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Generation of bound states in a continuum

C. A. Glosson and C. D. Cantrell
Center for Applied Optics, The University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083-0688
(Received 19 June 1989)

We show that a result derived previously by Lami and Rahman [Phys. Rev. A 34, 3908 (1986)]
whereby bound states can be created in a continuum, contains an algebraic error. We present the

correction and discuss some implications.

In complicated atomic and molecular systems, many
different reaction and excitation channels between indivi-
dual states and groups of states interfere constructively
and destructively. This interference, induced when cou-
pling mixes the interacting channels, can lead to the ex-
istence of bound states in the continuum'~'° and popula-
tion trapping.!' "2 Investigations of these phenomena
may provide insight into processes necessary to achieve
selective laser chemistry.

Recently, Lami and Rahman™" (hereafter referred to as
LR) published a pair of papers that examined the condi-
tions under which discrete states can exist within the en-
ergy range occupied by a continuum. They demonstrate
the somewhat surprising result that under rather general
conditions on two or more external fields, there exists an
equal number of bound states within the energy region of

3,4(

the continuum. The fact that a long-lived state can be
created above the dissociation threshold signals that
there may be hope for selective laser chemistry. With
this result, they proceed to investigate how such a state
might be detected using quantum-beat spectroscopy. It is
at this point that the analysis they present breaks down
quantitatively. In this note, we derive the correct quanti-
tative result and present a brief discussion of the implica-
tions it has for the qualitative features on which LR ela-
borate.

Lami and Rahman begin with a system as shown in
Fig. 1 and project the Hamiltonian thus obtained onto
the discrete states, thereby producing an effective Hamil-
tonian from which a set of dressed states may be obtained
analytically. Their effective Hamiltonian is
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where 8 is the detuning of laser 1 from the [1)—|2) res-
onance; 8’ is the detuning of laser 2 from the |3)—|[2)
resonance; ¢, ¢;,, and ¢, are the Fano parameters de-
rived in Refs. 1 and 2, and y,, 7,, and v, are the widths
of the corresponding effective resonances.

This effective Hamiltonian (we will subsequently drop
the superscript and all future references to the Hamil-
tonian will be understood to refer to this effective Hamil-
tonian) has the special property that its real and imagi-
nary parts commute

H=R +iA,
0=AR —RA.

(2)

This allows the eigenvalues for the Hamiltonian to be
decomposed as the sum of the eigenvalues for the real
and imaginary parts computed separately. Using this, we
find immediately that the imaginary part has two zero ei-
genvalues. The eigenvalues of A are therefore

A={0,0,—T}, 3)

where I'=y,+y,+v,. Using the nonzero eigenvalue,
we can find the corresponding eigenvector for A,

2
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U; can then be used to compute the corresponding real
eigenvalue for the Hamiltonian as well as conditions on &
and 8. We compute the real part of the eigenvalue from
row 2 of R in Eq. (2) as

AMRrR=—q171— 927> - (5)
This can then be substituted into rows 1 and 3 of R to get
expressions for 8 and &',
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FIG. 1. This figure shows the system described by Lami and
Rahman. There are two bound states and a continuum coupled
internally to a resonance. Transitions to the resonance are ac-
complished by means of two lasers at frequencies w, and w,.

8=q(v,—v1)—7v2q:—912) » (6a)

8=q,(vs—v2)—v1q1—412) - (6b)

These are identical to the critical values of § and &’ ob-
tained by LR. The known eigenvalue can then be used to
reduce the secular equation of HT from third order to
second order, which is amenable to the quadratic formu-
la. This reduction also checks whether the value just pro-
duced in Eq. (5) is an eigenvalue of the effective Hamil-
tonian. A little algebra shows that this is indeed the case,
and the reduced characteristic equation gives the remain-
ing two real eigenvalues as

A =5{(8+8 +q,7,+4,72)
+[(6+8 +q,71+q,7,)
+4giy Ve Ha37aY2 T 0192V e ~ 0190V Ve
_42‘1127’a7’2)]1/2} . )

The values above differ from those given by Lami and
Rahman in two ways. First, their values include a term
which is dimensionally different from the other terms in
their expression. Second, even though our values have a
somewhat simpler form than those previously presented,
the overall qualitative results deduced by LR appear to
remain intact. There are, however, certain quantitative
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FIG. 2. The beat frequency A, —A, as a function of the pa-
rameter gq,, with y,=y,=v,=1. Curve 1 has g¢,=1 and
g,=—9 and curve 2 has ¢, =2 and g, =4. This graph uses the
same parameter values as given in Fig. 5 of Ref. 4.

differences that need further elaboration.

As LR point out, the energy values and quantum-beat
frequencies that result from the preceding calculation are
not obvious without resort to graphical methods. In Fig.
2, we show the beat frequency as a function of the atomic
parameter ¢q,,. The parameters used here are the same as
for Fig. 5 of Ref. 4. Figure 2 shows what seems to be a
strong hyperbolic dependence of the beat frequency,
which quickly reaches the asymptotic region of the hy-
perbola. This is in sharp contrast to the conclusion of
LR that the beat frequency grows quadratically in g ;.
Thus the beat frequency is considerably less sensitive
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FIG. 3. The beat frequency as a function of y,. The parame-
ter values for these six graphs are the same as those given in Fig.
6 of Ref. 4. These values are y,;=0.1 and y,=1.0 for all the
curves. Curves A1, A2, and A3 have ¢, =3, 12, and —6, re-
spectively with ¢, =1 and ¢, =4 while curves Bl, B2, and B3
have g, = —4, 14, and — 14 with g, =1 and g, = —9.
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than was previously thought. Such is also the case for
the beat frequency as a function of the width y,. Figure
3 shows the beat frequency as a function of y, for the
same parameters given in Fig. 6 of Ref. 4. Here again,
the curves are less sensitive to the value of ¥, than in LR,
so that the beat frequency increases in the approximately
linear manner of LR, but at a lesser slope. Hence it ap-
pears that a wider range of atomic parameters are avail-
able than one would conclude from LR for which the
beat frequency is below a certain threshold. This does
not alter the fact that the conditions for creation of a
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bound state within the energy region of a continuum, the
critical values & and &', remain unchanged.

We have shown that the quantitative results given by
LR contain an algebraic error, the correction of which
significantly alters the functional form of the resulting
beat frequency. Even though this is the case, the overall
qualitative results remain intact.

This work has been supported in part by the Robert A.
Welch Foundation (Grant No. AT-873) and the National
Science Foundation (Grant No. PHY-8822312).

1A. Lami and N. K. Rahman, Opt. Commun. 43, 383 (1982).

2A. Lami and N. K. Rahman, Phys. Rev. A 26, 3360 (1982).

3A. Lami and N. K. Rahman, Phys. Rev. A 33, 782 (1986).

4A. Lami and N. K. Rahman, Phys. Rev. A 34, 3908 (1986).

5F. H. Stillinger and D. R. Herrick, Phys. Rev. A 11, 446 (1975).

SF. H. Stillinger and D. R. Herrick, J. Chem. Phys. 62, 4360
(1975).

7W. Fredrich and D. Wintgen, Phys. Rev. A 31, 3964 (1985).

8P. Lambropoulos and P. Zoller, Phys. Rev. A 24, 379 (1981).

9K. Rzazewski and J. H. Eberly, Phys. Rev. Lett. 47, 408 (1981).

10K, Rzazewski and J. H. Eberly, Phys. Rev. A 27, 2026 (1983).

IR, S. Burkey, C. A. Glosson, and C. D. Cantrell, Phys. Rev. A
39, 2978 (1989).

IZR. S. Burkey and C. D. Cantrell, J. Opt. Soc. Am. B 1, 169

(1984).

BR. S. Burkey and C. D. Cantrell, J. Opt. Soc. Am. B 2, 451
(1985).

147, Deng and J. H. Eberly, Phys. Rev. A 34, 2492 (1986).

I5SE. Arimondo and N. K. Rahman, Phys. Rev. A 37, 2706
(1988).

16Z. Deng and J. H. Eberly, Phys. Rev. A 37, 2708 (1988).

I7R. M. Whitley and C. R. Stroud, Jr., Phys. Rev. A 14, 1498
(1976).

18] D. Stettler, C. M. Bowden, N. M. Witriol, and J. H. Eberly,
Phys. Lett. 73A, 171 (1979).

19P, E. Coleman and P. L. Knight, J. Phys. B 15, L235 (1982).

20F, T. Hioe and J. H. Eberly, Phys. Rev. Lett. 47, 838 (1981).



