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Following the lines sketched by Kujawski [Phys. Rev. A 37, 1386 (1988)] for the semiclassical ver-
sion of the Jaynes-Cummings model without the rotating-wave approximation, we have obtained an
alternative analytic periodic solution given in terms of elliptic functions. We discuss domains of
values of the coupling constant and the detuning for which known yet exact periodic solutions exist.

One of the simplest theoretical models used in quan-
tum optics is the Jaynes-Cummings (JC) model.! The
model consists of a two-state atom interacting with a sin-
gle model of the electromagnetic field in a resonant cavi-
ty. A system of N two-state atoms interacting with a
single-mode field was studied by Tavis and Cummings.’
Both of these models, the JC model and the generalized
one, are exactly solvable within the rotating-wave ap-
proximation (RWA) for the field treated classically or
quantum mechanically. (In both cases solvability is as-
sured by the existence of an additional integral of motion
which reduces the problems to a diagonalization of finite
matrices. Since the order of these matrices depends on N
the final goal can be achieved only numerically in the
case of a large number of atoms.) The chaotic behavior
in the semiclassical, non-RWA Jaynes-Cummings model
was noticed for the first time by Belobrov, Zaslavskii, and
Tartakovskii.> They showed that the chaos was a conse-
quence of inclusion of terms normally neglected in the
RWA. Similar conclusions were drawn independently by
Milonni, Ackerhalt, and Galbraith,* although they stud-
ied a slightly different model than Belobrov, Zaslavskii,
and Tartakovskii.

The two-level atom model has its counterpart in
condensed-matter physics, which makes it interesting
from a different physical point of view. Studying the
Jahn-Teller effect,” Judd has discovered a class of exact
isolated solutions (eigenstates) of the model.® The most
complete and simple description of these solutions, also
for the optical applications, has been given by Reik,
Nusser, and Amarante Ribeiro’ in terms of the Neumann
series expansion for eigenvectors in the Bargmann repre-
sentation for boson operators. A method of obtaining ex-
act isolated solutions for the class of quantum optical sys-
tems (two-level and multilevel) without the RWA has
been presented by Ku$ and Lewenstein.® On the other
hand, an example of an exact analytic solution in the
semiclassical Jaynes-Cummings model has been
discovered by Kujawski.® In this solution the elec-
tromagnetic field is described by the elliptic cosine func-
tion.

The aim of our Brief Report is to present another ex-
ample of an exact periodic solution in the semiclassical
Jaynes-Cummings model without the RWA. Each of the
periodic solutions expressed in terms of the elliptic Jaco-
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bian functions is valid only for a definite domain of values
of the coupling constant and the detuning.

The Hamiltonian for a quantum system of N two-level
atoms interacting with a single-mode field in a resonant
cavity (for the Belobrov, Zaslavskii, and Tartakovskii
model) is'®!!

H =1#0,S, +fiola'a + 1)+ #rS, (a +ah) , (1)
in which A is the coupling constant, S,= 3", 0,,
S.=3)-10,, and o; is the Ith Cartesian component
for the jth two-level system, and in which a' and a are
photon creation and annihilation operators.

One can easily obtain the Heisenberg operator equa-
tions and next the semiclassical model equations:

S$;=-S,, (2a)
S,=8,+S,E , (2b)
S,=—S,E , (2¢)
E+u’E =as, , 3)

where the dimensionless parameter p=w/w, the cou-
pling constant a=Nu(2A/w,)? and a dot denotes a time
derivative. Time is scaled with the atomic transition fre-
quency w, and therefore dimensionless. S,,S,,S; are
components of the Bloch vector and represent atomic po-
larization and inversion, whereas the electric field
E=—-2(A/wy) A.

As was noticed before, the two-state atom model has
its counterpart in solid-state physics. One example is the
dynamical Jahn-Teller and pseudo-Jahn-Teller effect in
which vibrational modes interact with electronic levels
and a second, simpler one is an electron hopping between
two sites and interacting with one vibrational mode.!?
The Hamiltonian of this last system makes its appearance
in optics, where it describes a two-level atom interacting
with one linearly polarized radiation mode. In contradic-
tion to the solid-state analog, the interaction constant is
much smaller in the optical case. There are also no ob-
jections as to being far away from the resonance, other-
wise than in the optical case. The conclusion is that giv-
ing up strictly optical applications of the semiclassical
two-level atom model and searching for other ones, for
instance, in condensed-matter physics, one can obtain a
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larger allowed range of values of the dimensionless pa-
rameter u and the coupling constant a.

The system of Eqgs. (2) and (3) possesses two conserved
quantities, length of the Bloch vector and energy,

S2+83+8i=1, @)

W=aS;—aSE +1u’E?+LE* . (5)

For Egs. (2) and (3) and considering the conservation
law (4), the new solution has been found:

E =E,dn(Qt,m) , 6)
m=2 |1+ 2(1-viTp |, )
X
(u2—1
gr=_H El=160%, (8)

4V I+x—1)’

and
X:_(“2_%)_2{%[a2—4(ﬂ2_%)3]l/2
+(,u2—%)(,uz—%)} .

The inversion S; and components of the Bloch vector
describing polarization in terms of the electric field E
have been obtained in the form

g
|
|

(N1

(u*—LE—1E%, S,=-58,, 9)

{_%(#2_%)2_[a2_4(‘u2_%)3]]/2
+3(p'—-HE*~LE*) . (10)

In this way each component of the Bloch vector is a com-
bination of the elliptic Jacobian functions, therefore also
a periodic function.

The second conservation law (5) must be kept; this
means energy is allowed to take only specific values:

W=—3—4p—L1P]"? =2’ = H(w?=3) . (D

The main point of the consideration is whether one can
find such parameters u and a for which the solution (6) is
valid. From the fact that W, Q, and E, are real and
0=<m <1," domains of values of the coupling constant a
and the dimensionless parameter u have been found:

pre(L, 1), (12)
A€ (L (=D pr+ )14t — 1)) . (13)

One can see that the minimum value of a is a > %; then it
is the case of condensed-matter physics or solid-state
physics rather than the optical one.

It is easy to verify that every elliptic Jacobian function
is the solution of Egs. (2) and (3) with the conservation
law (4). For each of them one can find specific values of
energy (5) for which a solution is valid. Still, it is not pos-
sible, for each of these functions, to obtain domains of
values of u and a for which a solution does exist. An ex-
ample is the solution for the electric field in the form
E =E sn(Qt,m). One can find expressions for m, Q?, E(z,,
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and W, but domains of values of u and a are empty.

The essential observation is that only even elliptic
Jacobian functions are the solutions for the problem (See
Ref. 13). The question is whether it is an accident or
rather the specific property of the set of Egs. (2)-(4) to
have some inner symmetry.

As for the solution, where the electric field has the
form

E =Ecn(Qt,m) (14)
Q=tL(p’ =V 1+y, (15)
1 s 2 0 2—a(2— 1 3 2
m—z-f— YR Ej=16mQ“=4(u"—3)+80Q°, (16)
and
Y= 1)+ [a—4(u2— 1 ]2

— (==}, (17)

there are two possibilities as to how to choose the sign
and each sign one should consider separately. The same
problem takes place with expressions for S; and W:

Sy= (3 — b — = )2
+3(p*—1NE*~IE*Y}, (18)
W=+3[a? =4’ =111 2 =20 = Ly(p?—3) . (19)

The domains of values of 4 and a for which the solu-
tion (13) is valid has been found:

a’Z (= A+ 37, (20)
a?€(4(pr— 1), (=L)X p?+ 3], 21
prell, 1), (22)
prE[Y, + ), (23)
prE[0, 1], (24)
pre(L, ). (25)

The clue as to how to choose the sign in individual ex-
pressions is the following: (1) for + in the expression (15)
and for — in (17)-(19) there are conditions (22) and (21);
(2) for + in the expression (15) and for + in (17)-(19)
there are conditions (23) and (20); (3) for — in the expres-
sion (15) and for + in (17)-(19) conditions (24),(20); (4)
for — in the expression (15) and for — in (17)-(19) condi-
tions (25),(21). The range of values of parameters u and a
is very large and one has to choose the parameters which
fit to a given physical reality.

Since the model exhibits a chaotic behavior for the
large set of parameters involved the knowledge of partic-
ular exact solutions could be interesting for investigations
concerning transition from nonchaotic to chaotic motion.
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