PHYSICAL REVIEW A

VOLUME 41, NUMBER 6

15 MARCH 1990
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A two-level system subject to quasiperiodically modulated kicking is investigated under the as-
pects of ergodic theory. For weak kicking strength « the correlation functions exhibit quasiperiodic
behavior, whose character changes with increasing « as recurrences become infrequent. A quantum
instability with a transition to mixing behavior that was suggested for similar models does not arise.
Analytic results are obtained for the case where two of three characteristic frequencies are incom-

mensurate.

I. INTRODUCTION

The quantum analogs of classically chaotic systems,
which are paraphrased by the term quantum chaos, are
often found to lack chaotic behavior. The best-known ex-
ample is the chaotic diffusion of angular momentum of
the kicked rotator,! which is mimicked only for a finite
time by the quantum system, before quantum interfer-
ences limit the growth of the mean-square displacement.?
The temporal behavior is quasiperiodic and thus cannot
be chaotic in the strict sense. A question of considerable
interest is to what extent quantum mechanics can show
any chaotic behavior at all, and whether there exists an
instability in quantum mechanics causing a transition
from nonmixing to mixing behavior. A system is called
mixing if for 1 — oo its correlation functions decay to zero
(for all square-integrable variables of mean zero), i.e., the
variables become statistically independent asymptotical-
ly. Mixing implies ergodicity. The above quasiperiodic
behavior is not mixing.

This question is motivated by the following back-
ground. In periodically driven systems the time-
evolution operator U is periodic in time, and according to
the Floquet theorem wave packets evolve as superposi-
tions of periodic functions multiplied by exp(iw,t). In
bounded systems the spectrum of eigenvalues w, of the
Floquet operator is discrete, and thus the correlation
functions do not decay. However, if the system is subject
to a quasiperiodic driving, the assumptions of the Floquet
theorem do not hold, the time evolution need not be
quasiperiodic, and correlation functions might decay.
With increasing perturbations one might expect a transi-
tion from nonmixing to mixing behavior.

Quasiperiodic driving under these aspects was studied
in a number of papers. Shepelyansky assumed a quasi-
periodic modulation of the kicking strength for the
kicked rotator and observed that the quantum limitations
of diffusion mentioned above disappear, i.e., the mean-
square displacement does not stop growing.® In the same
model, Samuelides et al.* studied the spectral measure of
the quasienergy spectrum and observed a transition from
a pure point to a continuous spectrum. A continuous-
time two-level system with periodic driving was subjected
to a quasiperiodic modulation by Pomeau, Dorizzi, and

4

Grammaticos.® Their results suggest a transition to an

absolutely continuous spectrum and decaying correla-
tions. This conclusion was questioned by later authors.®
Sutherland studied a spin-1 system subject to a quasi-
periodic Fibonacci sequence of kinks.” He concluded
that there are autocorrelation functions decaying like a
power law, weaker than a power law, and faster than a
power law. The same model was used by Luck, Orland,
and Smilansky,® who argued that there exists a singular
continuous spectrum and that the temporal behavior is
intermediate between quasiperiodic and chaotic. In a
generalization to N-level systems by Graham,’ a mixed
discrete and continuous spectrum shows up as an addi-
tional possibility.

Comparing these conclusions we do not find a clear-cut
answer to the question raised in the beginning. On one
hand, part of this work was based on numerical results
whose limitations and subtleties may cause misinterpreta-
tions and may have led to the partly contradicting con-
clusions. On the other hand, the rigorous results do not
pertain to the decay of correlation functions, which is of
major interest from the point of view of ergodic theory.
The purpose of the present work is to find an unambigu-
ous conclusion by considering a simple model which al-
lows a partly analytical treatment and a simple and accu-
rate numerical treatment. The model is a kicked two-
state system with a quasiperiodic modulation of kicks.
We shall concentrate on autocorrelation functions since
they are more directly related to the question of mixing
than the spectral properties. The simplicity of the nu-
merical treatment also gives us some insight into possible
misinterpretations related to incommensurate frequencies
in numerical simulations.

II. DYNAMICS OF A KICKED TWO-LEVEL SYSTEM

As discussed above, let us assume a two-level system
subject to a kicking perturbation that can be modulated
quasiperiodically

H=H,+V() 3 &(t—nT). (1

The unperturbed part with level spacing € can always be
written in terms of a Pauli spin operator
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HO:EUZ . (2)

Transitions can be caused by a transverse magnetic field
of strength B (¢), which is allowed to be time dependent

V(t)=—uB(t)o, . (3)

The temporal evolution need only be considered stepwise.
Let |1(n)) denote the state right after the nth kick, then

lfin +1)) =e ~VDIT /A, —iH T/%

l¥(n)) . 4)

Here the time evolution operator U could be split into
two parts, as usual in kicked systems. One part gives the
evolution due to the kicks, the other part describes the
evolution in between the kicks. If we represent the state
of the system in a basis of unperturbed states |, )

2
lp(n)) =3 a;(n)lg;), (5)
i=1
where |@;)=|o,=—1) and |@,)=|c,=1), Eq. (4) be-
comes

2 . —ie T/#
ai(n +1)= 2 <¢[|e lV(nT)T/ﬁl(pj)e i€,
j=1

a;j(n), (6)
with €,=1e€/2. This is simply an iteration of 2X2 ma-
trices, in a matrix notation

a(n +1)=U(n)U ja(n) . (7

Here the unperturbed evolution between kicks is deter-
mined by the matrix

exp(—iwy/2) 0
Uo= 0 expliwg/2) |’ ®)
with w,=2€T /#. Using as an abbreviation
k(my=k,=2LB(n1) 9)

#i

for the time-dependent kicking strength, the unitary
operator in Eq. (6) can be written

—iV(nT)T/ﬁze"k‘")"x/z

e , (10
which can be simplified to
J
At +1) cosw, sinwycosk, —sinwgsink,
B(t+1) |= |—sinwy coswcosk, —coswgsink,
Clt+1) 0 sink, cosk,

where the abbreviation k, =k (¢)=2uTB (tT)/# was in-
troduced. In particular, the kicking strength will be as-
sumed to vary sinusoidally

k, =« cos(wt) (19)

with an amplitude «k and a frequency w incommensurate
with 277. In some sense the parameter k may instead be
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_,-V(nT)T/ﬁ=lcosk(n)+i .nk(n) .

e (11)

X
The matrix U(n) thus reads

_ cos[k(n)/2] isin[k(n)/2]
U=\ in[k (n)/2] cos[k(n)/2] | - 12)

Equation (7) depends on time merely through the kick
number n. Lacking enough symbols, ¢ will also be used
henceforth to denote the kick number. [This use as an in-
teger thus departs from the previous convention, e.g., in
Eq. (1)). The temporal evolution according to Eq. (7)
consists in a repeated application of a diagonal matrix
and a nondiagonal time-dependent matrix. It is more
convenient to deal with a diagonal time-dependent matrix
at the expense of nondiagonal elements for the time-
independent matrix. This is achieved by a transforma-
tion to vectors b=Xa in a o, basis, with

1 |1 -1
X=7§“1 1 (13)
Equation (7) is replaced by
bz +1)=U"(1)U ob(2) , (14)
where
e k2
U= 0 eikr2 | (15)
cos(wg/2)  —isin(wy/2)
Yo= | —isin(wy/2)  coslwg/2) (16)

For numerical and other reasons it is useful to carry out
another transformation to obtain the real quantities 4, B,
and C (Bloch variables) defined as

B=i(b,b*—b,b}), (17b)
C=b,b*+b,b} . (17¢)

A lengthy but straightforward calculation yields the
equation of motion
B(t) |, (18)

viewed as a frequency itself, since it appears as an argu-
ment of sinusoidal functions in Eq. (18).

The autocorrelation functions C,(¢) and C,(¢) for the
variables b,(t) and b,(¢) are defined as time averages,

e.g.,

y
C(0)= lim ~ 3 b3 (nb,(t+n). 20)

N-—>w n=1
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This quantity describes the extent to which the occupa-
tion of spin state two (in the o, basis) at time ¢ is statisti-
cally dependent on its occupation at time zero. The fact
that there are only two spin states and that the system
must (partially) recur to a previously occupied state
should not mislead to the conclusion that for this reason
the correlation function be recurrent after arbitrarily
long times. Instead, one can imagine that the flipping be-
tween the two states happens in a statistically indepen-
dent way (for t — o0 ).

The notation of the correlation functions should not be
confused with the Bloch variable C(t) whose own corre-
lation functions C ,(t), Cgz(t), and C.(t) are useful for
numerical computations, e.g.,

. 1 X
Cp(t)= }ijv—nng(n)B(t+n). (21)
The Bloch variables fulfill the equation

A*+B*+C*=1, (22)

and consistently the left-hand side of Eq. (22) must be a
dynamical invariant of Eq. (18). The Jacobian of this
transformation is unity and the map is area preserving.
A, B, and C thus are components of a real vector that is
restricted to move on the unit sphere.

III. ANALYTIC RESULT IN A SPECIAL CASE

The above model has three characteristic frequencies,
the kicking frequency 2, the level spacing /2, and the
modulation frequency o [Eq. (19)]. In the general case
these frequencies may all be chosen incommensurate with
each other. In a special case where only @ and the kick-
ing frequency are incommensurate, the correlation func-
tions can be calculated analytically as follows. As an ex-
ample, let us assume w, as an odd multiple of 2.

The iteration according to Egs. (14)-(16) yields

ion—1

b,(n)=e'™exp é S K |5,00), (23)
1=0

and the correlation function C,(t) can be expressed as

c . 1 N imt .l. t+n-—1k
t = — —
2(2) Nhrn N > e'™exp 5 Ign f

— 0

|b,(0)12. (24)

n=1
Assuming a sinusoidal modulation like in Eq. (19), i.e.,
=

k1= 5 e.iw1+e—iw1) , 25)

the sum over the phases k; in Eq. (24) can be carried out

n+t—1 K At T
> k,=3 elon 3 e“+c.c.
I=n

1=0
K iwn 1—e'
=— —F—+c.c. | .
5 |e i c.c ] (26)
This is further simplified to
n+er—1
3 k;=2B(t)cos[wn +y(1)], 27
I=n

\/\/\B

b et K
i \-range —
| % sz

N2

FIG. 1. Illustration of the quasiperiodicity of the correlation
function C,(¢) according to Egs. (33) and (28).

where
K . wl
=—"—sin |2 |, 28
A= i@ ™ |2 28)
_ot_o
()= 5 5 (29)
Eq. (24) now becomes
Co(= lim L 3 (—1y
2 N N

n=1
xeiB(t)cos[wn+y(t)]|b2(0)|2 . (30

Consider ¢ as fixed and use the fact that the sequence of

phases wn +y(mod2w) is ergodic and uniformly distri-

buted on the circle for ® incommensurate with 27 (it can

be generated e.g., by a homeomorphism of the circle), i.e.,
lim 1 % S@p—wn —y)d(p=—1—dcp (31)
Noow N n=1 21 ’

where wn +7 is assumed mod2s. This leads to
1 27 .
= 2 ._1 | S d lB(l)COS(p A 32
C,(1)=1b,(0)[2(—1) = fo pe (32)

The integral yields the Bessel function J, and thus
C,(1)=1b,(0)]2(—1)'To(B(2)) . (33)

It is instructive to analyze Eq. (33) in some detail. It is
defined only for integer ¢ and for w/2# irrational is a
quasiperiodic function based on the two frequencies 7
and w/2 according to Eq. (28). Thus it cannot decay to
zero, but in the course of time must recur arbitrarily
close to its initial value. Figure 1 illustrates the apparent
randomness of the function and shows how the re-
currences may be strongly suppressed: the argument 3 of
the Bessel function varies in a range *«/[4sin(w/2)]. It
can be viewed as the projection of a vector which re-
volves at an irrational frequency w /2. The phase wt /2 is
ergodic and uniformly distributed as in Eq. (31). It thus
recurs arbitrarily close to its initial value at wt/2=0.
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When this happens, J,(3) and the autocorrelation func-
tion C,(t) recur close to their maxima.

When « becomes very large, the range of 3 also be-
comes very large. The Bessel function decays asymptoti-
cally like Jo(8)~B~ /2. The correlation function reaches
large values only when 3 recurs sufficiently close to zero.
For large «, this may occur very infrequently and a possi-
ble suppression of recurrences of the correlation function
Eq. (33) can thus be understood. More precisely, as the
phases are distributed uniformly, the recurrences of the
argument f3 follow the distribution
—1/2

) (34)

K2

I\ S > 72
16 sin*(w /2) b

p(B)=

1
T

which diverges at the upper and lower end.

IV. NUMERICAL RESULTS

The simplicity of the equation of motion Eq. (18) al-
lows an accurate determination of the autocorrelation
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FIG. 2. Autocorrelation function of the Bloch variable B for
increasing values of the kicking strength «. The choice of fre-
quencies is 27 for the kicking frequency, the golden mean for
the modulation frequency w, and wy/ 2=% for the level spacing.
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FIG. 3. Same as Fig. 2 apart from a commensurate choice
wy/2=2m for the level spacing. The modulation and kicking
frequencies are incommensurate as before.

functions for the general case of three incommensurate
frequencies. The computations were done in double pre-
cision and the time averages in Eq. (21) were carried out
over 4000 steps after their convergence had been tested
by varying N.

For the figures shows here, the kicking frequency was
2w, the modulation frequency w was chosen as the golden
mean 0=(V'5—1)/2, and w, as w,=1 (except in Fig. 3).
Figure 2 shows this case selecting the autocorrelation
function of B (t) for increasing amplitude x. For k=10
and 100 the time dependence is obviously quasiperiodic,
although it looks somewhat different in character. For
k=1000 one finds a sharp initial drop followed by small
values fluctuating around zero. Looking at these figures
and interpreting the fluctuations as numerical errors, one
might conclude, as was done in some of the previous
work, that there is a transition from a quasiperiodic to a
mixing behavior between k=100 and 1000. But now let
us look at the case wy=4m (Fig. 3). Apart from a factor
of 10 difference in « this figure looks qualitatively the
same as Figs. 2(b) and 2(c). In particular, with the same
right as before, one might conclude that Fig. 3(b) pertains
to mixing behavior. This, however, is wrong, as we know
from the analytic argument of Sec. III that in the cases
wo=2mn the correlation functions are genuinely quasi-
periodic. Therefore it is not justified either to conclude
for mixing in Fig. 2(c).

There are stronger arguments against mixing. Figure 4
shows a logarithmic version of Fig. 2(c). One notes that
the correlation function reaches small values (e.g., 107)
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FIG. 4. Logarithm of the absolute value of the correlation
function of Fig. 2(c).

only exceptionally. After the initial drop it fluctuates
around 10”2 without decaying further. This is similar to
what one expects for the quasiperiodic behavior of Sec.
IIT as illustrated in Fig. 1. Another similarity is the
sharpness of the initial drop, which happens in a single
time step. If the system had a mixing instability, one
would typically expect a finite correlation time, which
would gradually increase as the quasiperiodic regime is
approached.

If it is true that increasing « only makes recurrences of
the correlation functions less frequent (e.g., by a mecha-
nism as in Fig. 1), then one should be able to detect them
again by increasing the simulation time. This was done
in Fig. 5, which is otherwise identical to Fig. 2(c).
Indeed, two large recurrences show up between t=1000
and 7000.

V. CONCLUSION

In this paper the nature of the correlation functions of
a quasiperiodically kicked two-level system was analyzed.
With increasing kicking strength « the correlation func-
tions change in aspect, but there is sufficient evidence
that they remain quasiperiodic up to k=1000. Increasing
k does not destroy correlations, but shifts them to
(perhaps unobservably) long time scales. A possible
mechanism might be similar to the one illustrated in Fig.
1, where the phase matching required for a recurrence

FIG. 5. Same as Fig. 2(c) in a larger window of time.

may become more and more restrictive. An analogous
phenomenon may show up in numerical spectral analysis.
If the number of different frequency channels is
sufficiently smaller than the number of 6 peaks in a
discrete spectrum, it will appear as if it was continuous.

Instead of analyzing spectral properties, the paper has
concentrated only on correlation functions since they are
most definitive from the point of view of ergodic theory.
There is no mixing instability as « is varied up to 1000.
Of course, no conclusions can be drawn on different and
more complicated systems. The present analysis, howev-
er, helps us to understand the subtleties that may affect
the results of numerical simulations with incommensu-
rate frequencies. These are presently of considerable in-
terest, e.g., in relation with quantum localization and
delocalization.!® The presence or absence of correlations
in a system may make a difference for the outcome of
simulations. Numerically, however, a quasiperiodic sys-
tem may become indistinguishable from a random sys-
tem.
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