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Exact enumeration approach to the directed polymer problem

Pierre Devillard and H. Eugene Stanley
Center for Polymer Studies and Department of Physics, Boston Uniuersity, Boston, Massachusetts 02215

(Received 20 July 1989)

An exact enumeration approach is developed for the directed polymer problem. The probability
distribution of the number of directed self-avoiding walks that can reach a certain level t is obtained
exactly up to t =10. This enables us to calculate some properties of directed polymers that are not
attainable by Monte Carlo simulations. Specifically, we find that the fluctuation of the logarithm of
the number of directed self-avoiding walks that can reach level t, when averaged over the
configurations that can reach level t, scales as t ' ' well below the directed percolation threshold p,D,
contrary to the behavior t ' ', which is known to be valid when the bond probability p is above p,D.
When p is close to 1, these fluctuations scale as t ' ' for a very long time before the true asymptotic
behavior t' ' is recovered. The method can also be used to obtain the behavior of averages of mo-

ments of the number of directed self-avoiding walks that can reach level t. Below p,D these quanti-

ties are dominated by rare configurations and cannot be obtained by Monte Carlo simulations.

I. INTRODUCTION AND MOTIVATION

The directed polymer (DP) in a random introduced by
Nadal and Vannimenus' and also by Kardar, Parisi, and
Zhang ' has stirred much interest. ' This has also
been referred to in the literature as the directed self-
avoiding-walk problem (DSAW); we shall use these two
terms as equivalent. In the simplest version, for d =2,
one starts with the square lattice rotated by 45' (Fig. I).
We ca11 t the upward direction and x the transverse direc-
tion. It is customary to refer to the upward direction as
the "time. " We are interested in directed self-avoiding
walks, that is, self-avoiding walks (SAW) that start from
the origin and are not allowed to go down in the negative
t direction. Bonds are present with probability p and ab-
sent with probability 1 —p. We are interested in the prob-
ability distribution of the number of (DSAW's) that can
reach some level t.

For d =2, the DSAW is equivalent to the roughen-
ing of domain walls in a quenched random exchange Is-
ing model. The DSAW can also be related to many other

problems such as growth of Eden clusters, large time be-
havior of randomly stirred fluids, '" and flame fronts. '

In general, two techniques have been used. One is
Monte Carlo sampling of the configurations fo11owed by
exact enumeration of the DSAW's for each
configuration. ' ' The other is a mapping onto the
Biirgers equation (or some equations related to it) that
was treated by field-theory renormalization tech-
niques. '

Our purpose is twofold. We propose a new approach
to the DP based on exact enumerations.

(i) This may be of some use since it can be in principle
extended to d larger than 1, where the DSAW problem is
very controversial.

(ii) For d =2, the probability distribution of the loga-
rithm of the number of DSAW's has long tails. ' If one
wants to calculate averages of moments of the number of
DSAW's, one cannot use the log-normal distribution.
Our approach can bring some information on those prop-
erties, which are governed by rare events and have not
been obtained by the other methods mentioned above.
We also can obtain information for very small p.

II. MODEL

FIG. 1. A particular configuration of the random matrix of
size t =4. Bonds that have been cut are denoted by a slash. The
heavy line denotes a particular DSAW.

We shall consider here the case d =2 (one space plus
one time dimension). On the undilute (full) lattice, there
are 2' DSAW's starting from the origin that can reach
level t. We treat a dilute lattice with quenched disorder.
For each configuration C, Nc(t) is the number of
DSAW's starting from the origin 0 and reaching level t.
Nc{t) may be zero. The probability that there are co

DSAW's reaching level t is

II(co, t) = g W(C)fi(Nc(t) to}, —

where the summation is over a11 the configurations C and
8'(C) denotes the weight of a configuration. This proba-
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bility distribution II(co, t ) depends of course on p, but we

omit the index p in order to ease the notation.
Following Ref. 1, we next introduce two auxiliary func-

tions.
(i) The first function is P„the probability that there is

at least one directed path to level t. Thus, for m=0,

(2a)

(ii) The second function is h(m, t ) defined through the
relation

also been shown' that the distribution has long Lifschitz
tails for large values of co, but the characteristics of these
tails are not attainable by Monte Carlo simulations.
Hence we propose using the method of exact enumera-
tion. ' The principle is to enumerate all the different pos-
sible configurations (there are 2"'+" configurations) and
for each configuration to count the number of DSAW's
that can reach level t. This is equivalent to solving the
problem exactly for finite t. Then, using extrapolation
techniques, we try to guess the asymptotic behavior for
large t.

II(co, t ) =P, h(co, t ) (co%0), (2b)

since in order to reach level t, we must have at least one
DSAW. Considering (2a) and (2b), we write for arbitrary

II(co, t)=(1 P, )5(c—o) + g P, b, (co —co', t) . (2c)

The first moment of P, (co) is simply ( Ns~w ), the average
number of DSAW's that reaches level t,

( Nsp w )—:J II(co& t )et) dc' (3a)

Since there are at each level two bonds that go to the next
level, we expect

&Ns&w) =(2p)' (3b)

p (4a)

where P is the directed percolation probability exponent
and vol the parallel correlation length exponent.

(iii) p &p,D. We expect exponential decay

P -expl (4b)

There are three regimes according to whether p is larger
or smaller than the directed percolation threshold p,D.
The properties of the function P, are known for each re-
gime. '

(i) p )2,D. P, tends to a constant as t tends to infinity.
(ii) p =p,D. P, decays as a power law

III. COMPUTATION TECHNIQUE

We now describe the method we used to obtain II(co, t ).
Consider a system of size t (see Fig. 1). Since there are
t(t+ 1) bonds that reach level t, P, is a polynomial of de-
gree t(t+1). A configuration with n occupied bonds
must have t( t + 1) nem—pty bonds and hence a weight

n t(t ~1)—n
)

where

q—= 1 —p .

Thus P, is in fact a polynomial of degree t(t+1) in the
variable p. For fixed t, for any number co of DSAW's be-
tween 1 and 2', all the h(co, t) are polynomials of order
t(t+1) in the variable p. Up to t =4, we enumerate all
the configurations directly. For t =5, we develop a
transfer-matrix algorithm (Appendix A).

Due to memory requirements, it is dificult to go
beyond t =5. We therefore also studied a slightly
different problem. Instead of looking at the wedge por-
tion of the square lattice rotated by 45' and limited to
time lower than t (Fig. 1), we consider the geometry
shown in Fig. 2. Our system is now a diamond whose di-
agonal along the time direction has length 2t. We denote
by P2(t) the probability of reaching the uppermost point
M at level 2t. II2(co, t ) will denote the probability of hav-

ing a number co of DSAW's from 0 to M. In the limit of
large t, the behavior of P, (t) is expected to be the follow-
ing For p)p, D, P2(t) tends to a constant as t~~.
For p =p,D,

where
g~~

is the parallel correlation length.
There are two kinds of configuration averages, aver-

ages over only those configurations that span and aver-
ages over all configurations. The first kind of average of
a quantity Q will be denoted by (Q ), ,„and the second
kind by ( Q )„i.For all nonzero p, it is known that'

( lnNs~w )

The behavior of the fluctuations of the logarithm of
DSAW's is also known. Based on the analogy with the
Burgers equation, for p &p,D, we have

F(t) =[((lnNsAw —
(1nNs~w ), ,„)), ,„]'—t'

—2(P/vii )

level 2t

—level t

We would like to have some more information about
the distribution II(co, t). For example, we would like to
estimate how its width grows below and at p,D. It has

FIG. 2. Diamond-shaped version of the random matrix. M is
the uppermost point.
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For p &p,D,

P, (t) —exp( 2—t /g„) (9b)

There are two kinds of configuration average. The aver-

age of a quantity Q over all configurations that span from
0 to M will be denoted by (Q )oM, whereas the average
on all configurations will be denoted by ( Q ),&I.

gin 1. A plot of Pz(t+ 1)/P2(t) versus 1/t for

p =0.644697=p,D is shown in Fig. 3(b). Although there
is a tendency toward the above trend, the series are not
quite long enough to be able to retrieve the exponent

From Ref. 1 ' /3 vll ' 2+
p &p,D. We expect Pz(t)-exp( 2—t/(II). A plot of

P 2(t+1)/Pz(t) versus I /t should go toward some point

IV. RESULTS

The series up to t=4 for the wedge portion of the
square lat tice are reported in Appendix B. The
knowledge of H2(cu, t ) enables us to calculate Pz„
(lnNsAw )oM, and the fiuctuations

F2(t)—:(((inNsAw (lnNsAw ~oM } ~OM } (10)

where F2(t) is defined in analogy to F(t) of (6). The
probability distribution H2(t, co) will consist of a sum of 5
functions, corresponding to configurations where there
are 0, 1, . . . , n „DSAW's from 0 to M, where n,

„

is

the maximum possible number of DSAW's from 0 to M.
Clearly, there is only one configuration giving rise to n

DSAW's from 0 to M, that is, the configuration where all
the bonds are present. One sees that

'2
k

n max
I& =0

C3
C)

CL

+
Lfb

Q s—
C)

C3

C3

(a)
I I I I

Q. QG 0.25 0.50 0.75 1.00

max

H (t, co)= g 5(co i )—
i=0

21+ t(t + I )

g=0
A;, (t}p q' (12)

A table of all nonzero A," with i WO for t =1—3 is given
in Appendix B. The coefficients A; (1) and A; (2) were
also checked by hand. We did not report the A, (4) and

A„(5)because of the large number of nonzero elements.
The values of A, (4) and A; (5) are available upon re-
quest from the authors.

Let us denote by A, (t) the number of configurations with

j occupied bonds giving rise to i DSAW's from 0 to M.
Since there are 2X2"'+" bonds in total, we can write
Hz(t, co) as

C)
C3

CL

+
LA

N
CL e—

O

C3
LA

C3
I I

Q. QG 0.25 0.50 0.75 1.00
t-1

V. ANALYSIS OF THE SERIES

We used the ratio method' to analyze our series.
First, let us examine how the series can reproduce known
results. We begin by looking at P2(t).

p &p,D. We expect Pz(t) to tend to a constant for
large t. Thus a plot of the quantity p,:P2(t+1)/P2(t)—
versus 1/t should tend, for large t, to a horizontal
straight line with ordinate at the origin equal to 1. Fig-
ure 3(a) shows such a plot and the convergence to the
horizontal straight line is very fast. —2P/v

p =p,D. We expect to have P2(t) —t II. A plot of
P2(t+1)/Pz(t} versus 1/t should tend for large t toward
a straight line of slope —2p/vI, and of ordinate at the ori-

C3
C3

CL

+
LA

C3

C3
LA

C3

(c)
I I I I

0.00 0.25 0.50 0.75 1.00
t-1

FIG. 3. Ratio plot of P, (t+1}/P,(t} vs 1/t for (a) p=0. 8,
(b}p =p,D

——0.644697, and (c) p =0.6. The solid straight line in

(b} has a slope of —
Zp/vI~ -0.32 and an ordinate at the origin 1.
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of ordinate equal to exp( —
2/g{~) for large t. Figure 3(c)

shows P2(t+1)/P2(t) versus 1/t for p =0.6.
Then, we look at (lnNs&w )oM. Since for all nonzero

p, ( lnNsAw ) oM
—t, we should expect the curves

(lnNs~w )oM(t+1)/(1nNsAw )o~(t) versus 1/t to tend,
for large I;, toward the straight line of slope 1 and ordi-
nate at the origin 1. For large p, the convergence toward

the asymptotic law (5) is not very good. For example,
Fig. 4(a) shows (lnNs~w)I(t+1)/(1nNs~w )oM(t)
versus 1/t for p =O. 8.

At p,D, the convergence is still poor.
(lnNsAw )oM(&+1)/(1 nNsAw )oM(~) versus 1/& for
p=p, D is shown on Fig. 4(b). Below p,D, the conver-
gence gets better and better as p is lowered. Figures
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FIG. 4. Ratio plot of (lnNsA~ ) OM(t+ 1)/(lnNs„~ }oM(t) vs 1/t for (a) p =0.8, (b) p =p, z&, (c) p =0.5, (d) p =0.3, and (e) p =0.l.
The solid straight lines have a slope of 1.
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F,(t}-t&, (13)

4(c)—4(e) show ( lnNsAw )o~(t + 1)/( lnNsAw )oM(t)
versus 1/t for p =0.5, 0.3, and 0.1, respectively.

Next, we turn to the properties of the fluctuation F&(t)
of (10).

(i) Regime 1. p close to 1. The theory ' predicts that

[((T ( T) )2) ]I/2 t eff (18)

If we neglect the correlations between the different hor-
izontal slabs, the squared fluctuations of S take the form

(T) the average over samples that span. The fluctua-
tions of T behave as

with ((S (S) )2) f t effdt t eff (19)

1

3 (14)

However, before the true asymptotic regime is attained,
there exists a regime for which

F (t) tl/5 (15)

The reason is as follows. Take for simplicity the wedge
geometry (see Fig. 1) and consider a particular
configuration. Most of the DSAW s that can reach
height t will reach it at a transverse coordinate x such
that

where a is some positive cutoff. z,ff is a function of t, but
we have assumed that it varies slowly with time and is
practically constant in the integral. S undergoes a ran-
dom walk with deterministic drift in time. However, the
standard deviation of the step probability decays as

' /'ea
t ' (i.e., the walk becomes less and less random as
time increases). On the other hand, there is a scaling re-
lation relating the exponent z to the fluctuations of the
free energy of the Dp in a random matrix at zero temper-
ature. ' ' Applied to our particular case, this rela-
tion can be written as

—t ' ~x ~t1/z ~ 1/z
(16} 2/z —(=1 . (20)

T(t) =in'(t) . (17)

The slab is made of different vertical elementary columns
whose transmissions are independent from each other.
These columns are shown in Fig. 5. The number of these

eAcolumns is proportional to t ' . The average of T(t)
over the samples is a function of p. We shall denote by

crt iCa CO umn

t+dt

where 1/z, ff is an effective "roughening" exponent. For a
pure system, 1/z, ff= —,

' and for the dilute system in the
true asymptotic regime above p,D, 1/z, ff

= 1/z =—', .
Consider the shaded region in Fig. 5 corresponding to

eA' eA'—t ' & x ~ t ' . Let us isolate a slab of this region
comprised between t and t+dt. Let exp(S, ) be the num-
ber of DSAW's reaching t at some x, within the shaded
region. We have exp(S, +«)=r(t)exp(S, ), where r(t) is a
random transmission of the slab depending on the partic-
ular configuration.

We define T(t) by

This relation is normally valid only in the asymptotic re-
gime. It has been explained' why this relation is very
robust against finite-size corrections and should be
satisfied even by effective exponents. It is tempting to use
it also in the transient regime above. Replacing z by z,ff

in (20) and using (19) and (13) gives

Zeff
5 (21)

and

(22)

Figure 6(a) shows a ratio plot of F~(t+1)/Fz(t) versus
1 /t for p =0.99.

(ii} Regime 2. p larger than p,D but not close to I. Fig-
ure 6(b) shows F2(t+1)/Fz(t) versus 1/t for p=0. 8.
The curve does not straighten enough as t increases in or-
der to be able to retrieve the result Fz( t) -t '

(iii) Regime 3. p close to p,D. Figure 6(c) shows
Fz(t +1) /F (2t) versus 1/t for p =p,D. Again, the short-
ness of the series does not enable to draw any conclusion.

(iv) Regime 4. p &p,D. Figures 6(d) and 6(e) show
Fz(t + 1)/F2(t) versus 1/t for p =0.5 and 0.1, respective-
ly. For p =0. 1, we seem to have

F,(t)-t'" . (23)

This result is to be compared with Ref. 1, which states
that, at p,D,

I ( [ln( 1+Ns~w )

—( ln(1+N, ) )„,„]')„,„)' "—t ' " (24)

FIG. 5. The shaded area is the region of the random matrix
where most of the DSAW's are located. The heavy lines are the

1/z li. l 'z
ti-curves x = —t ' and t ', which limit this region. The slab

studied (see text) is the dotted region. A few vertical columns
are shown.

Noting that

(ln(1+Nst, w ) ), ,„=(ln(Ns~w) ), ,„,
we expect

I ([ln(1+N )
—(ln(1+N )), ,„])„,„I"
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to have the same asymptotic behavior as F~(t). On the

basis of our series expansions for small p, we conjecture
that, for 0 &p ~p,D,

(25)

%e now turn to the advantages of series with respect to

Monte Carlo methods. One is the possibility to study
quantities for small p. The other is the ability to probe
quantities that are dominated by rare configurations. As
noted in Ref. 1, the probability distribution of the num-

ber of DSAW's is log normal, but it has long tails. For
example, if one uses the triangular geometry (Fig. l), the
average number of DSAW's, denoted by (Xs~~ )„~,is
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FIG. 6. Ratio plot of p, =F2(t+ 1)/F, (t) vs 1/t for (a) p =0.99, (b) p =0.8, (c) p =p,~, (d) p =0.5, and (e) p =0.1. The solid line in

(a) has a slope of —,
' and the solid line in (e) has a slope of —, .
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(N„„)„,=(2p)'. (26)

However, ( ln( 1+Ns~w ) ),tt decreases exponentially
below p, D, whereas (NsAw ),tt increases exponentially
between p= —,

' and p,o. This is because (NsAw), « is

dominated by very rare configurations. Our series for the
wedge geometry automatically reproduce the obvious re-
sult (26). With our method, one can study the averages of
the moments of NsAw

(5, 1) , (5,
Last layer
of bonds (g ) ( ) (

(2, ,3)

)—t=5

t=4

VI. CONCLUSION

We have developed a new exact enumeration approach
for the directed polymer in a random matrix. Even rela-
tively short series give results consistent with what is
known about percolation probabilities and exponents,
and about the distribution of the number of directed self-
avoided walks reaching a definite level t. The average
(,Ns„w ) over all configurations of the number of directed
self-avoiding walks reaching level t is exactly (2p )' for the
random matrix with the usual square lattice rotated by
45', p being the bond probability. Our series autornatical-
ly give this equality, whereas former Monte Carlo simula-
tions cannot retrieve this result well below the directed
percolation threshold p, D. This is because NsAw is dorn-
inated by rare configurations; our exact enumeration ap-
proach treats all configurations and hence can handle the
problem of extremely rare configurations without any
problem.

In the region of small probability p, we studied the rms
fiuctuations F2(t) of the logarithm of the number of
DSAW's that reach level 2t. We find for small p,
F2(t)-t' and conjecture that this behavior is valid for
all p ~p, D. The averages of the moments of the numbers
of DSAW's could be studied by this method.

In this paper, we restricted ourselves to the d =2 case.
It is possible to extend the method to d =3, but memory
storage space might become a serious problem for large t.

Note added in proof. After this work was accepted for
publication, we became aware of quite recent work that is
relevant. '
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APPENDIX A

In this appendix we present the method for computing
the series. First, we determine II,(t, co) for the triangular

geometry up to t =5. Up to t =4, we simply enumerated
all the configurations directly. We shall use an indexing
of the sites of the square lattice shown in Fig. 7. A site is
denoted by the couple (t, i), where the first index r is the
time coordinate of this site and the second index i is its
position on the x axis, starting from i=1 for the site
which has the lowest x. The number of DSAW's starting
from the origin and reaching site (4,i ) will be denoted by

FIG. 7. Indexation of the sites of the random matrix.

0 0

0 0

FIG. 8. A particular configuration of the last layer of bonds.
Bonds which have been cut are denoted by a slash. The values
of JV(4, i ) are indicated by arrows below and those of JV(5,i ) are
indicated above the line t =5.

Ã(4, i). Let us denote by N4(j~, i, ,i2, i3, i4, is) the num-

ber of configurations for a system of size t =4 in the tri-
angular geometry with j bounds occupied, such that, for
1 ~k &5, JV(4, k)=ik. This means that there are

N4(j~, i, , i2, i3, i4, is ) configurations with j occupied
bonds, with i, DSAW s starting from the origin and end-

ing at site (4, 1), i 2
DSAW's to site (4,2), etc, ... .

We see that i, l, i2 4 i3 6 i4 4i, ~1. Since i,
can be zero, N4(j~, it, i2, i3, i4, i&) is a six-dimensional ar-
ray of size (20 X 2 X 5 X 7 X 5 X 2). It has 2087 nonzero
elements. The data of all i for j=1 to t+1 will be re-
ferred as the state of the site boundary for size t. The
knowledge of this array enables the calculation of the ar-
ray N, (j~,i„i2,i„i4,i„i6), which is the analog of
N4(j, it, i2, i3, i4, i, ) for level 5. Every configuration for
the system of size t =5 can be decomposed into its part
below t=4 and its last layer of bonds (Fig. 7). Let us
consider, for example, all the configurations for a system
of size t =4 such that Ã(4, 1)=0, JV(4, 2) =1, JV(4, 3)=2,
JV(4, 4) =0, and JV(4, 5)=0 and such that there are j~ oc-
cupied bonds below t=4 (Fig. 8). If one knows the
iV(4, i ), for i =1—5 and also the configuration of the last
layer, one can readily calculate the state of the site
boundary for t = 5 [i.e., the A'(5, i) for i = 1 —6).

Let us, for example, take the configuration of the last
layer shown in Fig. 8. All the configurations for a system
of size 5 that have a given state of the boundary for t =4
[(0,1,2,0,0) in the case of Fig. 8]; the configuration of the
fifth layer shown in Fig. 8; v. occupied bonds under t =4
are going to have JV(5, 1)=0, JV(5, 2)=1, A(5, 3)=3,
JV(5, 4)=2, JV(5, 5)=0, and JV(5, 6)=0 and a total num-
ber of occupied bonds of ~+ 3.

The weight of all these configurations is
p'q 'XN(r, 0, 1,2, 0, 0)Xp q . Thus N, (3 +,F01,3,2,
0, 0) is incremented by N4(r, 0, 1,2, 0,0). It suffices for
each state of the t =4 boundary to enumerate the
different possible configurations for the last layer in order
to get Ns(j, i, ,i2, i3, i4, is,i6). The algorithm actually
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used is slightly more complicated. One does not need to
enumerate all the different configurations for the last lay-
er if some of the N(4, i ), for i between 1 and 5 are zero
The method is reminiscent of the transfer matrix method
of Ref. 18.

For the diamond-shaped geometry we eventually used,
we must obtain the A, (t) [see Eq. (12)]. A;~(t) is ob-
tained by some kind of convolution of
N, (j,i ],i~, , ]I +, ) onto itself. One has

A, (t)= &](Jp ~ '»'2~ &' ]+])&](J J],~'I~]p»']+] +(' '] ] ]2 p l +] t+] ) . (27}

The limitation of the procedures is not CPU time but
memory space.

APPENDIX B

%e give in this appendix the values of the coeScients
of the series for II(co, t ) [Eq. (1)]. The number of
configurations with j occupied bonds giving rise to i
DSAW's from 0 to level t will be denoted by B~(t).
Since there are 2"'+' bonds in total, in analogy to (12),
we can write

2r(r +1) 2r(r+1)

11(~,t)= y S(~—i) g B„(t)p~q""'"J. -
i=0 j=0

In order to display our values for the coeScients B; (t),
we find it more convenient to define the polynomials
S,(p, t) by

2t(t +1)

%;(p, t)= g B, , (t)p'q
j=l

9;(p, t ) gives the probability that the number of DSAW's
reaching level t is i, when the average is done over all the
configurations with their respective weight.

For t =1

X](p, 1 }=2pq,

X](p,2) =p',
t=2

%2(p, 1)=4p q +12p q +4p q

%2(p, 2)=2p q+10p q +2p q

Sz(p, 3)=4p'q,

M, (p, 4) =p',
t=3

$3(p, 1)=8p q +64p q +204p q

+312p q +216p q +68p q +8p q

/3(p, 2)=4p q +42p q +166p q

+290p q +176p q +44p q +4p' q

%3(p, 3)=8p q +60p q +152p q

+64p q +8p' q

%3(p,4)=p q +8p q +28p q +28p q

+78p q +19p' q +2p "q,
$3(p, 5)=4p q +12p q +24p' q

$3(p, 6)=2p q'+10p' q +6p "q,
&~(p 7) =4p "q

t=4

X~(p, l)=16p q' +240p q' +1632p q'

+6616p q + 17 636p q +32 124p q

+40 296p q + 34 500p q + 19 936p q

+7632p' +q +1856p' q +260p' q

+ 16p16 4

X&(p, 2)=8p q' +144p q' +1140p q' +5264p q'

+15 610p q" +30686p' q' +39744p "q

+33 010p 12q s + 1 7 560p '
q +5984p 14q 6

+1272p' q +154p' q +8p' q

Sz(p, 3)=16p q' +236p q' +1596p q"
+6188p' q' +14636p "q +20680p' q

+15976p q +6996p q +1780p q

+252p' q +16p' q

8 (p, 4)=4p q' +62p q' +420p q" +1738p' q'

+4946p q +10002p q +13228p q

+ 8623p '
q +3016p '

q +609p '
q

+70p17 3+4 18 2

%4(p, 5)=8p q" +108p' q' +640p "q +2088p' q

+4232p q +5528p q + +2612p q

+556p' q +52p' q

%~(p, 6)=6p q" +66p' q' +332p "q +1028p' q'

+2192p '
q +3144p

'
q +2904p '

q

+908p '
q + 144p '

q + 12p '
q
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%~(p, 7) =8p "q +96p' q +416p' q +976p' q

+1388p' q +856p' q

+120p' q +Sp' q

cQ(p8)p loq 10+ 14p 1 lq9 +77p12qs+240p13q7

+ 5Q1p '
q +724p '

q +734p q

+228p q +23p q +2p q

Q&(p, 9)=16p'~q +96p' q +232p' q

+292p 16q 4+ 196p q + 8p 18q 2

$~(p, 10)=2p
'

q + 16p '
q + 56p '

q + 124p "q '

+ 194p '
q + 150p '

q +42p '
q

% (p, 11)=4p' q +24p' q'+56p' q

+ 84p 17q 3 +36p 18q 2

%~(p, 12)=p' q +8p' q'+23p' q

+38p 17q 3+34p 18q 2+ 6p 19q

%~(p, 13)=4p' q +12p' q +12p' q +4p' q,
%~(p, 14)=2p' q +10p' q +4p' q,
%~(p, 15)=4p' q,
%~(p, 16)=p

Series for t=5 are available upon request from the au-
thors.

APPENDIX C

In order to display our values for the coefficients A, (t)
[Eq. (12)], we find it more convenient to define the poly-
nomials in the variable pA, (p, t ) by

21+r t+I)

A, (p, t)= g A,, (t)p~q
j=1

A; (p, t ) gives the probability that the number of
DSAW's reaching the uppermost point M is i, when the
average is done over all the configurations with their
respective weight.

For t =1

A, (p, 1)=4p q+2p q

A~(p, 1 ) =p

t=2

A, (p, 2)=6p' q +68p q +210p q +256p'q'

+156p q p q +6p q

A, (p, 2)=20p' q +96p q

+97p 8q 4 +40p q +6p 6q 6

A~(p, 2)=4p "q+32p' q +20p q +4p q

A~(p, 2)=4p "q+4p' q +4p q +p q

A, (p, 2)=4p "q+2p' q

A~(p, 2) =p",

t=3

A, (p, 3)=8p 'q +196p q +2180p' q'+13800p "q +54940p' q

+ 145 824p q +268 656p q + 354 676p q o+ 343 824p q +248 228p q

+133 836p "q' +53352p' q' +15312p q' +3000p q' +360p q' +20p q'

A~(p, 3)=12p 'q +380p q +4176p' q +23242p' q +75 104p' q

+151356p' q +200812p' q +183842p' q' +119244p' q" +55104p' q'

+17 844p "q' +3864p' q' +504p q' +30p q'

A &(p, 4)= 56p 'q + 1000p q +7276p '
q +27 264p '

q + 57 220p '
q +70 956p '

q

+56644p' q +30392p' q' +11032p' q "+2624p' q' +372p "q' +24p' q'

A~(p, 4)=6p q +132p 'q +1404p q +7268p' q +19824p' q +29920p' q +30887p' q

+23180p' q +12602p' q' +4800p' q "+1208p' q' +180p "q' +12p' q'

&5(p, 4)=124p 'q +1324p q +5668p' q +10578p' q +11 804p' q

+8278p' q +3712p' q +1042p' q +168p' q "+12p' q'

A~(p, 4)=10p q +216p 'q +1644p q +5044p' q +8238p' q +8700p' q

+6208p q +2952p q + 894p q + 156p q + 12p q

(p 4) 24p q +30gp 21q 3+ 1534p 2oq4+ 2904p ~q +2928p 18q 6

+1684p' q +564p' q +1Q4p' q +8p' q'",
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A8(p, 4)=14p q +200p 'q +795p q +1392p' q +1586p' q

+1200p' q +623p' q +236p' q +66p' q' +12p' q" +p' q'

A9(p, 4)=16p q +272p 'q'+802p q +968p' q'+652p' q

+296p '
q +96p '

q +20p '
q +2p '

q

A, o(p, 4)=4p q+52p q +284p 'q +451p q +596p' q +598p' q

+404p '
q +170p

'
q +40p

'
q +4p ' q'

A&&(p, 4)=36p q +96p 'q +158p q +128p' q +52p' q +8p' q

A, z(p, 4) = 18p q + 104p 'q '+ 184p q + 180p "q -'+ 104p "q + 32p '
q '+ 4p

'
q ',

A&&(p, 4)=44p q +68p 'q +86p q +84p' q +50p' q +16p' q +2p' q

A, ~(p, 4)=8p 'q+10p q +28p 'q +28p q" +12p' q +2p' q

A»(p, 4)=10p q +44p 'q +52p q +24p' q +4p' q

A, &(p, 4)=4p q+28p q +20p 'q +4p q

A»(p, 4) =4p q,
A»(p, 4)=4p q +4p 'q'+p q

A»(p, 4) =2p q+4p q

A~a(p 4)=p" .
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