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Following our earlier work on quantum kinetic equations and the use of the Boltzmann-Lorentz
model to describe the collisional broadening of spectra, we develop a new approach to that problem
in which the center-of-mass motion of the emitter as well as the interaction during the collision be-
tween the emitter and the buffer gas are treated quantum mechanically. Possible further extensions

of our model are discussed.

I. INTRODUCTION

One of the classical problems of atomic and molecular
optics, the collisional broadening of spectra, attracts as
much attention nowadays as several decades ago.! Re-
cent developments in modern spectroscopy call for better
understanding of the radiation line shapes of ultracold
atoms.? Indeed, one can envision a situation in which the
density of optically active cold atoms becomes such that
the quantum statistics of them will matter, while the
direct interaction between them will still be of negligible
importance. Description of such a problem requires that
both center-of-mass and internal atomic degrees of free-
dom are treated fully quantum mechanically. As a first
step in developing such a theory we propose here the
quantum generalization of the Boltzmann-Lorentz model
of the collisional broadening of spectra.’

In the usual approach the change of the atomic spec-
trum due to interaction between the optically active atom
(the emitter) and the buffer gas (the perturbers) is viewed
as the interplay of two main phenomena referred to as ve-
locity modulation and the interaction effect. The velocity
modulation concerns the random changes in the velocity
of the emitter due to the collisions and the interaction
effects arise from the simultaneous perturbation of the
pertinent energy levels of the emitter during the collision.

The classical paper on collisional broadening by Rau-

tian and Sobelman* contains the analysis of the line-shape
problem based on the classical linearized Boltzmann
equation. The Rautian and Sobelman analysis makes the
distinction between (i) the weak-collision model and (ii)
the strong-collision model; the first one is applicable to
massive emitters colliding with relatively light buffer-gas
particles and the second one pertains to the case in which
the emitter is taken to be much lighter than the per-
turber. The effect of collision is viewed to be so drastic
that the velocity of the emitter after the collision is as-
sumed to be completely independent of its velocity before
the collision. In a previous publication® we have present-
ed a model of the collisional broadening based on the
Boltzmann-Lorentz model borrowed from the classical
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kinetic theory. We were able to treat interaction effects
quantum mechanically, while the velocity modulation
was considered to be purely classical. Our model was a
particular implementation of Berman’s’ idea of a
quantum-mechanical transport equation (QMTE). The
collisions between emitter and perturbers were treated in
Ref. 3 by assuming that the emitter motion was per-
turbed by random time events with a Poissonian distribu-
tion. This was shown to be equivalent to a kinetic theory
approach for low perturber density.

In quantum theory we have to use a different approach,
and we have found that in order to calculate line shapes it
is convenient to work in the Liouville space formalism.
This formalism is a widely used tool of quantum many-
body theory;® it has recently been employed by us for the
microscopic evaluation of time-correlation functions”?
and the derivation of quantum-kinetic equations.’

In this work we shall present a novel formulation of
the collisional broadening, based on the Liouville space
formalism, which generalizes Berman’s QMTE approach.
Using the technique developed in Ref. 8 we are able to re-
peat our analysis® but with the center-of-mass motion of
the emitter treated fully quantum mechanically.

As in Ref. 3 we assume that the density of the per-
turbers is low, and therefore we restrict our analysis to
the leading order in the perturbers’ density. When that
density increases one expects several new phenomena, for
example, the localization, to become of importance. This
has been discussed in Ref. 10 on both the classical'*®
and quantum'®® levels. This later reference is of particu-
lar importance, for several correlation functions calculat-
ed therein have a direct bearing on the line-shape prob-
lem.

Our paper is organized similarly as in Ref. 3. We shall
begin in Sec. II by presenting our analysis of the velocity
modulated line shape in the quantum Boltzmann-Lorentz
model. In Sec. III we shall briefly summarize the main
result of pure interaction effects from Ref. 3. In Sec. IV
we will discuss at some length the combined interaction
and velocity modulation effects, again within the full
quantum picture. Section V will contain final comments
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and conclusions. The necessary technical points are dis-
cussed in Appendices A-D.

II. QUANTUM VELOCITY MODULATION

Following Ref. 3 we assume the emitter to be a two-
level quantum system (this approximation seems to be
particularly well suited for ultracold atoms) which emits
a photon when it makes a transition from the upper to
the lower energy level on account of the interaction be-
tween its dipole moment and the surrounding elec-
tromagnetic field. The line shape is given in terms of the
dipole-dipole correlation function®

I(k’w): LRefwdte-imt<de —ik-r),(deik.r)(t)) , (21)
T 0

where d and r denote the dipole moment operator and
position of the emitter, respectively.

Now, in the Boltzmann-Lorentz model it is assumed
that the dilute gas of mutually noninteracting emitters
moves in the volume ) within which an optically inactive
buffer gas is present. The buffer-gas atoms (perturbers)
are assumed to be much more massive than the emitters
and therefore one neglects their motion. Furthermore,
the perturbers are randomly distributed throughout the
volume and one neglects all effects related to the mutual
geometrical arrangements of perturbers. (For instance,
the problem of overlapping and nonoverlapping per-
turber configurations is not being taken into considera-
tion. This plays an important role in the analysis of the
localization in the Lorentz model, cf. Ref. 10.) The prob-
ability density of the emitter encountering a perturber is
then equal to 1/9. In this section we shall neglect any
interaction between the perturber and the emitter during
the collision and concentrate on the analysis of the veloc-
ity modulation influence on the emitted photon spectrum.
The line shape is then obtained from the formula analo-
gous to Eq. (2.1) in which the dipole moment operators
are omitted.

In the classical Boltzmann-Lorentz gas theory it is as-
sumed that emitter-perturber encounters are such that
the magnitude of the emitter velocity remains unaltered
but the velocity direction changes at random.!° The
scattering between emitter and perturber is then the
hard-sphere collision. The influence of that type of veloc-
ity modulations on the line shape of emitted light
was analyzed in Ref. 3 by means of the stochastic matrix
approach. Here we shall analyze the velocity modula-
tion assuming that scatterers are quantum particles obey-
ing Fermi-Dirac or Bose-Einstein statistics. We shall
neglect, however, any direct interaction between emitters.

In Ref. 3 it was sufficient to analyze effects of the veloc-
ity modulation for one emitter and to calculate the final
result by averaging the final expression over the Maxwell
distribution of the emitters. In the quantum case instead
we have to analyze the true many-body correlation func-
tion which replaces Eq. (2.1), i.e.,

1 - | N
I(k,0)=—R SR>
(k,w) - efo dte N (e

ij=1
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Here the sum runs over all N emitters.
The Hamiltonian governing the dynamics of our model
is given by

N
H=3 H,=H,+V, 2.3)

i=1
where #£, denotes the kinetic energy of the emitters and

%V describes the interaction between emitters and per-
turbers,

N p?

Ho=3 2 (2.4)
=) 2m
N N N

V=3 V)= X Ulr,—R;). (2.5)

In the above R; denotes the position of one of the N per-
turbers and U(r—R) describes the interaction between
emitter and scatterer. The average in Eq. (2.2) is defined

as

(a)=Ptr(pa) , (2.6)

where P denotes the average over the randomly distribut-
ed perturbers,
? 1)1 N ?1 PN N 1
= rees V= e = —_ dR, 2.7
ir=Il Q f“ ’ 27

and tr denotes the trace over a complete set of emitter
states. The operator p is the canonical density matrix

p=Z exp(—BFH)

with the partition function Z ({R;})=trexp(—pB%) de-
pending on the perturber positions. The latter property
does not play an important role in our analysis since Z is
self-averaging.!! The time evolution of any operator « is
given by

a(t)=eL'%(0) , (2.8)

where £ denotes the Liouville (super) operator defined as

LaE%[ﬂ,a] . (2.9)

The fact that the Hamiltonian Eq. (2.3) is a sum of
single-particle contributions allows us to prove the fol-
lowing useful identity (cf. Appendix A):

a;

i=1 j

M=

by=tr\[fia,(1+nf,)b,]
1

trp

ME

+[tr1(f1a, )][trl(flb, )] ’ (2.10)

where a; and b; are one-particle operators and tr; means
the one-particle trace. Furthermore,

fi= 1

' exp[B(H,—p)]—7
is the one-particle Fermi-Dirac or Bose-Einstein distribu-
tion operator and p denotes the chemical potential. The
coefficient 7 equals F 1 for fermion and boson emitters,
respectively. Note that #, still contains the interaction

(2.11)
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between emitter 1 and the perturbers.
With the aid of identity (2.10) we can write the in-
tegrand of the line-shape formula as

2( tkr zkr

ik- 1'1

)= ?trl[fle T+qf e D]

ik-
+|Ptry(fre M2 (2.12)
The last term on the right-hand side of this equation is
proportional to 8, ; and can be omitted since we are only
interested in the case k0. The pure modulation line

shape is then given by the formula

I(k,0)=-Re [ “dt e =Pt fe (1 +nf)e™ (0] ,
™ 0
(2.13)

where we have dropped the index 1.

Equation (2.13) is the quantum generalization of the
classical velocity modulated emission line shape [cf. Eq.
(2.2) of Ref. 3]. We can rewrite Eq. (2.13) in a form
which is better suited for further analysis by using the
identity below, which holds for any analytic function of
the Hamiltonian #:

e XTg(H(p))e®T=g(H(p+Hk)) . (2.14)

With the aid of the “shifted” Hamiltonian #(p-+#k)
we can define generalized Liouville operators:

Lka=-f1;[7{(p+ﬁk)a—a7'[(p)] ,
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where fX=f(#(p+#k)). Note that in Eq.
(e+io—iL¥)" " acts on the unit operator 1.

The further analysis of expression (2.16) is based on the
formalism developed in Refs. 7 and 8. One evaluates the
trace in Eq. (2.16) by using emitter momentum eigen-
states |q) and diagonal and off-diagonal projection opera-
tors

(2.16)

(q|P‘alq’) =(qlalq')8, »
Q°=1—P°.

(2.17)

The memory-function-like form of the line shape reads
then (z =iw+e€)

I(k, co)—l 11m Re?trS (k 1
z—D*4k,z)

T €0

k)[1+N(k,z)]

(2.18)

where the memory kernel D*k,z) does not depend ex-
plicitly on perturber coordinates while the amplitude
correction N (k,z) does. This, and the appearance of the
k-dependent static structure factor S(k) are important
modifications as compared to the classical theory. Explic-
itly we have

Dek,z)=P4Lkpe+PPe | — 2 |if,P°. (2.19
z iLg il iLy (2.19)

1
N(k,z)=Q° | ———— |iL P¢, 2.20
z)=Q L0 ]l v ( )
S(k)=f(1+nf%) 2.21)

Lra= —1—[7{0(p+hk Ya—a#y(p)], (2.15)  The derivation of formula (2.18), which is the main result
fi of this section, is outlined in Appendix B.
Lom= 1 Vi) We can now discuss our result in various interesting
va= ﬁ[ r),a]. limits. First we shall analyze the large-|k| limit. Since
. , F(p+1ik) = [k|? for large |k|, S(k)—f(#). Further-
Equation (2.13) can now be rewritten as more, using the results of Appendix B, we find that
Ik,0)=" lim RePtr |f(1+nf——" |, D (k,2)—PiL§+0(1/k?)
T e—0+ etiw—iL .
while N (k,z)—~O0(1/k?). Thus the large-k limit of the
(2.16)  line-shape function equals
J
ko) ~ + lim. Rez [Pf (H)] I . (2.22)
ksw T €m0 YWetio—i(fi/m)qk—i(#i/2mk?
[
In the classical regime, i.e., i—0, replacing # by #, in S(k)=Sy(k=0)=—(1/B)of (H,)/dH,] .
[, we recover from (2.22), the line-shape profile from Ref.
3. The line shape then becomes [with P°N (k,z)=0, since
On physical grounds we are more interested in the op- P°Sy(k)=S,(k)Pand P°Q°=0]
posite limit, that is, long wavelengths and low frequen- 1 1
cies. We shall analyze our velocity-modulated line shape I(k,0)=— lim RetrSy(k)—————[1+0(n)],
in the limit of low perturber density (n =N /Q—0) and T e0t z —D4(k,z)
k,o—0. For small n (2.23)

S(k)— f (H 1+ 1f (Holp+7k))]

and in the long-wavelength approximation we can use

where the small-n limit of the memory function D°(k,z)
reads
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z e
z—iQ°L(1)
(2.24)

D(k,z)=P iLk+n [dRP4L,

+0(n%kn),

where L(1)=L,+.L,. In the thermodynamic limit Eq.

(2.24) simplifies considerably, since the projector Q¢ can

be dropped. We can then express our line shape in terms
of the Liouville space T matrix

1

T(z2)=—if —

=TT

The memory function D4Kk,z) becomes then (with

LyP*=0)

Dé(k,2)=PiLl—n [ dRP°T\(2)P*+0O(n’ kn) .

(z—Ly) . (2.25)

(2.26)

The simple form of this formula is in fact a bit mislead-
ing. Appendix C contains the necessary algebra leading
to the final expression for the quantum-mechanical
velocity-modulated line shape, which can be written in a
closed form provided the scattering length approximation
for T(z) is used. We obtain

1
I(k,0)=~ReQ [ dp——=[Sk)],,— B ,
m (27) 1—y7'(p)
(2.27)
where
[So(k)]p,=(ePoP=r) =g~
X [1+ 1
exp[Be(p+k)—u]l—y
_ _149df(e)
o B oe (2.28)
is the static form factor, e(p)=#?p*/2m, and
r(p)=- ! 2 , (2.29)
i(lo—fip-k/m—#k*/2m)+y(p)

tikp /m
y(p)+ilw—#k?/2m)

'(p)= T _arctan (2.30)

fikp

Expression (2.30) is obtained by averaging 7'(p) over the
directions of p. The coefficient y(p) is expressed in terms
of the s-wave scattering length a for the potential U of
the emitter-perturber interaction (cf. Appendix C),

y(p)=4mna*(ph/m)=4mna’v(p) , (2.31)

where v(p) is the emitter velocity. Note the well-
known!>!® factor 4 between the quantum-mechanical
value of y obtained here and the classical hard-sphere ex-
pression used in Ref. 3.

The above scattering length approximation result for
the quantum-velocity modulated line shape can now be
compared with the classical Boltzmann-Lorentz model
predictions.’ If the density of the emitters is low, that is,
when the mean distance between emitters is larger than
the thermal de Broglie wavelength of the emitters
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ilJp << 1, we can approxjmate the distribution function

f(e)as
f(e)=exp(—PBe+Lu)
=7(h*/2mmky T)* *exp(—PBe) ,

where we have used the classical expression for the chem-
ical potential u. Using this we obtain the nondegenerate
form of the line shape

-3
_ | 2mkp,T
IND(k,0)=4N =
m
XRef ocdvvze~mu2/2kBT Tl(l))
0 1—y(v)rl(w)
(2.32)

Here 7!(v) and y(v) are obtained from the corresponding
expressions (2.30) and (2.31) by replacing p by the veloci-
ty v=7p/m.

Following Ref. 3 we can analyze Eq. (2.32) in two ex-
treme limits of the parameter {=na?/k. For small ¢,
when the perturbers have negligible influence on the
emitters, the observed line shape is Gaussian with the
photon recoil taken into account. Indeed the center of
the line is shifted by #k2/2m but the width remains as in
the classical Doppler broadening

['=87kyTIn2/m)"%k ,

1 m 1/2
JND k,w)=—
k)= 2k, T
k|’
m
Xexp | — - .
TP 2T |7 2m 233

Note that this result can also be obtained from the large-
k limit, Eq. (2.22), of the exact expression for the spectral
function.

In the more interesting limit when §{ >>1, i.e., when the
radiation wavelength is larger than the mean distance be-
tween the perturbers, the collisions should have a
predominant effect on the line shape. Indeed, as in the

classical case, we now obtain the observed line-shape

profile  which is Lorentzian with the width
T, =37TsV7In2/¢,
(1/27)T
INP(k,0)= - (2.34)

(0—#k?/2m)*+ 1T}

As in the small-§ limit the photon recoil is taken into ac-
count.

It follows from the above discussion that in the case of
pure velocity modulation, for a low concentration of per-
turbers and in the nondegenerate limit, the quantum ex-
pression for the observed emission line shape is nearly the
same as in the classical theory. The width of the line
does not change, but the photon recoil is properly taken
into account. For a typical visible light frequency and an
emitter mass of the order of a few hydrogen atom masses
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the photon recoil shift is of the order of 10°-10" Hz,
clearly within the experimentally accessible range. We
shall now follow Ref. 3 and discuss the pure interaction
effects.

III. INTERACTION EFFECTS

In this section we shall briefly recall the analysis of the
pure interaction effects.’® Thus we shall neglect the
influence of the velocity changes at the collisions but dis-
cuss the effects of the interaction between the emitter and
the perturber during the collision.

We model the emitter as a quantum two-level system,
which can be represented in terms of the pseudospin S*
(§ =1) eigenstates |+ ) such that its unperturbed Hamil-
tonian reads

FHo,=#oS*, (3.1)
where @ is the frequency of the emitted radiation. In a
collision process, when the emitter approaches the per-
turber, an interaction takes place which may induce a
transition between the energy levels of the emitter—a
(pseudo)spin-flip process. Obviously, the detailed
description of that process requires a careful quantum-
mechanical analysis of the atomic collision process. Here
we take the point of view that perturbers are essentially
classical objects and that during the collision they pro-
duce an effective field H; which couples to the emitter. A
schematic view of those processes is shown in Fig. 1.

Following Refs. 3 and 6 we therefore write the Hamil-
tonian for the emitter as'*

H(t)=H+ 3 #1+H,-8)8(t —1,) , (3.2)

where the sum runs over time instants, labeled by a, at
which collisions take place. Similarly, as in Refs. 3 and
10, those time instants are assumed to be Poisson distri-
buted.

The Heisenberg representation of the dipole operator d
for the emitter reads

d(r)=U(1)d(0) , (3.3)
where U(t) is the evolution operator given as
. t ’ ’
U(t)=T exp thLS(t dt (3.4)

Here L (1) is the Liouville operator corresponding to the
Hamiltonian Eq. (3.2) and 7T denotes the time-ordering
operator. The line shape is now obtained from the spec-
tral function ¢(z)

$(2)= [ “dre *(d0)-d(0) , (3.5)
where the angular brackets denote averaging over the
quantum states of the emitter and over the statistics of
the collisions.

In this section we will be interested in the emission line
shape. Since the dipole operator for a two-level atom can
be conveniently expressed in terms of the (pseudo) spin
raising and lowering operators, the spectral function can
then be written as

3009

Pemul)er Perturber
Held B '

[ Emitter

(pseudolspin Emitter

Emitter [ ]

Trajectory

FIG. 1. The Boltzmann-Lorentz model. Large solid circles
denote the perturber gas atoms while small circles denote emi-
tter particles. Heavy arrows denote instantaneous direction of
the effective field H and smaller arrows indicate the spins of the
emitters.

¢+_(z)=trpf0°°e“z'<+|s+|—><—l[wm5"]i+> :
(3.6)

In the above p is the density matrix and we have explicit-
ly displayed the spin states arrangement involved in the
process of averaging.

In Ref. 3 we have argued that in the high-temperature
limit, that is, when %@ << kT, the line shape can be writ-
ten as

I(w)=Ref0me(v)[i(w+(T))+%y(v)Hz]_’dv , 37

where f), denotes the Maxwell distribution function of
the center-of-mass velocity of the emitter, y(v) is the
same as in Sec. II, and H? is the mean-square value of the
effective fields H;. The integral in Eq. (3.7) can be evalu-
ated exactly leading to the line shape given in terms of
the exponential integral

E({(o+3)/[Ly(wy)H*]}?) .

This shape is very similar to the Lorentzian line shape
with the width proportional to y (v, JH?, where v, is the
mean thermal emitter velocity, as shown in Fig. 2 where
both shapes are plotted as functions of their correspond-
ing distance Aw from the line center.

We shall now propose an extension of the above
analysis which will take into account, among other
things, the quantum degeneracy of the center-of-mass
motion of the emitters. We found that in order to do so
it is more convenient to use the approach developed in
Ref. 7, and used in Sec. II, rather than just the outlined
random kick approach.
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/1,

-- Lorentzian
— n lerms of E

0 i 2 3 4 s

Scaled distance from the line center

FIG. 2. Comparison of the Lorentzian and exponential in-
tegral line shape discussed in Sec. III with the Lorentzian line
shape. Aw is the corresponding distance from the line center
and both profiles are normalized. E,(x) is defined as in Ref. 21.

IV. COMBINATION OF VELOCITY MODULATION
AND INTERACTION EFFECTS

In this section we shall describe the combined effect of
the velocity modulation and interaction on the line shape
of the emitter. To begin with, we write the Hamiltonian
for our model as

N
H= [H()+V(W], 4.1)
i=1

where #(i) is the free ith emitter Hamiltonian and V(i)
is the interaction Hamiltonian.

2
FHoli)=2— +#5S? 4.2)
2m
N N
V(@i)= 3 W)= S U(r,-—Rj)(l+Hj~S,-). (4.3)
j=1 j=1
As usual, the canonical density matrix is

p=exp(—B#)/Z, with the Hamiltonian given by Eq.
(4.1). Following the usual assumption as to the distribu-
tion of the fields H;, we generalize the projection opera-
tor (2.7) and write

Mol 1
—opl, ..., N_opl ... pN_ - — )
P=P pl...p jnl 47der]Q Jar, |,

(4.4)

where the first integration is over the random directions
of the perturber fields H;. (T; is the unit vector.)

Now, the general definition of the line shape given by
Eq. (2.1) together with Eq. (2.6) and the identity Eq.
(2.10) allow us to write the line-shape function as

I(k,w)=$Re¢(k,w) , .5)

with the spectral function ¢(k,w)
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¢(k,w>=f0°°dte—"w’rr73[f de ~ (1 +qf)(de™ )],
4.6)

where, as previously,

F()=1/exp{BIFH(1)—p]—n)

and now Tr=tr,tr; denotes the trace with respect to
center-of-mass and internal (pseudospin) degrees of free-
dom of the emitter. Note that now the dipole operator
(representable in terms of the spin raising and lowering
operators) does not commute with f(1).

The emission line shape is obtained by extracting from
Eq. (4.5) the piece of the spectral function ¢, _ and then
taking its real part. Following the notation of Sec. II,
Egs. (2.14)-(2.16), we write

_ + S
by (ko)= lim TP |fS* (14—~ |,

4.7)

and that should be compared with the expression for the
pure velocity modulation line shape Eq. (2.16).

Now, exactly the same procedure leading from Eq.
(2.26) to Eq. (2.28) (see also Appendix B) can be applied
to expression (4.7) [with P defined in Eq. (4.4)]. The re-
sult is

¢, _(k,0)= lim TrPS(k,o)

e—0+

1

><[1+N(k,z)] T(kz)

’

(4.8)

where N (k,z) and D (k,z) are defined as in Egs. (2.19)
and (2.20) but with the Liouvillean determined by the
Hamiltonian Eq. (4.1). S(k,®) is the spin-dependent
“‘static structure factor” equal to

S(k,@)=fSt(1+7nf¥) . 4.9)

Note that @, the unperturbed emitter level splitting,
should not be confused with the frequency w.

Similarly, as in Sec. II, the memory function D is al-
ready averaged over the random variables pertaining to
the perturbers, while N (k,w®) still depends on positions
and effective fields of the perturbers. The spectral func-
tion given by Eq. (4.8) is exact. We shall now discuss ap-
proximate expressions for the line shape which follow
from it. Again, as in Sec. II, we assume the low density
of the perturbers. We can then approximate S(k,®) from
Eq. (4.8) by its low-density limit

5(k,3)—S8,(k,®)=f,S (1 +qfk) .

It follows then that
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<0’|§0(k,cT))|o-')=ﬁ80‘+80”_(e/3(H5+ﬁm/2-—#)_

=5, .8, _So(k,d) ,

7 [1+7(e

3011

BCH§(p+#k)—#iB/2—p) -1
=n)""]

(4.10)

where 7=p?/2m. Note that for high temperatures (kp T >>#®) So(k,@)—S,(k), where Sy(k) is the same as in Sec.

(4.11)

II.
The spectral function for the emission line shape then becomes
1 -
= lim tr,So(k,d){— | | ————S
¢+ —(ko)= lm trSol ‘“)< z—D(k,2)

with the memory function given by a formula analogous
to Eq. (2.19). Note, however that the free Liouvillean of
the emitter consists now of two parts related to the
center-of-mass and pseudospin degrees of freedom, and
the interaction part of the Liouvillean is given by

4.12)

with L; 4 =[W;, A], where W;(1) is given by Eq. (4.3).
In our further analysis we proceed as in Sec. II. For

details see Appendix D. The final result of our calcula-

tions is then the following expression for the spectral

function ¢, _:

J

+>[l+0(n)].

[
¢+ -(k,0)= 3 [So(k,®)]; ,
P

% r'(p)
1—y(p)[1—(#2/12)H*]7\(p)

, (4.13)

#i #
p)=|i|——kp——k*+o+o
7(p) {1 k'p 5 0+o

7 -
+yip) |1+ H? (4.14)

and (integration is carried out over the unit sphere in
momentum space)

- 1 m fikp /m
(p)=— [dQ(p)r'(p)=—2arctan 74 4.15)
P 47Tf PP fikp y(p)1+#H?/4)+i(0+a—#k2/2m)

[

If we neglect the k dependence of the static structure
factor, i.e., replace Sy(k,@) by S,(0,8)=S,(@), we ob-
tain from Eq. (4.5) and (4.13), replacing sums by integrals,
the following expression for the line shape:

_Q - _
I(k,w)——z;;Refo dp p*[So(@)],,,

r'(p)
1—y(p)[1—(#/12)H?]r'(p)
(4.16)

X

Equation (4.16) is the quantum generalization of Eq.
(4.14) from Ref. 3, the Voigt-like profile.!* In the nonde-
generate limit, replacing the structure factor by the
Maxwell distribution, as in Sec. II, we obtain from Eq.
(4.18) the line shape as in Ref. 3, but with the photon
recoil properly taken into account.

V. CONCLUSIONS

We have derived the emission line shape for the quan-
tum generalized Boltzmann-Lorentz model. We have
used the quantum Liouville space formulation proposed
in Refs. 7 and 8, but the rest of our analysis was analo-
gous to Ref. 3. In the nondegenerate limit we have ob-
tained line shapes analogous to those in the classical
Boltzmann-Lorentz theory, however with the photon
recoil corrections properly included.

The Boltzmann-Lorentz model for the line shape was
recently reformulated'® using the stochastic dynamics ap-
proach. That approach is completely equivalent to the
analysis of Ref. 3 and there is no obvious way how to in-
clude the quantum center of mass motion into that for-
mulation.

Our current work uses extensively the techniques of
the quantum-kinetic theory, and we have obtained our re-
sults in the leading order with respect to the perturbers’
density. The generalization to higher densities is tedious
and requires utmost care. At the moment we see no real
need to go to the higher order in density expansion in ap-
plications to the line-shape problems.

We can see several possible applications of our theory.
We have already mentioned in Sec. I that in recent exper-
iments on ultracold atoms the quantum corrections due
to the center-of-mass motion of the cold atoms might be
important. Although we have presented here calcula-
tions of the line shape only, it should be fairly clear that
we can repeat the whole analysis for other correlation
functions. In particular, one should be able to calculate
the current-current correlation function and therefore ob-
tain the quantum expression for the diffusion and spin-
diffusion coefficients. The classical theory of those
coefficients, for the Boltzmann-Lorentz model, was re-
cently discussed in Ref. 17. A further possible applica-
tion is to consider those correlation functions for strong
quantum degeneracy. That should be of interest for the
physics of the polarized hydrogen gas.!®
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APPENDIX A

This appendix contains the proof of the identity Eq.
(2.10). We use the standard second quantization notation
to replace an operator 3; «; as follows:
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where a;;=(k|a,|l) are the matrix elements of the one-
particle operator «, with respect to the complete set of
one-particle Hamiltonian eigenstates

Hk)=E|k) . (A2)

a}; and a; are the creation and annihilation operators
fulfilling the (anti)commutation relations
t— g
aa;=mnajo; +3y
! ’ (A3)
ao=naty ,

with 7= —1 for fermions and +1 for bosons. The occu-
pation number of the state |k) will be denoted by
n; =ala «- The system Hamiltonian can then be written
as ##=3, nyE,. Now, the trace in Eq. (2.10) is under-

N
S a;— Salaya, (A1) stood as being taken in the grand canonical ensemble
i=1 k.1 with the chemical potential u. Thus
J
N ¥ 1 t t
trp 3 2; 3 41‘:‘2'“ exp (B3 m(p—E) | 3 axa@; 3 b,y ] , (A4)
i=1  j=1 k k.1 mn
[
where Z is'the grand canonical partition function. The 1 1 1
trace in Eq. (A4) is taken over all possible sets of occupa- X—7 57 Y~ (B2)
tion numbers {n,}. It turns out that in the fourfold sum
in (A4) the only nonvanishing terms are those with (i)  jp (B1), we find
k=I,m=n,or (ii) k =n,l =m, k1. [The term k =1 is
already included in (i).] In view of (A3) one can rewrite 1 1 . 1 . e
¢=—Pp* . B3
(Ad) as ¢ ZPPS 1+Z_iL1L0+z_iL1LVP (B3)

1
Etrexp B% n(u—E;) }

2 Ry Qi 2 nmbmm
k m

+ 2 akmbmknnknm
k#*m

(AS5)

Denoting the thermal average in the grand canonical en-
semble by a bar and recalling that

. =fr=1/{exp[BE, —p)]— 7}
and n_k7=fk +(1+7)f} we can rewrite (AS5) in the form

z[fkakkfmbmm+akmbmkfk(l+nfm)] . (A6)
k,m

The sum in (A6) can now be written as trace tr, over
one-particle states, and that immediately leads to Eq.
(2.10). Another proof of (2.10) is possible directly in the
canonical ensemble, without second quantization, by us-
ing the formalism developed in Ref. 8.

APPENDIX B

In this appendix we derive formula (2.18) starting from
the expression

1
z—il
which occurs on the right-hand side of Eq. (2.16). The
static factor S is defined in Eq. (2.21) and for notational

simplicity the k dependence of S and L is suppressed in
the following. Making use of the operator identity

¢°=PP°S

P¢, z=etiow, (B1)

Next we replace the resolvent of the third term in (B3) by
the identity

1
z—iLQ°¢

which follows from the relation P¢+Q°=1 and (B2) with
X=z—iLQ¢%and Y=iLP°® We are then left with

1
z—il

z e

z—il

) (B4)

= qu_

e mne 1 1. e 1 . e
¢‘=PP'S—— | ~ilo+P ——z——i.LQeLLV P
+iPPeS 1+Qe;ily Pe. (BS)
z z—iLQF°

The central point in our derivation is now that in the
thermodynamic limit (N,Q— o with n =N /Q finite) we
can replace the first set of large parentheses in (BS) by
P(---). This leads to a closed equation for ¢° and subse-
quently to the desired result Eq. (2.18). We shall proceed
here in a way analogous to Secs. III and IV of Ref. 7.

To begin with we define superoperators F and G as

1
z—il "’

F(r—R,,...,r—Ry)=S (B6)

G(r—R,,...,r—Ry)= iLe (B7)

1
z—iLQ°
and analyze the expression PFPG occurring within the
first set of large parentheses. Density expansions of both
F and G give
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N—> o s Noow
PFPG=P 3 I 3 N9, ,(r—R,,..
s=1 k=0 d=0

where the superoperators F; and G, depend only on the
relative coordinates between the emitter (r) and scatter-
ing centers {R;}. The explicit forms of F; and G, are of
no importance here (although they can be easily evalu-
ated by means of cluster expansions, cf. Ref. 8). What
matters is that F; (/2 1) and G, are essentially different
from zero only when |[r—R;|<a, Vi, where a is the in-
teraction range of the potential U(r—R;). F is obvious-
ly independent of U.
We now consider a typical term occurring in (B8),

NHdPkaPer:”dﬂdel o dRy 4 Fp 4 4 P°G
(B9)

with 0=k <5, and estimate its volume dependence for
different k’s. For this it is most convenient to use the
phase-space representation'’ (for details see Sec. 2 of Ref.
7)

yPur,p)= 3 e*(p+k/2|ylp—k/2) , (B10)
k

SPhyPh(r p)=(Sy)PP(r,p) , (B11)

where y is an ordinary operator and S a superoperator.
In that representation the projection operator P¢ assumes
the simple form (P°)"=(1/Q) [dr which immediately

allows us to determine the volume dependence of (B9):
nd*s [dR, - dR, P (POPGP"

O (1) for k=0
(B12)

o

for k >0 .

It follows that in the thermodynamic limit the only term
contributing to (B8) is that with k =0. Thus

. ,r_Rk,r_RS+l,. .
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s, T—R; 1 )P’N°G(r—R,,...,r—R,), (B8)

I

Using this in expression (B5), recalling that [.LX,P°]=0
and dropping terms of the order Q ™!, we find

1 . e
¢e=¢eP —L“‘Q‘ e l.,LV P ,

Lir,+pe
zZ zZ 1

1
+—PP°S |1+Q° iLy, |Pe. (B14)

1
z—iLQ°

From the above Eq. (2.18) follows immediately.

APPENDIX C

We shall outline here the derivation of Eq. (2.28), start-
ing from expression (2.26) for the function D4k,z). The
strategy here is to express the Liouville T matrix defined
in Eq. (2.25) in terms of the ordinary ¢ matrix given by

1

) ()
Ho+U(r—R )—z

tl(z;R1)=U(r—R1 (7{0—2) ’

and then to evaluate it in a scattering length expansion.
Thereby we shall retain only the leading order in the
scattering length a. In a second step, we determine the
inverse of z —D*(k, z) needed in Eq. (2.23).

As shown in Eq. (A.6) of Ref. 7 one has

: e _E__ T 2
eEIgL [P°T\(e)P°y],,= 7 pletl(s(p))ppl[

X8(e(p)—e(py))
X[y(p)—-yp)l, (C2

where tJ{(E)=limEH0t1(E +ie;R;). y is an ordinary

| operator andy(p)=(p|y|P>=ypp-
PFP°G =PFPP‘G +0 |— | . (B13) Now, neglecting the o dependence of D*k,z =€+iw),
we obtain from (2.26) and (C2)
J
: e . #i . f 2 27Q) 1 2
SE[& [Dk,ely],p= z—r;p-k+z;n—k Yoo T TN pz, |t (E(p))l’m' S(e(p)—elp Ny (p)—y(p)], (C3)
where we have used the fact that e —[Q/(27)%] fdp, we obtain, after some algebra,
JdRr,t](E) P=0l (B, 1? (C4) io— lim D(k,z2)=A'—A?, (CS)
with t"(E)=lim__ o, t,(E +ie,R,;=0). with
TNext we perform the scattering length expansion'>%° of
t (E(p.))ppl Wthh. is valid for a strong pufely rep1.11s1ve in- (Al}’)ppz ; w—ip-k—zikz ) ), (C6)
teraction potential (e.g., hard-sphere interaction). In m m
lowest order in the scattering length a (s-wave approxi- 2 —
mation) one has 1'(e(p))y, =2m#%a /mQ+0(a?). Using AV~ 7(PW(P). (og)

that and replacing sums over momenta by integrals,

y(p) is given in Eq. (2.31) and y (p) denotes the average of
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y(p) over the directions of p.
We need now to invert expression (C4) occurring in Eq.
(2.23). We have

I(k,a))=ReESo(k)pp[Xll—\ —L :

pplpp 1—A2L1
A" |ppipipy

(C8)

where the tetradic matrix of a superoperator S is defined
by

PP,

(SYhae= 2 SwippVpp' - (C9)
PP’

Using expressions (C6) and (C7) we obtain

1 1
A pppp  il@—(A/m)k-p—(#/2m)k*]+v(p)
=7l(p), (C10)
1 el ,1 |
1 =2 3 | AT
Py | 1—AZ— p, n=0 PPIpP
A' |eplpp,
=3 [rp)
n=0
-— 1 (C11)
1—y(p)ri(p)

J

Elir(§1+ [P°T (e)Py]pp="— GEISI+ it (e(p)” )ppy (P)— iy (p

+2m 3 1 (e(p) 7 )pp ¥ (pr)ty (e(P) ), ,B(e(P) —e(py))

Py

where ¢,(E™) equals

1

t(ES) =W ———————
‘ " He+ W, —E*

(H¢—E*), Ei=Eii§ .

(D4)

Here 7 denotes the free Hamiltonian of Eq. (2.4). From
now on the superscript e refers to external emitter de-
grees of freedom. Note that expression (D3) is still an
operator in the (pseudo)spin space, thus, e.g., y(p) and
t(E ir)pPl do not commute in general.

Now, we will expand ¢, in powers of the effective field

H and the scattering length a. Thereby we also make use
of the generalized optical theorem

2ie/2
(e/2)*+(H3—E)?

t8(E7)—tS(ET)=t(E") tS(E*),

(D5)

and of the relations P'H-S=0, Ly =#®[S%y], and
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On substituting (C10) and (C11) into (C8) and choosing k
parallel to the z axis we obtain Egs. (2.27)—(2.30).

APPENDIX D

In this appendix we derive Eq. (4.13) starting from Eq.
(4.11). First we expand

D(k,z)=P¢ |iLX+PiL ,— P, (D1)
z

_iQe,Lk

to the lowest order in n,w,®,k, scattering length a, and
effective field H. Then we determine the inverse of
z —D(K,w) needed in Eq. (4.11).

In a first step we find

D (k,z)=iP°LE—NP'P°T,(e)P[1+ 0 (n,0,3,k)] ,
(D2)

where the Liouville T matrix is defined in Eq. (2.25) but
now with £, given in Eq. (4.12). P°T,P¢ shall now be ex-
pressed in terms of ordinary ¢t matrices. Since P° projects
on diagonal matrix elements only in the momentum but
not in (pseudo)spin eigenstates, we cannot use the simple
relation (C2), but have to start from the more general ex-
pression derived in Ref. 7 [Eq. (A2) of that reference].
Thus instead of (C2) we obtain

)t (e(p) )y

) (D3)

(S")2=(Sy)2=(SZ)2=}. After some lengthy but straight-
forward algebra we obtain (retaining only leading terms
in H and a) an expression which replaces (C5), with
operators A"2 now having the following form:

ikZ
2m

#
1 = {7 — S — — k-p—
(Ay)pp [1 w—L] kp

2

+y(p) |1+ H?

i
2

]y (P)A%),,

N L p——
=y(p) ly(p)+1H* I Sy (p)S'| . (D6)

i=1

Finally, we have to determine the inverse of the operator
iow— lim,_, o, D(k,z) occurring in Eq. (4.11). Proceeding
as in Appendix C and making use of the relation
33_,8STSi=—S8%/4, we arrive at the desired result
(4.13).
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