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Lyapunov instability of pendulums, chains, and strings
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We investigate both dynamic and time-averaged chaos in a series of problems ranging from a sim-

ple pendulum to many-body chains and strings of particles in a gravitational Geld. Chain and spring
systems typically display time-averaged Lyapunov spectra resembling those of one- and two-
dimensional statistical-mechanical systems, but with details depending strongly on the nature of the
links and the choice of canonical coordinates.

I. INTRODUCTION

The chaotic phase-space mixing caused by Lyapunov
instability is the key to understanding thermodynamic ir-
reversibility in mechanical systems. ' The "static,"mean-

ing time-averaged, spectrum of Lyapunov exponents [ XI
describes and defines the chaotic phase-space evolution of
exponentially unstable dynamical systems, as follows: the
largest exponent k, describes the time-averaged rate at
which nearby phase-space trajectories separate; adding
on further exponents A.2, k3, A,4, . . . gives sums describing
the expansion or contraction rates of corresponding two-,
three-, four-, . . . dimensional phase-space objects. Thus
the individual exponents, ordered from largest to smallest) A 2 ) A 3), represent the static time-averaged
values of dynamic local orthogonal deformation rates in

the neighborhood of a phase-space trajectory. The dy-
namic deformation is most naturally followed and de-
scribed in a comoving, and corotating, coordinate system
centered on such a trajectory. Several numerical
methods for generating and averaging the dynamic values
in order to obtain the static exponents have been
developed and applied.

Static Lyapunov spectra have recently been obtained
for a variety of equilibrium and nonequilibrium systems
of interest in statistical mechanics. Fluids and solids in

one, two, and three space dimensions have been investi-

gated. . The time-averaged results found so far have
few distinctive features. The qualitative shapes of the
spectra can be roughly described by power laws reminis-
cent of Debye's crystal-frequency distributions and vary-

ing with system dimensionality, thermodynamic phase,
and boundary conditions, including temperature, but fail-

ing to show any of the rich diversity characterizing
solid-state frequency spectra.

Because these static time-averaged properties reveal lit-
tle of the complex details which distinguish one dynami-
cal system from another, it seemed to us worthwhile to
examine the dynamically varying local structure of the
Lyapunov spectra. Our previous investigation' of time
dependence treated the classic Lorenz model, "which in-

troduced chaos to a wide audience a generation ago.
Here we extend our time-dependent studies to a class of
systems bridging the gap between mechanics and many-

body statistical mechanics: pendulums, chains, and
strings. These models are well suited to analysis.

In the following sections we analyze the dynamic
phase-space structure associated with Lyapunov-unstable
pendulum systems. Our calculations establish that this
structure varies from one canonical coordinate system to
another and typically exhibits an interesting time-

symmetry property closely related to Liouville's theorem.
In Sec. II we describe the calculations establishing these
results. Section III is a summary and a record of our
conclusions.

II. MANY-BODY SIMULATIONS AND RESULTS

One might suspect that an isolated single-pendulum
system would have no interesting dynamical properties.
If the pendulum is rigid, this is true. An isolated rigid
single pendulum is an integrable system, with a periodic
one-dimensional orbit making up its one-dimensional
constant-energy phase-space trajectory. But the problem
becomes interesting as soon as another degree of freedom
is added. Adding one more degree of freedom expands
the accessible constant-energy phase-space region to
three dimensions and makes chaotic motion at least pos-
sible. The additional degree of freedom can come from
relaxing the rigidity constraint, from adding another
mass, from making the pendulum spherical and adding a
constraint, or from external driving. Any of these four
sources can lead to chaos. Making the pendulum linkage
flexible rather than rigid is the simplest.

We find that the motion of a single Aexible pendulum
can be chaotic, for some energies. Consider the simplest
possible example: a single Hooke's-law pendulum, with a
spring energy P given by

ttt = (a./2)( r —1)

with the force constant ~=4, and with initial conditions
providing just enough energy to reach the unstable verti-
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FIG. 1. Probability densities for the instantaneous Lyapunov
exponents (dynamic exponential expansion rates) found for the
chaotic flexible single pendulum with the force constant a set
equal to 4 and just sufficient energy to reach the fully extended
vertical configuration. Only P(A, 1)=P( —A4) and P{A.2)
=P( —

A,3) are shown, at the left and right, respectively, because
the symmetry of the distributions applies to the instantaneous
values just as well as to the time-averaged values shown here.
Results are shown for both Cartesian (top) and polar (bottom)
representations of the system.

cal configuration with zero stored spring energy P and
spring length equal to the rest length 1.

We applied Benettin's method to this chaotic flexible-
pendulum problem so as to determine all four time-
averaged Lyapunov exponents and to characterize as well
their dynamic probability densities. The calculation
proceeds by following the motion of four orthonormal
basis vectors in the phase space I5, , 5z, 53, 54j and
measuring their tendency to grow or shrink, as is de-
scribed in Refs. 2 —4. These comoving local rates of
growth, when time-averaged, give the static Lyapunov
spectrum. The result of this numerical calculation estab-
lishes that the time-averaged Lyapunov spectrum is

A1 (0 128 0 000 0 000 0 128)

with statistical uncertainties in the four exponents of
+0.002. We checked these results by carrying out paral-
lel calculations in Cartesian and polar coordinates. In-
dependent calculations were carried out at Keio Universi-
ty and at the University of Vienna.

Consider next the dynamical Lyapunov spectrum for
this same system. For this simple flexible-pendulum case
probability densities, obtained by binning the time-
varying instantaneous values of the Lyapunov growth
and decay rates, are shown in Fig. 1. In view of the sym-
metry of these densities, with P(A, , )=P( —k~) and
P(A,z)=P( —A.3), only those for A,

&
and A, z are shown in

Fig. 1. Note that the dynamic exponent densities depend
upon the choice of coordinates. Results for both Carte-
sian and polar coordinates are shown in the figure.
Throughout this paper we use the same notation A, for
both the time-varying growth rates and the correspond-

ing time averages, trusting that the distinction between
the two is clear by context. The widths of the dynamic
distributions are up to ten times the static (time-averaged)
value of the largest Lyapunov exponent A, The rms fluc-
tuations about the mean values given above are
(A, , ), ,= (A,~), ,=0.71 and (Az), ,= (A,~), ,=0.75 for
Cartesian coordinates and (A, &)„,=(X4), ,=0.96 and
(&z), ,= ( 13), ,=1.26 for polar coordinates.

It is remarkable that the dynamic fluctuations depend
strongly upon the coordinate system chosen for the calcu-
lation while the static mean values cannot. Funda-
mentally, this striking feature of our results reflects the
time-varying direction of separation of two nearby trajec-
tories. For two definite trajectories the direction continu-
ally fluctuates, reflecting the changing sensitivity of the
trajectories separation to the various canonical coordi-
nates and momenta. On the other hand, for times long
enough to determine the static values, the logarithmic
time-averaged growth rates have roughly equal (because
of the logarithm) projections on all the phase-space axes.
In the longtime limit the rates are independent of the
choice of coordinates but the fluctuations are not.

The symmetry implicit in the two time-averaged densi-
ties shown in Fig. 1, with P(A, , )=P( —

A,„) and
P(A,z)=P( —

A, 3), is real, and follows from Liouville's
theorem. It develops dynamically in an interesting way.
After an initial asymmetric transient, which depends on
the initial choices of the 6 vectors and typically lasts a
few thousand time steps, the four orthonormal four-
dimensional 5 vectors converge to a stable arrangement
in which pairs of instantaneous Lyapunov exponents, not
just their time averages, have identical absolute values,
with ~A, , ~=~X4~ and ~A, z~ =~A, 3~. This feature occurs here
with either coordinate system, and generally, for many-
body as well as few-body systems. We believe that the
time required for this property corresponds roughly to
the time required for finite-precision integration to lose
memory of the initial conditions. The time required for
this memory loss greatly exceeds the oscillation time and
the Lyapunov time', both these times are of order 10,
which is 1000 typical time steps.

Even a single flexible pendulum has interesting chaotic
properties, illustrating the dependence of dynamic
Lyapunov experiments, but not their static averages, on
coordinate system, and exhibiting as well this nice dy-
namic symmetry property.

When we described the dependence of fluctuations on
the coordinate choice to a colleague, he asserted that
"Cartesian coordinates are the natural choice. " But even
the Cartesian situation is not simple. Consider, for in-
stance, a more general Hamiltonian for the flexible
Hookean pendulum, including a scale factor s, so that
new canonical Cartesian coordinates Q =qs and momenta
P =p/s can be defined without changing either the value
of the Hamiltonian or the underlying dynamics,

H (s ) = ( Ps ) /2+ ( a /2 )[(R /s )
—1] + ( 1'/s ) .

A numerical investigation, for the same energy and tra-
jectory described above and illustrated in Fig. 1, reveals
that the fluctuations in the Lyapunov spectrum increase
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away from the value of s (roughly s =2) at which they are
minimized while the mean values of the exponents are
unchanged. This simple example suggests that if there is
a "natural choice" of coordinates, it is that Cartesian
frame which minimizes the fluctuations. Likewise, sim-

ply switching from the cgs to the mks system of units for
length and momentum modifies the direction, and hence
the fluctuations, for the dynamic Lyapunov-exponent
vectors.

The sensitivity to coordinate system can be analyzed
analytically for the one-dimensional harmonic oscillator,
an integrable system for which both the time-averaged
Lyapunov exponents vanish. For the oscillator Hamil-
tonian with scale parameter s,

0(s ) = [(Ps ) + ( Q /s ) ]/2,
diligent application of the analytic Lagrange-multiplier
methods developed in Refs. 3 and 4 leads to the simple
result

( g2) (s +I s 1)2/2

Thus unless s is chosen equal to the "natural" value 1 for
which P and Q have equal titne averages, even the
Cartesian-frame harmonic-oscillator Lyapunov exponents
have frame-dependent nonzero fluctuations.

The alternative to introducing chaos with a flexible
pendulum link is to add more degrees of freedom, keep-
ing the links rigid, either by adding links, by increasing
the number of spatial dimensions, or by driving the pen-
dulum with an external force. The topology of chaos in
the rigid double pendulum has already been nicely
characterized, ' the three-dimensional spherical pendu-
lum, with an additional constraint, has been studied both
experimentally and computationally, ' and the dynamics
of a driven pendulum is by now well known. ' An ideal-
ized double pendulum is shown in Fig. 2, where we arbi-
trarily choose the two lengths equal to unity. In our
classroom-demonstrator version the lower pendulum was
made slightly shorter than the upper pendulum (which is
shaped like an inverted U) in order to make all pairs of
the angles a and p, shown in the figure, accessible. With
rigid links between the masses the two degrees of freedom

FIG. 2. Alternative generalized-coordinate systems used in
describing the double-pendulum system with the Lagrangians
L„and L& defined in the text. Exploratory calculations were
carried out in both these frames, as well as with standard polar
coordinates, in order to eliminate programming errors.

can be chosen in many ways. The two simplest choices
are illustrated in the figure.

The textbook coordinate system used by Landau and
Lifshitz' is reproduced in Fig. 2(a). This choice is the
one most easily generalized to the many-pendulum case.
For convenience, and to avoid the clutter of extraneous
symbols, we simply state here that the masses m, and

m2, lengths I, and 12, and gravitational field strength g
are all chosen equal to unity. The more general case is a
simple extension of the prototypical cases studied here.
Thus the double-pendulum Lagrangian becomes

2

«Ltt =2 cosa+ cos(a+P) + da 1 da dP+ +
dt 2 dt dt

'2

da da dp
dt dt dt

The two choices just given, plus ordinary polar coordi-
nates, were helpful in providing equivalent numerical
checks for our exploratory calculations of the time-
averaged Lyapunov spectra.

More complex double-pendulum systems result if the
rigid constraints just discussed are replaced by Hooke s-
law springs. As has been emphasized repeatedly, ' the
phase-space probability density for such a system differs
from the constrained probability density even in the limit
that the springs are infinitely stiff. The short-time dy-
namics as well as the static and dynamic values of the
Lyapunov exponents are also qualitatively different. Us-
ing Hookean springs rather than constraints, the four-
dimensional phase space becomes eight dimensional and
a typical chaotic trajectory has three exponents with pos-
itive time-averaged values, three with negative values and
two with zero.

Over a wide range of energy (relative to the accessible
gravitational energy) the rigid double-pendulum motion
is now known to be chaotic. ' Just as in the Hooke's-law
case mentioned above, the rigid-pendulum spectrum also
becomes instantaneously symmetric after a transient
period of a few thousand time steps. In the four-
dimensional phase space an infinitesima1 comoving and
corotating hypersphere distorts into a hyperellipsoid with
one diverging axis [with time average varying as
exp(A, &t ) =exp(A, t )], two neutral axes, varying as
exp(A, 2t ) =exp(A. 3t )

—= 1, and one converging axis [varying
as exp(A, 4t )—:exp( A.t )]. It is true that th—e dynamics
could be followed in a three-dimensional projection of
phase space, by taking energy conservation into account,
but in the projected space Liouville's theorem is no
longer satisfied instantaneously so that the analysis re-
quired to compute the Lyapunov exponents becomes
more complicated.

Richter and Scholz' used the alternative coordinate sys-
tem shown in Fig. 1(b), with the Lagrangian

'2

Ltt =2 cosa+ cos(a+P)+ +— +da 1 da dP
dt 2 dt dt

da da+dp
dt dt dt
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The mathematics of the many-body problem can be
simplified, and the need for solving a large system of
linear equations can be entirely avoided, by adopting
Hooke's-law springs to link the masses rather than apply-
ing rigid Lagrangian constraints. The two simplest types
of such spring systems link together similar masses
m

&

=m 2
. - =m „=m, or, alternatively, very light

masses rn, =m z
- . . =m„,=m, which support a

heavier mass M))m. In the first case, which corre-
sponds to a heavy chain in a gravitational field, the time
average of the vertical component of tension in the chain
increases linearly with the mass supported so that the
vertical load on the uppermost springs averages X times
that supported by the bottom spring. The second case,
which corresponds to a massless string supporting a
heavy weight, can be modeled by allowing only the last of
the n masses to interact with the gravitational field. In
this way the average vertical load on each spring is the
same.

Again, for convenience and simplicity, in what follows
we set the masses, rest lengths of the springs, and the
strength of the gravitational field all equal to unity. Just
as before, the stiff springs obey Hooke's law

P =(Ir/2)(r —l )

The natural spring frequency varies as the square root of
the force constant ~. We were able to treat ~ values as
high as 10000000 by reducing the fourth-order Runge-
Kutta timestep from 0.01 to 0.0001. With that method
none of the problems described here presented numerical
difficulties in conserving the energy or in satisfying the
constraints.
' In Fig. 3 we display dynamic double-pendulum

probability-density histograms for two Hookean-spring
cases K=4 and 64. The mean values over these histo-
grams, indicated in the figure, correspond to the time-
averaged Lyapunov exponents. Again the instantaneous
spectra become exactly symmetric, after a short time, so
that we show only the distribution for the four largest ex-
ponents. Notice particularly that the fluctuations about

the mean are about five times larger for the larger force
constant ~. This shows that the vibrational motion of the
springs themselves, with a frequency of order (a/m )'
mixes with the slower Lyapunov instability frequency.
Because the high-frequency fluctuations are relatively
regular, accurate values for the means, the static
Lyapunov spectrum, can still be obtained.

The fluctuations in the instantaneous dynamical values
of the rigid-pendulum Lyapunov exponents are relatively
smaller than their flexible-pendulum counterparts. Con-
sider again the rigid lecture-demonstration double pendu-
lum, initially motionless and stretched out horizontally.
In this case the time-averaged static Lyapunov exponents
have magnitudes 0.30, 0.00, 0.00, and —0.30 (again with
units such that lengths, masses, and gravitational fields
are all set equal to unity). The dynamic root-mean-
squared fluctuations about these static mean values are
0.84 for A,

~
and A.~, and 0.79 for A, 2 and A,3, using the

Landau-Lifshitz coordinate system.
Because the mathematics is simpler, we confined our

many-mass simulations to flexible pendulums. We inves-
tigated a series of strings with 2, 4, 8, and 16 masses, all
interacting with nearest-neighbor force constants ~=4 or
64, and with only the last of the masses interacting with a
gravitational field, of unit strength. We found the time-

averaged spectra listed in Table I and plotted in such a
way as to emphasize the rapid convergence toward the
static spectrum for a continuous string, in Fig. 4. The
static distributions show again that the fluctuating
growth rates include mixing from the harmonic degrees
of freedom in the springs, with the high-frequency-spring
fluctuations nearly an order of magnitude higher than the
low-frequency ones.
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FIG. 3. Cartesian-coordinate probability densities for the
flexible double-pendulum instantaneous Lyapunov exponents
(dynamic exponential expansion rates) A, l, . . . , A,4 (left to right)
with Hooke's-law spring constants x equal to 4 (top) and 64
(bottom). The distributions for the remaining exponents
A, S, . . ., A.S are mirror images of those shown in the figure. The
abscissa values vary from —5 to +5 for ~=4 and from —25 to
+25 for ~=64.

FIG. 4. Distribution of Lyapunov exponents for strings with
N=2, 4, 8, and 16 masses using Cartesian coordinates. The ini-
tial configuration is motionless and horizontal. Only the last
mass in the chain interacts with the gravitational field. The N
largest values of the Lyapunov exponents [ A, l I

=A, , ) k~
& A, & are plotted as a function of the dimensionless

ratio I/N; thus the abscissa values vary from 1/N to 1.
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TABLE I. Lyapunov spectra (2N of the 4N exponents) for strings of N units masses connected by
Hookean springs with force constants all equal to a =4 or 64. Only the last mass interacts with a verti-
cal gravitational field and the initial condition was fully extended and horizontal. The mean-squared
values were calculated using Cartesian coordinates. The time averages are for the last 400000
timesteps of 600000 step runs with a fourth-order Runge-Kutta dt =0.005. The uncertainties in the ex-
ponents do not exceed +0.01.

Exponents

[ A, J,
[ A,

' j,
jk}4
[ A,

'
j 4

0.08
1.10
0.23
0.68
0.29
0.05
0.56
0.37
0.35
0.13
0.06
0.02
0.60
0.21
0.23
0.26

0.04
0.75
0.16
0.63
0.21
0.05
0.39
0.40
0.29
0.12
0.05
0.02
0.41
0.20
0.24
0.27

0.02
0.80
0.11
0.59
0.16
0.03
0.35
0.39
0.25
0.11
0.05
0.01
0.34
0.20
0.24
0.25

v=4
0.00
0.80
0.07
0.64
0.15
0.03
0.32
0.42
0.22
0.10
0.04
0.01
0.26
0.20
0.26
0.23

0.05
0.69
0.12
0.02
0.33
0.40
0.19
0.09
0.04
0.01
0.24
0.21
0.25
0.28

0.03
0.64
0.10
0.01
0.35
0.43
0.18
0.08
0.04
0.00
0.22
0.21
0.22
0.22

0.01
0.65
0.08
0.00
0.34
0.47
0.16
0.08
0.03
0.00
0.23
0.21
0.24
0.26

0.00
0.73
0.07
0.00
0.40
0.49
0.14
0.07
0.03
0.00
0.22
0.22
0.25
0.20

[A, [,
[ A,

' j,
[A. ) 4

[ A,
'

) 4

0.51
21
0.55

13
0.62
0.13
8

31
0.69
0.34
0.14
0.05
5

7
16
32

0.13
58
0.40

19
0.51
0.09
8

37
0.63
0.30
0.12
0.04
5

8

16
38

0.05
88
0.27

28
0.43
0.07

10
45
0.58
0.28
0.11
0.03
5

8

18
38

re=64
0.00

180
0.16

43
0.35
0.05

11
52
0.53
0.25
0.10
0.02
5

9
21
39

0.10
64
0.30
0.04

13
61
0.48
0.22
0.09
0.02
5

10
22
43

0.05
90
0.25
0.03

16
63
0.45
0.20
0.08
0.01
6

11
24
42

0.03
92
0.20
0.01

19
83
0.40
0.18
0.06
0.00
6

12
28
50

0.00
144

0.16
0.00

24
92
0.38
0.16
0.06
0.00
6

13
30
49

III. CONCLUSIONS

Distributions of dynamic Lyapunov spectra of the type
simulated here should prove helpful in distinguishing
among classes of dynamical systems and in identifying
the particular coordinate systems best suited to their
study. In an oversimplified and unrealistic view of
phase-space dynamics, dynamic Lyapunov exponents
would be constants of the motion, equal to the static
values. In reality the dynamic contributions to the static
exponents vary, but are at least reproducible smoothly
varying point functions in phase space, depending on the
recent past history of the trajectory. But the numerical
values of these dynamic point functions, as well as the
orientations of the corresponding Lyapunov 5 vectors,
depend on the chosen phase space. Simple examples,
such as the single chaotic Aexible pendulum and the in-

tegrable one-dimensional oscillator, show that the coordi-
nate system used to describe these point functions affects
their fluctuation over a long orbit. This means that the
local time-varying contributions to the Lyapunov ex-
ponents do not provide an unambiguous chaos mecha-
nism or a means of locating bifurcation sites in phase
space. Such appealing ideas can at best be approxima-
tions.

Here we also find a wide dynamic variation of the ex-
ponent contributions with time which depends on the
strength of the underlying harmonic vibrational frequen-
cies. The coordinate-independent time-averaged spectra
found here resemble those already known from one- and
two-dimensional many-body studies. To a very rough ap-
proximation they are power laws, but the deviations are
significant.

Our calculations of instantaneous Lyapunov spectra il-
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lustrated another interesting general property in all of the
coordinate systems we investigated. It is generally the
case that, after a transient period of several "Lyapunov
times" —that is, several times 1/A,

&

—the initial choice of
5 vectors becomes irrelevant and the instantaneous spec-
trum of dynamic exponents iexpansion rates) becomes
symmetric. This is an equilibrium constant-energy prop-
erty and is a recognized consequence of the general time
symmetry which underlies Liouville's theorem. The cor-
responding symmetry is nevertheless dynamically unsta-
ble and hence necessarily absent in systems exhibiting dis-
sipation (even when the equations of motion are time re-
versible), for which the time-averaged summed values of
the negative Lyapunov exponents always exceed those of
the averaged summed positive exponents in absolute
value. See, for instance, Ref. 10.

The probability densities of the instantaneous expan-
sion rates, the "dynamic Lyapunov exponents" appear to
us to contain more information, in a readily computable
form, than does the currently popular multifractal repre-
sentation. But because the dynamic exponent densities
depend upon coordinate system, their use requires judg-
ment in selecting the "most natural" frame.

The systems studied here are useful in introducing
chaos in that both the single and double pendulums are
well suited to class; oom demonstration. Our results
show that even a single pendulum, when constrained by a
spring, can exhibit widespread chaotic behavior if the
spring is not too stiff.
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