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Generation of bound states in a continuum
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(Received 19 June 1989)

We show that a result derived previously by Lami and Rahman [Phys. Rev. A 34, 3908 (19S6)]
whereby bound states can be created in a continuum, contains an algebraic error. %'e present the
correction and discuss some implications.

In complicated atomic and molecular systems, many
different reaction and excitation channels between indivi-
dual states and groups of states interfere constructively
and destructively. This interference, induced when cou-
pling mixes the interacting channels, can lead to the ex-
istence of bound states in the continuum' ' and popula-
tion trapping. " Investigations of these phenomena
may provide insight into processes necessary to achieve
selective laser chemistry.

Recently, Lami and Rahman ' (hereafter referred to as
LR) published a pair of papers that examined the condi-
tions under which discrete states can exist within the en-
ergy range occupied by a continuum. They demonstrate
the somewhat surprising result that under rather general
conditions on two or more external fields, there exists an
equal number of bound states within the energy region of

the continuum. The fact that a long-lived state can be
created above the dissociation threshold signals that
there may be hope for selective laser chemistry. With
this result, they proceed to investigate how such a state
might be detected using quantum-beat spectroscopy. It is
at this point that the analysis they present breaks down
quantitatively. In this note, we derive the correct quanti-
tative result and present a brief discussion of the implica-
tions it has for the qualitative features on which LR ela-
borate.

Lami and Rahman begin with a system as shown in
Fig. 1 and project the Harniltonian thus obtained onto
the discrete states, thereby producing an effective Hamil-
tonian from which a set of dressed states may be obtained
analytically. Their effective Hamiltonian is
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This allows the eigenvalues for the Hamiltonian to be
decomposed as the sum of the eigenvalues for the real
and imaginary parts computed separately. Using this, we
find immediately that the imaginary part has two zero ei-
genvalues. The eigenvalues of 5 are therefore

where 5 is the detuning of laser 1 from the
~
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onance; 5' is the detuning of laser 2 from the
~
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resonance; q1, q, z, and qz are the Fano Parameters de-
rived in Refs. 1 and 2, and y1, y„and yz are the widths
of the corresponding effective resonances.

This effective Hamiltonian (we will subsequently drop
the superscript and a11 future references to the Hamil-
tonian will be understood to refer to this effective Hamil-
tonian) has the special property that its real and imagi-
nary parts commute
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where I =y, +yz+ y, . Using the nonzero eigenvalue,
we can find the corresponding eigenvector for 5,
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U3 can then be used to compute the corresponding real
eigenvalue for the Hamiltonian as well as conditions on 5
and 5'. We compute the real part of the eigenvalue from
row 2 of R in Eq. (2) as

~3,R q 1 y1 qzy2

This can then be substituted into rows 1 and 3 of R to get
expressions for 6 and 6',
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than was previously thought. Such is also the case for
the beat frequency as a function of the width y2. Figure
3 shows the beat frequency as a function of y2 for the
same parameters given in Fig. 6 of Ref. 4. Here again,
the curves are less sensitive to the value of y2 than in LR,
so that the beat frequency increases in the approximately
linear manner of LR, but at a lesser slope. Hence it ap-
pears that a wider range of atomic parameters are avail-
able than one would conclude from LR for which the
beat frequency is below a certain threshold. This does
not alter the fact that the conditions for creation of a

bound state within the energy region of a continuum, the
critical values 5 and 5', remain unchanged.

We have shown that the quantitative results given by
LR contain an algebraic error, the correction of which
significantly alters the functional form of the resulting
beat frequency. Even though this is the case, the overall
qualitative results remain intact.
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