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It is shown that the minimal coupling interaction and the multipolar interaction —p E give iden-

tical predictions for the second-order susceptibility. This contrasts with differing results obtained

by Hammond [R. T. Hammond, Phys. Rev. A 39, 2544 (1989)]. The unique answer is obtained in

the most straightforward way from the multipolar Hamiltonian. Complicated sum rules are needed

to demonstrate the correct result from the minimal coupling form of the interaction.

I. INTRODUCTION

The second-order susceptibility tensor is, for dilute sys-
tems, very simply related to the hyperpolarizability of the
molecules making up the system. In second-harmonic
generation a specialized form of the hyperpolarizability is
involved that corresponds to a two-photon absorption
and a one-photon emission at double the frequency. It is
well known that in the electric-dipole approximation the

matrix element for such a process is

M = isi„—isi2„ie, (2co)ej(co)ek(co)piIk,

where e(co) and e(2co) are the unit vectors describing the
polarization of the incident beam and emitted photon, re-

spectively, E~„, and c.~z„, are the Geld amplitudes at the
corresponding frequencies co and 2', and the overbar
represents the complex conjugate. In Eq. (1) p;Ik is the
hyperpolarizability tensor
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where the j~k indicates the previous terms with j and k
indices interchanged. For a two-level system with ener-
gies Eo,E, this reduces to
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where 5=p"—p, is the difference between between the
permanent moments in the upper and lower states and
p=p ' is the transition moment which, without loss of
generality, is chosen to be real. It is clear that such
three-photon processes involved in p,~k will have a van-

ishing matrix element if the system is atomic or molecu-
lar with no permanent electric moments. %'e note for
later reference that the first symbol in (3) has the second-
harmonic photon polarization parallel to the permanent
moment difference 6,. (the i index is that associated with

X'" —eb
IP el', (4)

where X is the number of molecules per unit volume.
A recent paper has claimed that this is not the correct

prediction of quantum electrodynamics. The two interac-
tion Hamiltonians often used in quantum optics are used
and the minimal coupling form —ep A/rn is preferred
and is claimed to give an X' ' which differs from (4) by a
multiplicative factor (Eiolftco) in the same limit. The
paper implies a different form for p, k before such a limit
is taken. In this Comment we derive the P tensor from
the minimal coupling Hamiltonian and show, as is to be
expected, that it gives the identical result as that using

the 2co photon). On the other hand, there are contribu-
tions to the hyperpolarizability from 6 parallel to the ex-
cited beam polarization; the second term in Eq. (3). The
former term in the limit ftco »Eio, R =0 gives Eq. (34) of
Hammond
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the —p.E interaction Hamiltonian. It is almost essential
to use the —p.E multipolar form when permanent mo-
ments of the active molecule are involved in the transi-
tion since the momentum operator p has no diagonal ma-
trix elements. In general, the matrix element of momen-
tum is related to that of position through Eq. (5).
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which vanishes for E„,=E„—E, =O. It is necessary to
use sum rules to convert —ep A/m matrix elements to
those involving permanent moments as we demonstrate
for two-photon absorption in Ref. 3. It is also easier to
model the full quantum-optics Hamiltonian by a two-
level system interacting with the electromagnetic field us-

ing the multipolar coupling —p E than using the
minimal coupling interaction.

II. CALCULATION OF HYPERPOLARIZABILITY
USING MINIMAL COUPLING

The nonlinear polarization involved in Eq. (1) can be
written as an energy of interaction of an induced dipole P

FIG. 2. Time-ordered graph representing a contribution to
the matrix element for second-harmonic conversion where the
generated photon is emitted between absorptions.
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The effective induced dipole moment is then already in
multipolar form —p';" E(2 ), . The perturbation theory
can indeed predict the value of p';" in the form p;~keek
using minimal coupling for computing the dynamics in-
volved in absorbing the two photons. This is analogous
to Sec. III of Ref. 2 in that it is the changes in the expec-
tation value of p, that are calculated using the minimal
coupling. It clarifies the theory to use diagrammatic
techniques. For example, Fig. 1(a) represents the contri-
bution given in Eq. (7) to the full matrix element:

(b) [i(.)l il", epJ'"—epk e, (2~)ej(~)ek(m)
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This is to be compared with the contribution from Fig.
1(b) when —p E is used for the dynamics of the two-
photon absorption.

(c)

FIG. 1. Time-ordered graph representing one contribution to
the matrix element for second-harmonic generation. (a) The
emitted photon is dipole coupled with interaction —p.E; the
absorbed photons are coupled by —ep. A/m minimal coupling.
(b) All three photons are coupled with the multipolar form of
interaction —p-E. (c) The complement of (a): the emitted pho-
ton is minimally coupled the absorbed photons by the interac-
tion —p.E. (d) All three photons are minimally coupled with
the interaction —ep A/m. FIG. 3. The third ordering for second-harmonic generation.
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h(M)

ments in the ground state (if either r or s=O). In mul-

tipolar coupling theory the complete hyperpolarizability

P,jk of Eq. (2) can be read off Figs. 1(b), 2, and 3 immedi-

ately. This is not so for minimal coupling theory. As an
example, if Eq. (5) is used twice, Eq. (7) yields
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FIG. 4. One sea-gull-interaction graph, with the e'A /2m
vertex absorbing the two co photons.

Then

i p,—'p'"p, , i, e, (2co)ej (co )ei, (co)
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The extra factor co in (7) arises from the vector poten-
tial A being the operator that absorbs the co photons
rather than the E. Equation (8), together with (1), im-
mediately determines the first summand in 13,jk of Eq. (2).
The other two summands shown arise from Figs. 2 and 3
when the ordering of the emitted photon relative to the
absorptions is changed. It is of interest to note that the
contribution represented by Fig. 2 is the only possible
contribution involving a permanent moment in excited
states of the molecule along the direction of the polariza-
tion of the second-harmonic photon. For example, with a
two-level system the component p,

" (with r =s= 1) must
contribute the term

to XI '. On the other hand, both Figs. 1(b) and 3
represent contributions involving permanent electric mo-

It is the factor E,„E„OI(ifico) in Eq. (9), and similar fac-
tors for terms derived from the other orderings, which
gives rise to the apparent anomaly mentioned in the In-
troduction [s=O, r= 1 gives (E,a/fico) ] Th.e reason
that, in minimal coupling theory, the hyperpolarizability
tensor P; k is not determined by Figs. 1(a), 2, and 3 is that
there are further contributions due to the quadratic term
e A /2m in the total Hamiltonian. These, the so-called
sea-gull terms, are represented by Figs. 4 and 5. Their
contributions to the matrix element are

m, '(s~ A ~0)e;(2co)si

2fPl E o 2i6co

(Ol A Ir )p, ,
" e;(2co)c,z

l (10)

In the Appendix we show by explicit calculation that the
addition of contribution (10) to the three summands, of
which Eq. (9) is typical, does indeed give the identical re-
sult P; i, . There is no diff'erence between the predictions
made by the two forms of Hamiltonians for the hyperpo-
larizability; the advantage of the —p E form of interac-
tion is the immediacy and ease of calculation. This is a
well-known feature of the multipolar Hamiltonian. To
obtain valid approximations to the full quantum electro-
dynamics in quantum optics or quantum chemistry that
use two-level systems, it is necessary to transform to the
multipolar Hamiltonian before making the two-level ap-
proximation.

III. AN ALTERNATIVE DERIVATION

2m

p e E

FICx. 5. The other possible ordering for a sea-gull —type in-
teraction.

The perturbation theory outlined Sec. II and spelled
out in the Appendix is a hybrid, although a perfectly legi-
timate one. It is a hybrid in so far as the 2' photon is
coupled via the electric field vector, while the co photons
are coupled via the vector potential. The perfect comple-
ment of the very simple multipolar calculation would be
to use a complete minimal coupling interaction for all
three photons. In this section an alternative hybrid is
considered where the 2~ photon is coupled with the—ep A/m interaction energy, while the co photons are
multipolar coupled; see Fig. 1(c) for a typical contribu-
tion. This combination is of interest since there is no
place within this calculation for any sea-gull e A /2m
terms. However, once again the correct P,"k is obtained.
We have
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where the j~k indicates the previous terms with i and j indices interchanged. The factor (2'�) in Eq. (11)arises from
the emission operator within A, having a frequency dependence (2') ' for the 2' photon, while the electric field for
this photon is proportional to (2')' . If now Eq. (4) is used for the matrix elements ofp;, Eq. (11)becomes
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The initial terms on the right-hand side of Eq. (12) vanish
since, for example,

—(o~p, p&~r)p"k'+(o pkp, ~r)p

is antisymmetric in the j,k indices. Hence

M = i P,,k e,—( 2co )e, ( co )e„( co )sii is~ (13)

IV. DISCUSSION AND CONCLUSION

We have demonstrated that the hyperpolarizability,
and thus the second-order susceptibility, follows indepen-
dently of the form of Hamiltonian —minimal or multipo-
lar coupling. The additional dependence of the suscepti-
bility on any component of the second harmonic in the
incident radiation is not controversial. However, the
differences imputed to follow from using the alternatives
—p-E, —ep A/I as interaction energies are conten-

It is now clear how the calculation that is necessary to
determine the hyperpolarizability from a complete use of
the minimal-coupling Hamiltonian for each photon
should proceed. Figure 1(d) represents a typical contri-
bution to this calculation. The methodology is 6rst to
deal with the 2'-photon vertex as in this section. The re-
sult will then have one electric dipole vertex p; and two
minimal-coupling j,k vertices. These can then be re-
duced to p~, pk type vertices using precisely the argu-
ments of Sec. II.

tious. Since we have shown that there is a unique predic-
tion for X' ', the arguments in Ref. 2 suggesting that one
should not use the —p E interaction are fallacious. It is
certainly possible to use for the basis states the eigenfunc-
tions of the unperturbed Hamiltonian whatever the in-
teraction energy. The two-level approximation for p,"k is

given in Eq. (3) and the resulting susceptibility (in the
limit E&2 =Aco~2 &&%co,h parallel to the 2'-photon polar-
ization} is that given by Eq. (34) of Hammond. This he
rejects in favor of Eq. (19) of Ref. 2. We claim that, in
the appropriate limit, it is (19) that is incorrect. The
reason is that the full interaction of the minimal-coupling
Hamiltonian was not used, and the sum rules implicit in
the quantum-mechanical properties of molecules were
not taken into account.
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APPENDIX

In this appendix the explicit identity is proved that
sho~s that the hyperpolarizability, as predicted by the
minimal-coupling interaction Hamiltonian, is precisely
p, k of Eq. (2). The matrix element for the process that
absorbs two ~ photons, polarizations e,- and ek, and emits
one 2'-photon polarization e;(2'), leaving the molecule
in its ground state is
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Double closure sums on the three lead terms in (A2) give

(, Oip, p, p„iO)(1—2+1)=0 .

(A2)
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On the other hand, single sums lead to the contribution

&olp;pllr &pk' —&olpkp;lr &p,
"' pk'&sip, pjlo& p—,"&slpkp, lo&

which is antisymmetric in the j~k interchange. Adding the symmetric contribution in the total matrix element en-

sures the vanishing of all terms of this form. Thus the final form of the matrix element (A2) is
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This is precisely the matrix element that directly follows from the use of —p E at each of the three vertices. We note
finally that if the j,k polarizations are equal so that the incident beam is a single mode,

(j) —(k) 1
~(~) (~) ~~ ~(~)~2

and

M = iP;—ke;(2co)e (co)ek(co)sI ')eI"IeI'i'
)
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