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Critical phenomena and phase transitions in optical bistabilit3t
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Critical phenomena in optical bistability {OB) are studied in detail. The theoretical analyses,

mainly based on the steady-state solution of the "thermodynamics" Fokker-Planck equation [Fa Ou
and Zixiong gin, Opt. Commun. 65, 455 (1988)] for absorptive OB, show that the critical phenome-

na in OB also can be brought into the framework of Landau's theory for the second-order phase
transition, and the critical exponents obey the scaling laws.

I. INTRODUCTION

The phase transition in going from equilibrium to
nonequilibrium is always a fascinating problem. It has
been found that although the equilibrium phase transi-
tion may be very different in the mechanism of interac-
tion, there are some common features. To study the anal-
ogy between the equilibrium and the far-from-equilibrium
phase transition would just be for the purpose of finding
the degree of similarity to a greater extent. In quantum
optics, the atoms coupled with an optical (electromagnet-
ic) field form an open system that exhibits phenomena
analogous to phase transitions but far from thermo-
dynamic equilibrium. The switching effect in optical bi-
stability (OB) appears similar to a first-order phase transi-
tion, ' and the threshold behavior of the laser is similar to
a second-order phase transition. ' The phenomena of
Srst-order-like phase transition are shown also by the
other dissipative systems in quantum optics. For in-
stance, lasers with saturable absorbers, dye lasers, subhar-
monic and second-harmonic generators, and bidirectional
ring lasers are such kinds of systems. ' However, some
authors, "' ' ' who are authoritative in the theory of
OB, have stated that "the characteristic features of opti-
cal bistability are that it occurs in a purely passive system
and that it never exhibits a second-order transition. " The
critical phenomenon studied in this paper is just the OB
critical phenomenon that occurs in the passive cavity. As
we know, the two-phase coexistence line of the first-order
transition in the equilibrium system has a terminal point,
the so-called critical point, and the critical point in the
equilibrium transition is just the second-order transition
(continuous transition) point. Although it is difficult to
establish the concept of two-phase coexistence concern-
ing OB, a similar critical point does exist. Let I, , I&, and
I

&
represent the input light intensity and its up and down

threshold, respectively; I, the output (transmitted) light
intensity of the system, and C the control parameter. On
the I;-C plane, one can always draw I&-C and I~-C
curves from experimental or theoretical work [see Figs.
1(a) and 1(b)]. These two curves intersect only at one
point and end at this point. From the figure we can see
that this point is completely similar to the end point of
the two-phase coexistence line in the equilibrium system.

Ii Il

(2)

FIG. 1. (a) Transmitted intensity vs incident intensity for a
bistable system: (1) high transmission; (2) low transmission
branch. (b) Phase diagram of the OB's: (1) I~-C curve; (2) I~-C
curve. I. Single stable region; II. single stable region of the high
branch. III. bistable region; IV. single stable region of the low
branch.
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Thus, as an analogy, it is also a critical point —the criti-
cal point of the OB system. Does this critical point of
OB correspond to a continuous transition (second-order
phase transition)'? This paper is devoted to answering
this question.

(x„y„C,) =(&3,3~3,4) .

For lasers, from Eq. (5), we have

(x„y„C,) = (0,0, —
—,
' ) .

(6)

(7)

G(x)= —,'x —xy +C ln(1+x ), (2)

where y is the normalized incident field and C is the
cooperative parameter (control parameter). If some
internal factor of the system causes a small fluctuation of
x to be 5x, the corresponding change of G(x) is b,G(x) (y
and C remain unchanged):

BGEG = 5x + (5x)
Bx

(3)

II. GENERALIZED THERMODYNAMIC
POTENTIAL, ORDER PARAMETER

AND EQUIVALENT EXTERNAL FIELD

The Fokker-Planck equation of the OB, or laser, is one
kind of quantum-statistical theory of a nonequilibrium
open system. From this equation the steady-state distri-
bution P„(x)can be solved to have an exponential form:

P„(x)=JV exp[ —G(x)/q],

where JV is the normalized factor and q is the fluctuation
parameter; the variable x is the normalized transmitted
field, while the function G(x) is the so-called general
thermodynamic potential which determines directly the
properties of the steady-state statistical distribution of
the system. In the case neglecting quantum fluctuation,
the G(x), due to pure absorptive OB (AOB), can be writ-
ten in the following simple form: '

The starting point for considering the OB critical behav-
ior is the general thermodynamic potential G(x), which
reflects the statistical properties of the AOB steady state
and is shown in Eq. (2). We expand G(x) about the criti-
cal point x =x, and let

x =x, +g, g&&x, .

Then the Taylor series of G may be expressed in terms of
the deviation g:

G(rt)=GO+Girt+Gzrt +G3rt +G4rt (9)

Go =
—,'x, —x,y +C, (1—t)ln(1+x, ), t =1- C

C

(for lasers, x, =0, then 60 =0);

(9a)

where g can be considered as an order parameter of the
OB system. Later, we could see that g is analogous to
the magnetization of the ferromagnetics, to the wave
function of the electron pairs in superconductor, and to
the difference between the g@s density and liquid density
at the gas-liquid coexistence state (strictly speaking,
analogous to the deviation of the gas or liquid density
from its critical value). In order to conveniently compare
with Landau's theory, the series of G has been truncated
to the fifth power of rt. By using Eq. (2) it is easy to ob-
tain the expansion coeScients G„, n =0, 1,2, 3,4, as fol-
lows:

BG/Bx =0 is the condition that 6 takes an extreme value
and it also gives the macroscopic state equation

y =x 1+ 2C
1+x

while the condition 8 G/Bx )0 (i.e., dy/dx )0), under
which the 6 takes a minimum, is also the stability condi-
tion of the macroscopic steady state. Therefore, the G(x)
is equivalent to the Gibbs free energy in equilibrium ther-
modynamics. This problem has been discussed in detail
in Ref. 6.

When y =0 in Eq. (4), which means no injected signal,
we have

2C
6& = —y+x, 1+ —= —H

1+x,

(for lasers, y =0, x, =0, then H =0);

6 =—
2 2

(for lasers, the same);

C 4x
6 =— =0

(1+x, )

(for AOB, x, = v'3; for lasers, x, =0);

G4=b(l t)—

(9b)

(9c)

(9d)

2C
1+x

=0. (5)

It can be taken as the laser state equation near threshold,
while the parameter C in this equation plays a role of
pumping and C &0 should be satisfied. Even though, this
paper is mainly concerned with the OB critical
phenomenon, which has not been carefully studied.
However, the threshold behavior of the laser would be in-
cluded naturally in our discussion.

It is easy to find the values of (x,y, C) in the critical
point (x„y„C,) by working out dy /dx =0 and
d y/dx =0 according to Eq. (4):

2Cy=y, =x, 1+
1+x,

(10)

the corresponding equivalent external field H will be zero,
i.e.,

[for AOB, b =1/C, =(—,'); for lasers, b=C, =
—,']. It is

worth noting that the quantity H, defined in Eq. (9b),
may be called the "equivalent external field, "because it is
fairly similar to the external magnetic field in ferromag-
netics. Let the incident field y operate in a special value

y, , which means



41 CRITICAL PHENOMENA AND PHASE TRANSITIONS IN. . . 3023

C&C,
=C,

C&C

t &0 (C &C, ), g=0 stable, no OB;

t =0 ( C =C, ), g =0 critically unstable;

r &0 (C&C, ), g=q+=+( r—)~/2&b,

P= —,
' OB occurs . (16)

Now, let us consider the case of H =y
—x, [1+2C/(1+x, )]WO (x, =&3). For a critical value

C, =4, from Eq (13), we have

ri=(H/4b)'i, 5=3 . (17)

H=O .

Such a y, corresponds to the values of y with the same
x =x,(g=0) in the equal C curves (see Fig. 2). Inserting
Eqs. (9a)—(9e) into Eq. (9), we have the expression of the
general thermodynamic potential of AOB near the criti-
cal point:

G(g) =
—,'x, —x,y +C, (1—t)in(1+x, )

Hq+ q—'+ b (1—r)g' .—
2

(12)

In fact, the obtaining of this equation has brought the OB
critical phenomena of passive cavity (C &0) into the
Landau's second-order phase transition theory.

Xc

FIG. 2. The x-y curves for di8'erent values of the parameter
C in the vicinity of the critical point.

(18)

We continue to discuss the solutions of the order parame-
ter under the condition the equivalent field HAO. For
this purpose, Eq. (13) is rewritten in the following typical
form of third-order algebraic equation:

q'+ t'q+H'=0,
where

(19)

This result indicates that, although C takes the critical
value C, =4, the incident field y does not equal the corre-
sponding operating value, i.e. yWy, =y, =3&3. Conse-
quently, it is obvious that xWx„ i.e., g%0. In this case
the g is equivalent to the magnetization of ferromagnetics
under the external magnetic field at the critical tempera-
ture. From Eq. (13) "the equivalent susceptibility" X in
the vicinity of critical point of AOB can be defined as fol-
lows:

III. THE STEADY-STATE EQUATION
NEAR THE CRITICAL POINT

From BG/By=0, we obtain the steady-state equation
near the critical point:

t —, H y ypp

4b
'

4b 4b

The discriminant of the solution of Eq. (19) is

b, =(H'/2)2+(r'/3)3 .

(20)

(21)

H =rq+4b(1 —t)q' . (13)

If we set the incident field y to be the y, shown in Eq.
(10), which means H =0, we have

g[r +4b (1—r)g'] =0 .

The solutions of this equation are as follows:

(14)

(15)

The above results represent the bifurcation of one stable
mode into two stable modes in OB critical phenomena:
When t &0 (C & C, ), only the solution g=O is stable,
since 8 G/dg ~„o=t)0. As soon as t (0 (C )C, ), the
solution g =0 becomes unstable; since
8 G/Bvf ~„„= 2t )0, the tw—o solutions g=g are

stable. These three solutions meet at the critical point
t =0 with g=0, which is critically unstable. q=g+) 0
corresponds to the high transmission branch; g=g &0,
the low branch. Because the equivalent external field
H=O in the given case, g+ and g are completely simi-
lar to two opposite spontaneous magnetizations in fer-
romagnetics. In summary,

When 4 & 0, the g has only one real root, which contains
two situations: (i) C is smaller than the critical value C„
i.e., t'&0, this is absolutely the single stable case, no
matter what the incident

field

is taken as; (ii) t'(0, but
C is slightly above C, for the given y, deviating from
y,z(HAO) the single real root of ri means a single stable
state in the high branch or in the low branch, i.e., beyond
the bistable region. When 5 (0, the g has three unequal
real roots, which means that not only is C above
C, (t' &0) but also the y has been biased into the bistable
region. The above discussion shows that above the criti-
cal point, H =0 ensures that the incident y holds always
in the bistable region. Taking H =0 would make clearer
the demonstration of the characteristic features of OB
critical phenomena. So far, the OB critical features, re-
vealed by us, are completely similar to ferromagnetics,
while the critical phenomena of ferromagnetics are a pro-
totypical second-order transition.

IV. SECOND-ORDER TRANSITION
AND SCALING RULE

In order to further demonstrate that the OB critical
phenomena are in accord with the general definition of a
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second-order transition (Ehrenfest definition), we consid-
er the formal entropy S introduced in Ref. 6. S is just the
first-order derivation of G, i.e., S=aG/ac. First, we
consider the case of the generalized thermodynamic po-
tential G with HAO. Referring to Eqs. (12), (9a), and
(9b), we have

c(t~0 )
—c(t~0 )= lim

C
c c, 86C,

= lim (for AOB)
C

c-c, 2C,

2
(27b)

s aG'= ac„
where

=ln(1+x, )—
C

2'-
~ t~ +nonsingular parts . (28)

The singularity of the "specific heat" c may be expressed
as follows:

aH 2xc
(rt being neglected) .

1+x,' (22}

The above equation is just the approximate series expan-
sion of S, formulated in Ref. 6 as follows: n+2P+v=2, a+P(5+1)=2 . (29)

Combining the critical exponents (P= —,', 5=3, v= 1, and

a =0) in Eqs. (16), (17), (18), and (28) we find that they are
just the same as that of the ferromagnetics, and obey the
following scaling rules:

S=ln(1+x )=in[1+(x, +g} ] . (23}

The advantage of the formal entropy S formulated as
Eq.(22} is that it includes the terms of the first power of

If we switch up or down the OB's, i.e., altering the
sign of g, then the forrnal entropy S is discontinuously
changed. Evidently, this shows the character of first-
order transition. However, in order to demonstrate the
second-order transition of OB we would prefer to use the
G(i}) with H =0 to derive the formal entropy S. In this
case the result is

2

S= =ln(1+x, )—
C

(24)

Substituting the solution of g, expressed by Eqs. (16) with
H=0, into the above equation, we have

S,=ln(1+ x,'), t & 0 ( C & C, )
(25)

S=ln(1+x,')+, t &0 (C &C, ) .8b'

Therefore, if the system passes through the critical point,
the change of formal entropy S is continuous. Because
the cooperative parameter C is equivalent to the tempera-
ture in equilibrium thermodynamics, the forrnal specific
heat c can be defined by the following fashion: '

as c as
ac c, at

According to Eq. (25}we have

(26)

C BS
C, Bt

cas c
8bC,

(27a)

Thus, when the system passes through the critical point,
the forrnal specific heat V —the second-order derivation
of 6—would discontinuously change. This situation
clearly indicates that the OB critical phenomena are of a
second-order phase transition.

At the OB critical point formal specific heat 2 has a
definite jump [see Eq. (27a}), that is,

V. CONCLUSIONS

Summarizing the above discussion on OB critical phe-
nomena, we would like to make the following con-
clusions.

(i) The optical bistability is not only an example of the
first-order transition, but also plays the role of a proto-
type of the second-order transition.

(ii) The OB critical phenomena can be brought into the
framework of Landau phase transition theory, at least for
the case of AOB.

(iii) The relations among the critical exponents of
AOB obey the scaling rules, as shown in Eqs. (29).

(iv) Although the purpose of the present paper is to
study the OB critical phenomena, if comparing it with
the work of Degiorgio and Scully (analogy between laser
and ferromagnetics ) and with the work of Graham and
Haken (analogy between laser and superconductor }, it is
easy to find that the discussion of this paper has included
the laser threshold behavior with injected signal (yAO,
HAO) and/or without injected signal (y =0, H=0, since
for lasers, x, =O). Thus this paper would be a develop-
ment and synthesis of the related works of above authors.

(v) In principle, the discussion on OB critical behavior
in this paper is based on the statistical theory, because
the starting point is the generalized thermodynamic po-
tential G which represents the statistical properties of
AOB. Certainly the works of other authors mentioned
above are the same.

(vi) The generalized potential G, related to our discus-
sion, is a particular form shown as Eq. (2) which satisfies
the principle of detailed balance. Therefore, in the stud-
ied case, the foundation of an analogy between the equi-
librium and the far-from-equihbrium phase transition
would still be the detailed balance.

ACKNOWLEDGMENTS

I would like to thank Mr. Wenji Deng for helpful dis-
cussion. This work was supported in part by the Science
and Engineering Research Section of the South China In-
stitute of Technology (Guangzhou, China).



CRITICAL PHENOMENA AND PHASE TRANSITIONS IN. . . 3025

R. Bonifacio and L. A. Lugiato, in Dissipatiue Systems in Quan-
tum Optics, edited by R. Bonifacio (Springer-Verlag, Berlin,
1982), pp. 61 and 64.

~(a) V. Degiorgio and M. O. Scully, Physics Rev. A 2, 1170
(1970); (b) M. Sargent III and M. O. Scully, in Laser Hand-
book, edited by F. T. Arrechi and E. O. Schulz-Dubois
(North-Holland, Amsterdam, 1972), Vol. I.

3R. Graham and H. Haken, Z. Phys. 237, 31 (1970); H. Haken,
Ref. 2(b).

(a) L. A. Lugiato, in Progress in Optics XXI, edited by E. Wolf

(Elsevier Science, New York, 1984), pp. 71 and 188; (b) R.
Bonifacio and L. A. Lugiata (Ref. 1), p. 84.

C. R. Willis, in Optical Bistabihty, edited by C. M. Bowden
et al. (Plenum, New York, 1981),p. 431.

6Fa Ou and Zixiong Qin, Opt. Commun. 65, 455 (19881.
7R. Bonifacio, M. Gronchi, and L. A. Lugiato, Phys. Rev. A 18,

2266 (1978).
8S. K. Ma, Modern Theory of Critical Phenomena (Benjamin,

New York, 1976).


