady-state limit
dVO/dt =0, and this clearly leads to Vo=—V& as desired.
In the myopic ant case d Vo/dt ~ —Vo+ —,

'
V& since all the

walkers move away from the surface in the next time
step. In the steady-state limit this leads to Vo= V, /2,
and thus the normal component of the field is not zero as
desired.

We have also examined the effect of having a uniformly
distributed random step size near the boundary, and
found that within our error bars there was no change in
the results. We have used step sizes of 0.02 in 2d and
0.04 in 3d. The advantage of a random step size is that
there may be very narrow regions in which it is impossi-
ble to move with a finite step size. Our results show that
these regions are not significant enough to change the re-
sults at our present level of accuracy.

TABLE I. Times for walkers to move a unit distance along a
line from the boundary between two regions of conductivity
o.=1 and h. The time to move into the former region is t& and
the latter is th.

1

2

3

4
5

6
7
8

9
10

0.997
0.783
0.649
0.614
0.553
0.514
0.487
0.488
0.464
0.451

0.973
0.601
0.448
0.347
0.289
0.247
0.212
0.189
0.171
0.156

spheres in the connected cluster at random and move the
walker to a random position outside this sphere. If one is
still in the cluster, repeat this process until one is in a re-
gion of finite conductivity. A small time t, =da, is added
to the time. This is the mean first-passage time to move a
distance a, from a flat surface. This algorithm was
checked on regular arrays of non-overlapping supercon-
ducting disks and compared with multipole expansions. '

The results agreed we11 within the statistical errors.

C. cr, =1 and a2=h

IV. EINSTEIN'S RELATIONS

A. can=0

In our reduced units Einstein's relation between con-
ductivity and diffusion for percolation clusters be-
comes' '

0.,=P„D,, (10)

where P„is the probability of being on the infinite con-
ducting cluster. However, we put walkers down in re-
gions that have nonzero conductivity but are totally en-
closed by nonconducting regions and thus cannot con-
tribute to the conductivity. It is numerically impossible
to determine whether or not a walker is in one of these

Here we consider the case where the conductivity both
inside (component two) and outside (component one) the
inclusions is finite and nonzero. In this case we move the
walkers a finite distance aI typically equal to 0.02 or 0.04
toward or away from the center of the sphere or disk sur-
face. The probability of moving toward the center is
h /( 1+h ) and the probability of moving away is
1/(1+h). The times for such a move equal dt;aI, where
the t, are the mean first-passage times for moving a dis-
tance aI into the region with conductivity 0.; in one di-
mension. The times t, were determined numerically by
averaging over 10000 walkers moving from the origin to
+1 in steps of 0.01 where the conductivity equals 1 for
negative positions and h for positive positions. These
times are listed in Table I.



41 RANDOM-%'ALK CALCULATION OF CONDUCTIVITY IN. . . 3055

and thus the slope is

n„D,
D

n, +n„
Multiplying this by

n, +n„
no+" +"

gives the desired result

n„D,
no+n, +n

(12)

(13)

(14)

B. o =00

regions. We will now show that rr, =PD, where D is

the slope at long times of ( r ) versus t and P is the frac-
tion of material with unit conductivity. Imagine we dis-
tributed walkers uniformly in our system. Then there
would be three types of walker. There will be no walkers
that land on the zero conductivity regions, n, walkers
that land on the enclosed regions, and n walkers that
land on the infinite conducting region. Their mean-

square displacements after a long time will be, respective-
ly, O, c = const, and D, t. In measuring D we only use
the n, +n „walkers, thus in the long time limit we will

measure

n, c+n„D,t(r') =
n, +n

This then provides the correct ratio of the conductivities
of composite to pure system.

C. o. is finite and nonzero

Since all regions have a finite nonzero conductivity
walkers can enter any region and spend time in any re-
gion. The mean time spent in each type of conductor is
correctly achieved by our boundary conditions. Hence
the ratio of conductivities equals the ratio of the diffusion
constants.

V. SIMULATION RESULTS

A. Two-dimensional models

l. Nonconducting disks

Results in this case, sometimes called the "Swiss
cheese" model, have already been published, ' and are
reproduced in Fig. 1 along with the EMT approximations
and an interpolation formula due to Xia and Thorpe. '

The horizontal axis is P„which is the porosity or frac-
tion of conducting region between the disks. The inter-
polation formula incorporates the correct behavior near

$, =1, the correct percolation threshold P~('=0. 33, and
the expected lattice critical exponent' t=1.3 defined
by a, -(P, —PI")' near the threshold. In two dimensions
it is expected that the transport exponents will be the
same for the continuum and lattice cases. The resulting
interpolation formula is

For the case when one component is superconducting
Einstein's relation leads to o, =P„D,where P„is the
fraction of the material that is normal metal with conduc-
tivity equal to unity. There are many ways to see this,
but perhaps the most physical is the following. Imagine a
d-dimensional cube of side length I.. We are interested in

comparing the conductance g of this cube with supercon-
ducting inclusions with the same size cube without in-
clusions for which we define the conductance go=1. To
do so we will change the composite material to a new
equivalent contracted cube with no inclusions. Since
each point on the superconducting regions is shorted to
every other point connected to it via a superconducting
region, we can replace the extended superconducting re-
gions by points with no volume and still have the same
conductance. If we measured the diffusion constant on
the original composite material using our algorithm, we
obtain D . Now the diffusion constant on the contracted
system would just be D p„~",since the diffusion constant
scales as length squared and the linear dimensions of the
contracted cube have changed by a factor of P„'~ . Now
the contracted system and the original system without in-
clusions are both pure systems, thus their conductivity
ratio is just given by the ratio of their diffusion constants,
which is just D p„~",since the diffusion constant of the
original pure system is defined to be unity. Now we find
the ratio of conductances by multiplying this result by
the ratio of the cross-sectional areas P'„~ divided by the
ratio of the lengths P„'~d. The result is glgo=P„D

1.0

Interpoiatio

SB EMT

0.8- ----- CM EMT

O Conductivit

~ Res)st)v) ty

06-

0.4-

0.2-

0.0
0.0 0.2 0.4

I

0.6 0.8 1.0

Area fraction between disks

FIG. 1. Conductivity for a model composite of random over-

lapping nonconducting disks embedded in a medium of unit
conductivity material and resistivity of superconducting disks in

the same medium. The horizontal axis is the porosity or area
fraction of the unit conductivity material P, . The curves are the

symmetric Bruggemann (SB) and Clausius Mossotti (CM)
e6'ective medium theories and an interpolation formula due to
Xia and Thorpe (Ref. 18).
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where m is the initial slope determined by the EMT ap-
proximations and Pz = 1 —P, . As can be seen the interpo-
lation formula works very well, but the EMT approxima-
tions are not very good.

At the percolation threshold we can also compute the
anomalous diffusion exponent. We expect that for walks
diffusing less than the correlation length the mean-square
displacernent should go as

(16)

where scaling arguments' (including walks on finite as
well as infinite clusters) lead to

~e&

0

C0
U

10 &

8-

4 a

SB

(17)a=(2v P)l(2v—+t —2P) .

Using the known 2d lattice results p= —,', and v= —', , we

expect a=0.69. At P =0.33 we found a=0.70+0.03
for a range of time from 1 to 1000.

2&

0
0.0

I

0.2 0.4 0.8 0.8

V \J

2. Superconducting disks

In two dimensions there is a duality relation between a
mixture of superconducting regions embedded in a medi-
um of unit conductivity and nonconducting regions em-
bedded in a medium of unit conductivity. It can be prov-
en that if the geometry is identical then the resistivity of
the former composite equals the conductivity of the latter
composite. ' Thus in Fig. 1 we have plotted the resistivi-
ty of the superconducting disk composite on the same
graph as the nonconducting disk composite. As can be
seen the results agree quite well. The advantage of using
the superconducting disks to do the problem is that the
walkers cover a much larger fraction of the configuration
space than they would with nonconducting disks. Thus
we expect to sample the geometry better. The disadvan-
tage is that we may not use the method once there exists
clusters of disks spanning our system, and periodic
boundary conditions are ambiguous so we do not use
them. Instead we start our walkers at the center of our
system and consider only times such that no walker has
reached the edge. We were able to go down to P, =0.38
and a time equal to 5 with a simulation cell of size
300X300. Even though the time here seems very short,
the walkers can go a long distance by hopping along the
superconducting clusters, and can very effectively sample
the geometry.

Area fraction between dlaka

FIG. 2. Conductivity for a model composite of random over-

lapping disks with conductivity h embedded in a medium of unit
conductivity of area fraction P, . Also shown are the SB and
CM effective medium theories.

1.0

0.8-

Q

'e
C0
V

08-

0.4-

colation threshold is about 3/o as found by previous
workers and is consistent with experimental results on
brine filled porous rocks, which are known to conduct
down to close to zero porosity. This effect is known as
Archie's law. Our results are also similar to those
found by Schwartz and Banavar for the grain consolida-
tion model.

3. Disks with finite conductivity

We considered the cases where the disk conductivity is
h =2, 5, and 10. The results are shown in Fig. 2 along
with the EMT approximations. We note that, in general,
our results typically fall between the SB and CM approxi-
mations. Also, we note that there is not yet any hint that
as h becomes large, cr, will diverge at PI".

0.2-

0.0
0.0 0.2 0.4 0.6

Volume fraction between apherea

0.8 1.0

B. Three-dimensional models

1. Nonconducting spheres

Results are shown in Fig. 3 along with the EMT ap-
proximations and two interpolation formulas. The per-

FIG. 3. Conductivity for a model composite of random over-
lapping nonconducting spheres embedded in a medium of unit
conductivity of volume fraction P, . The curves are the SB and
CM effective medium theories and two interpolation formulas
Interp. (L) based on lattice exponents and Interp. {Q based on
continuum exponents.
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The random overlapping sphere model is one example
of a three-dimensional model with narrow conducting
necks which are expected to lead to a change in the trans-
port exponents from their lattice values. The first inter-
polation formula uses the lattice value t&„=1.9, and the
second the value expected theoretically for a continuumt„„,=t&„+0.5=2.4. The lattice interpolation formula
actually seems to fit the data better. This is probably a
coincidence, although it may indicate that the narrow
necks responsible for the difference in the continuum ex-
ponents are only measurable at porosities very close to
the threshold.

We have tried very hard to estimate t from the anamo-
lous diffusion exponent a. Using the lattice values
v=0. 89 (Ref. 23) and /3=0. 42, one predicts that
a =0.48 for the lattice and e =0.41 for the continuum.
Our results at the percolation threshold ' $, =0.032 for
2000 walkers averaged over a time of 2000 are
a=0.45+0.04. Thus we are unable to distinquish be-
tween the two possibilities. We estimate at least another
order of magnitude in running time is needed to pin down
the anamolous diff'usion exponent. (The present results
for this data point took about one month of CPU time on
a SUN 3/75 computer. )

10

8-

o

C
0
V

6"

4 a

2-

0
0.7

I

0.8
I

0.9 1.0

Volume fraction between apherea

FIG. 5. Conductivity for a model composite of random over-

lapping superconducting spheres embedded in a medium of unit
conductivity of volume fraction P, . The curves are the SB and
CM effective medium theories and an interpolation formula.

2. Nonconducting region between spheres

Now we consider the case where the spheres are con-
ducting, but the region between them is not conducting.
Thus the walkers move only on the spheres. If we contin-
ue to call the volume fraction of the spheres P2 and the
volume fraction of the background P, then the percola-
tion threshold is at about PI"=0.71. In Fig. 4 we show
the random-walk results along with EMT approxima-
tions. Note that in this case the EMT do not have the

correct behavior for a low density of zero conductivity
material. This is no doubt because the geometry of space
between spheres is very complicated and does not at all
approximate nice, simple, widely separated spheres.

We also measured the anomalous diffusion coefficient
and found a =0.51+0.03 for a walk time of 1000. This is
consistent with the lattice result, =0.48, which is expect-
ed since the narrow conducting necks, which are respon-
sible for changing the conductivity exponent from the lat-
tice result, do not exist in this 3D model.

1.0:
3. Superconducting Spheres

Q

'0
C
0
V

0.8-

0.6-

0.4 "

0.2 "

0.0
0.0

I

0.2
I

0.4 0.6

M EMT

8 EMT

mulation

I

0.8 1.0

Figure 5 shows the results for superconducting
spheres. These data were obtained using a 60X60X60
simulation cell with the walkers starting at the center of
the cell. Because of the small cell size, we cannot obtain
results close to the percolation threshold and we could
only allow the walkers to walk for times between 20 at
$, =0.95 and 2.4 at $, =0.75. The interpolation formula
is based on the same idea as before, except here we used
the resistivity exponent defined by p-(P, —P~(')', where
lattice calculations give s=0.76. ' The most important
feature of our results is that we are able to see the begin-
ning of the divergent behavior. Currently, work is in pro-
gress to look at a similar system where the spheres cannot
overlap and configurations are generated by Monte Carlo
simulations for dense liquids.

Volume fraction between spheres

FIG. 4. Conductivity for a model composite of random over-

lapping unit conductivity spheres embedded in a nonconducting
medium of volume fraction P, . The curves are the SB and CM
effective medium theories.

VI. SUMMARY

In this paper we have shown that the random-walk al-
gorithm can be used successfully to determine the con-
ductivity of a wide variety of model composite systems.
Using on the order of 1000 walkers, one can expect to ob-
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tain results at about the 5%%uo accuracy level. The advan-

tage of our method is that it does not rely in any way on
an underlying lattice. Given a particular geometry the
major sources of approximation are the finite number of
walkers, the finite size moves made at the boundary be-
tween two materials, and the limited time during which
the walkers move. Within our statistical accuracy,
changing the parameters that control these limitations by
a factor of 2 or 3 does not change the final results. Thus,
at least another order of magnitude in numerical effort is
needed to significantly reduce the statistical uncertainty
of our results.

The method used in this paper should be applicable to
any continuum model where it is possible to determine

the boundaries between the regions of different conduc-
tivity. The method can also be used for more than two
components, and in any dimension.
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