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Molecular K-shell photoionization cross sections
in the relaxed-core Hartree-Fock approximation
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The relaxed-core Hartree-Fock (RCHF) approach to the calculation of E-shell photoionization
cross sections is analyzed and applied to I(-shell single-hole ionization in CO. A direct method
based on the Schwinger variational principle and single-center-expansion techniques is used to gen-

erate the continuum orbitals associated with the motion of the photoelectron in the direct and ex-

change potential of the relaxed ion. A method is presented for evaluating the ¹lectron transition
moment, a step that has posed a considerable computational obstacle due to the lack of orthogonali-

ty between the frozen and relaxed orbitals in the initial and final ¹lectron states, respectively. Be-
sides being very practical and efficient, this formulation establishes the distinction between the
"direct" and "conjugate" part of the transition moment, introducing bound-free dipole and overlap
integrals, respectively. Whereas for large photoelectron energies the conjugate terms can be
neglected, they become important near threshold, contributing, for example, up to 30% to the 1s

cross sections in CO. An analysis by means of low-order perturbation theory shows that the RCHF
model correctly describes the e6'ect of ionic relaxation, that is, essentially the screening of the 1s

hole by the valence electrons. As a consequence the 0 shape resonance is substantially shifted to
higher energy and broadened compared with the frozen-core Hartree-Fock picture where the more
attractive unscreened 1s-hole potentials are used. The remaining discrepancies with the experimen-
tal results are attributed to the neglect of target polarization in the RCHF model.

I. INTRODUCTION

Photoionization of atoms or molecules with sufficiently
energetic photons generates highly excited ionic states
characterized by a E-shell electron vacancy. ' The dom-
inant process is the ejection of a single 1s electron
refiected by a main peak in the photoelectron spectrum.
Smaller peaks or satellites appearing at higher ionization
energy are associated with shake-up (or shake-off) pro-
cesses, where, in addition to the 1s hole, one or more
valence electrons are excited. ' Typically, 30—40% of
the 1s-photoionization cross section may be diverted to
these shake-up (shake-oS states. Prominent satellites
states at low energy with intensities up to 10% of that of
the main peak arise from the m-m' excitations in simple
unsaturated molecules like N2 and CO.

The availability of tunable synchrotron radiation has
made it possible to study the dynamics of the photoion-
ization process, that is, to map the spectral intensities
(partial photoionization cross sections) of individual ionic
states as a function of photon energy. In the E-shell re-
gion several such studies have been carried out for the
1s-hole main state of atoms and molecules. ' In the case
of N2 and CO, previously studied by electron energy loss
and photoabsorption spectroscopy, " the most conspi-
cuous feature in the molecular photoelectron spectrum is
the occurrence of cr-type shape resonances. In the case of
E-shell satellites, where the lower intensities make experi-
ments more difficult, synchrotron-radiation studies have
been performed for the noble-gas atoms He and Ar (Ref.
5) and the CO molecule. '

A common feature of several approaches' ' used in

theoretical studies of molecular photoionization is that
the photoelectron continuum is determined by a single-
particle (Hartree-Fock) equation with a suitably chosen
potential for the electron-ion interaction. To date most
applications have adopted the frozen-core Hartree-Fock
(FCHF) model. In this approximation the neutral-
molecule ground-state Hartree-Fock (HF) orbitals are as-
sumed for both the initial and the final ionic states, and
corresponding potentials defining the motion of the pho-
toelectron in the field of the ion can readily be derived.
The FCHF model neglects both the effects of relaxation,
that is, the adjustment of the other electrons to the pres-
ence of the hole, and correlation.

Relaxation is particularly important in the case of E-
shell ionization, often exceeding by far correlation correc-
tions. Almost all previous studies of K-shell photoioniza-
tion of molecules have been carried out in the FCHF ap-
proximation. ' ' While these studies proved quite suc-
cessful in establishing and clarifying the occurrence of
e-type shape resonances in the I( -shell single-hole photo-
ionization cross section, the agreement with experimental
resonance positions and widths was often less than satis-
factory. Recently, Lynch and McKoy used a relaxed-
core Hartree-Fock (RCHF) model to study the resonant
E-shell photoionization cross section in N2. In this mod-
el the ionic state and the associated potential are ex-
pressed in terms of the "relaxed" orbitals generated by a
separate HF calculation for the ionic state. This RCHF
potential accounts for screening of the 1s hole by the re-
laxation of the valence orbitals and is hence less attrac-
tive than the unscreened FCHF potential, leading to
shifts of the resonance positions to higher energy.
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Indeed, for the Nz E shell the RCHF resonance posi-
tion was 7—8 eV higher than the FCHF result and 3—4
eV above the experimental position. Furthermore, the
broadening of the resonance in the RCHF description re-
sults in better agreement with the experimental cross sec-
tions than seen in the FCHF model.

Although the RCHF approximation maintains the sim-

plicity of a single-particle model, the absence of orbital
orthogonality introduces several complications into its
application. First, in contrast to the FCHF case, the
variational principle used to derive the ion-electron
scattering equation does not impose orthogonality be-
tween the continuum and the relaxed open-shell orbital,
resulting in a significantly more complicated equation for
the continuum electron. Fortunately, this problem is not
acute in the case of E-shell (main) ionization since, to a
good approximation, the 1s-continuum nonorthogonality
can be neglected. As we shall see, this is a consequence
of the core-valence separation (CVS) associated with the
large energy difference of E-shell and valence levels and
of the weak coupling matrix elements for states with
different 1-shell occupation numbers. Secondly, the ini-

tial and final ¹lectron states are formulated in terms of
mutually nonorthogonal sets of "relaxed" and "frozen"
orbitals, complicating the evaluation of the ¹lectron
transition moment. As a result the initial ground and
final excited ¹lectron states lack strict orthogonality
which introduces a dependence of the transition-moment
matrix element on the origin of the molecular coordinate
frame. This is clearly an artifact of the RCHF model.
For EC-shell ionization we will show that the CVS approx-
imation can be used to eliminate in a well-defined manner
these unphysical contributions. The remaining nonortho-
gonality contributions to the RCHF transition moment
are, of course, meaningful and establish the improved lev-

el of description compared with the FCHF approxima-
tion.

Nonorthogonality of the relaxed continuum orbital and
the frozen ground-state orbitals gives rise to specific con-
tributions in the RCHF transition moment that contain
continuum-bound overlap integrals. ' This contribution
to the transition moment, referred to as the "conjugate"
part, ' may be distinguished from the "direct" part
containing continuum-bound dipole integrals. Obviously
the relative importance of these two contributions de-
pends on the photoelectron energy. In the high-energy or
"sudden" limit the overlap integrals vanish much more
rapidly than the dipole integrals and the transition mo-
ment is determined by the direct part. On the other
hand, for low energies, the overlap contributions could
become appreciable and substantially affect the photoion-
ization cross section. The effect of these conjugate con-
tributions may be more significant for satellite intensities
than for single-hole cross sections, since selection rules
for these differ from those of the direct part. ' As a
consequence, satellites not detected at high photon ener-

gy might appear in a spectrum taken at near-threshold
energy. Possible candidates for "conjugate shake-up"
are, for example, the 2p-3s P satellites in the Ne 1s pho-
toelectron spectrum.

To our knowledge, the role of the conjugate contribu-

tion in molecular photoionization cross sections has nev-
er been investigated very quantitatively. Even for atoms,
where more sophisticated methods are available the na-
ture of these conjugate contributions is not fully under-
stood. The striking discrepancy between theory and ex-
periment seen in the Ne 1s satellites referred to above
serves as an example. '

The present study continues the previous work on
molecular K-shell ionization in the framework of the
RCHF model. We present an alternative approach for
evaluating the central quantity, i.e., the ¹lectron transi-
tion amplitude between the frozen ground and relaxed
final states. The resulting expressions for both the
single-hole and satellite states of the ion are more trans-
parent and practical than the biorthogonal orbital formu-
lations used previously. They allow us, in particular, to
analyze and calculate separately the direct and conjugate
contributions to the transition amplitudes and photoion-
ization cross sections. The case of E-shell ionization of
CO has been chosen for the present numerical studies.
This choice focuses directly on E-shell relaxation and
avoids possible complications arising from hole localiza-
tion. In the present study we confine ourselves to the
single-hole (main) states. Results for the ls satellites will

be reported in a forthcoming publication.
An outline of this paper is as follows. Section II

discusses our formulation of the photoionization ampli-
tudes in the RCHF model and the CVS approximation.
The choice of single-particle scattering potentials to
determine the photoelectron continua is reviewed in Sec.
III. In Sec. IV we analyze the energies (resonance posi-
tions) and cross sections in the RCHF description in the
framework of (low-order) perturbation theory. The com-
putational details are given in Sec. V, while Sec. VI con-
tains the discussion of our results and comparison to ex-
periment. A summary of our findings and conclusions
are given in Sec. VII.

II. PHOTOIONIZATION CROSS SECTIONS
IN THE FROZEN AND RELAXED HARTREE-FOCK

APPROXIMATIONS

A. Final-state wave function

The partial photoionization cross section at a photon
energy co leading to an ionic state ~+„') and a photo-
electron with kinetic energy k /2 is given by the familiar
golden-rule expression (in atomic units):

Here ~%„kz) represents the final ¹lectron state
describing asymptotically the ion in the state ~+„') and
a photoelectron in the state ~kA, ). The additional quan-
tum numbers v and k specify degeneracies not observed
in the experiment, e.g., magnetic spin quantum numbers,
and angular momentum of the photoelectron. A nonde-
generate initial (ground state)

~ %o ) is assumed in Eq. (1),
and 8 '"', p=x, y, z denotes the components of the N
electron dipole operator
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N

y r(I) (2)

Energy conservation requires k /2=~ —E„'+Eo,
where Eo and E„'are the energies of the initial ground
state and the final ionic state, respectively. Rotational
and vibrational degrees of freedom are suppressed in Eq.
(1) and a fixed nuclear geometry is assumed for all elec-
tronic states.

To disentangle the many-body and continuum aspects
in evaluating the bound-free ¹lectron transition ampli-
tude

(3)

&2 k
2

To proceed we may insert the second-quantized represen-
tation of the dipole operator in Eq. (3) and make use of
the commutation relations for (fermion) operators. For
this purpose we use a representation in terms of neutral
ground-state (frozen) Hartree-Fock orbitals l(t); & and the
associated operators a, (a;}:

Since ck may be expressed as

(7)

a product approximation is normally assumed for the
final state and I%'„„kz& is written as the antisymmetrized
product

(4)

of the ionic state I(I(„„'& and the one-electron scattering
orbital

I g'kz
'

& (with incoming-wave boundary condi-
tions). In Eq. (4) we use the second-quantized notation,
where ck& represents the creation operator associated
with the continuum orbital If(kz) &. The form of Eq. (1)
for the cross section assumes the final states to be normal-
ized by

This contribution is the conjugate or nonorthogonality
part; ' it only gives a contribution if the continuum or-
bital lg'k '& is not "orthogonal" to l+o &, i.e.,
(%'o Ickckl+o &%0. It is interesting to note that the
direct and conjugate amplitudes impose different selec-
tion rules among the molecular orbitals, i.e., dipole and
monopole rules, respectively. The energy dependence of
the conjugate amplitude has not been directly calculated
previously and should provide new insight into E-shell
photoionization, especially in the context of satellite in-
tensities. If the HF ground state

I+o &
—

IW(

is taken as the initial state, then the summation on the
right-hand side of Eq. (8) runs over occupied orbitals
(n„= 1) only. If allowance for ground-state correlation is
made, unoccupied orbitals (n„= 1 n„= 1—) may also give
contributions.

The simplest and most widely used approximation for
the transition amplitudes of Eq. (8) is the frozen-core
Hartree-Fock model. Here, besides using the HF approx-
imation I@o & for the ground state, the ionic states are
also expressed in terms of the "frozen" HF orbitals of the
neutral ground state. Specifically, the states

(12a)

and

I
C)j~p, )

'
&
= a j~ a) a) I @o & (12b}

are used to represent a single-hole (main) and a two-
hole —one-particle (2h-Ip) satellite state, respectively.
Consistently defined "frozen" potentials (see Sec. III) are
used to determine the continuum orbitals lg'k '&. These
FCHF potentials impose orthogonality constraints'

The second term, on the other hand, contains products of
the bound-continuum overlap integrals (f& 'I(()„& and
the bound-bound transition integrals

(10)

in terms of the operators a;, the expression for the transi-
tion amplitude can be written '

between the continuum and the occupied HF orbitals,
and consequently the conjugate part of the transition am-
plitude vanishes. For a single-hole (main) state the spec-
troscopic amplitudes of Eq. (9) are trivial,

+ y (y( —
)Iy &(@AN

—

llama

I@N&

(h) ((yNI 'ta Iq)N&

so that the transition amplitude reduces to
(8)

(13)

(14)
Here and in the following the additional quantum num-
bers v and A, and the specification p of the dipole operator
are suppressed whenever they are not essential. Accord-
ing to Eq. (8), A„„ is the sum of two distinct parts 2„' k
and A„"k. The first part A„' k, referred to as the direct
part, combines the one-electron dipole matrix elements
( 1('„'Id

I p„& with the so-called spectroscopic amplitudes

x'"'= ()I) 'Ia„lq)

For satellite states [Eq. (12b)] the FCHF model cannot be
used, since both parts of the amplitude A -&& k vanish. For
the direct part this is so because the spectroscopic ampli-
tudes vanish

J I (q)NI ~t
)'

I(p & ()

For the conjugate part, on the other hand, we find non-
vanishing moments,
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(PI) (@hl ~t
t

However, the bound-free overlap integrals (f'k
vanish.

In the framework of many-body perturbation theory
the FCHF model may be viewed as the zeroth-order ap-
proximation to the transition amplitudes (see Sec. IV B).
Obviously one has to go beyond this level of description
to account for relaxation and correlation. If one is only
interested in the bound-bound amplitudes x, and y, one

may, of course, resort to the well-developed methods of
quantum chemistry. For the spectroscopic amplitudes x„
direct computational schemes based on the one-particle
Green's function have been widely applied. In the
present study, rather than trying to obtain more accurate
bound-bound amplitudes we are interested in a consistent
treatment of the many-body and continuum aspects of
the problem. Such a level of description, which goes
beyond the FCHF model but maintains the essential
simplifications of the single-particle picture, is provided
by the relaxed-core Hartree-Fock approximation, dis-
cussed in Sec. II B.

Here, S denotes the N XN matrix of the "relaxed-frozen"
overlap integrals

S;.=(P;lP ), n;=n =1

(4 l4 ) =detS .

(20)

(21)

Similarly, one finds for the conjugate transition moment

y(hj —( @Pl 1'$a lc N)

=[—(S 'd S ')„h

+(S ')„„Tr(dS ')](4 l4 )n„,
where d denotes the N XN matrix of dipole integrals

1J=(y;ldlyJ ), n; =nj=1

(22)

(23)

for the occupied relaxed and frozen orbitals, and Tr(a } is
the trace of a. %'e note in passing that transition mo-
ments of this type are also encountered in the HF
description of x-ray emission intensities. The final result
for the single-hole state photoionization amplitude in the
RCHF approximation is

~h, k Q t( Pk 'ldll, &(S '},h

B. Spectroscopic amplitudes and conjugate transition moments
in the RCHF approximation

le„')=Chio ), n„= 1 (17)

In the RCHF approximation distinct HF wave func-
tions are used for the initial ground state and the final
ionic state; a consistent relaxed ion core potential is used
to determine the photoelectron continuum (see Sec. III).
The lack of orthogonality between the frozen-core and
relaxed-core HF orbitals leads to obvious complications.
In the following we present a transparent and tractable
approach allowing us, in particular, to distinguish readily
between direct and conjugate contributions to the photo-
ionization cross sections.

In addition to the FCHF orbitals lP;) and the corre-
sponding creation (destruction) operators a,. (a;) con-
sidered in Sec. II A, we now introduce the set of relaxed
orbitals

l g, ) generated by an appropriate HF calculation
for the ion. Denoting the associated creation (destruc-
tion) operators by c, (c, ), the RCHF representation of a
single-hole (main) state is

+(y'„-'ly„&[—(s-'d s-')„„

+(s ')„hTr(d s ')]I(4 i@0 ).
(24)

To identify clearly the major contributions in Eq. (24} we
consider the simplified amplitude obtained by setting
S=1 and d~ = (P, ld lgj ):

+(P'„-Ilg„)g (P, ld"IP, &n, (25)

The "diagonal" term in Eq. (25} depends on the origin of
the molecular coordinates. As discussed in Sec. II C, this
is due to spurious contributions which arise from the lack
of strict orthogonality between the initial ground and the
final excited state.

The 2h-lp satellite states are given in the RCHF ap-
proximation by

where le,h, '&=c, chc, l4, ), n, n„n, =l . (26)

is defined in analogy to l40 ) as the Slater determinant of
the lowest N relaxed orbitals

l P; ). To obtain the spectro-
scopic amplitude x„'"' for the single-hole state of Eq. (17)
and the uncorrelated ground state l&0) we have to
evaluate the overlap integral between the two (N —1)-
electron states ch l4 o ) and a„ l@0 ) represented by Slater
determinants of mutually nonorthogonal sets of orbitals.
As shown in the Appendix the result simply is

x' ' (4 le]a l4 ) =(S ')„(4 i+0+)n . (19)

—[h l] (C lC )n, (27}

and

The corresponding spectroscopic amplitudes x„' "" and
conjugate transition moments y„'J" ' can be obtained
analogously to the case of single-hole states (see Appen-
dix}. The resulting expressions are

x(lhl) (Q Nlctctc a l@ )

= '[(s-')„,y (y, ly„&s „-„']
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y(jhl)
& @N) t~t Q ~c N)

(S ')„,g &g ~d~(I)„)(S ')„„+(S 'd S ')„„g&g, ~P„)(S ')„,

+(S ')„,g &g, ~(I)„)(S ')„„[Tr(dS ')1 —d S ']„„—[h~l] &40 ~40 )n„, (28)
Q, u

where [h~l] means repeating the preceding terms, but with h and I indices interchanged. Here, besides the occupied
orbital overlap and dipole matrices S and d, the overlap & g, ~P, ) and dipole & g, ~d ~(I)„) integrals are required for the re-
laxed (unoccupied) orbital ~it& ) of the satellite state and the frozen occupied orbitals ~P„), r N. Again, the dominant
direct and conjugate contributions to the satellite amplitude A h) h become apparent in the (zeroth-order) approxima-
tion S= 1 and d;~

=
& (t); ~

d
~ P~ ):

'l)dig) &&WJI4'h &+&0'h 'lb(&&gjldlkh &+ g &0'h 'l0 &&4, ldldh &&fjlk) &n,

—&q'h 'ly, & y &q, ly„&&y„ldlgh &n„+&&'), 'IP) &&&, l(gh & g &P;Idlg, )n; —[h~l] . (29)

It should be noted that the more intuitively derived ex-
pression for the conjugate shake-up amplitude

represents only a part of the conjugate contribution in
Eq. (29).

I

amplitudes. This is achieved by adopting the so-called
core-valence separation approximation in which one
neglects the coupling of states with different 1s occupa-
tions. Formally this decoupling is introduced by neglect-
ing the following types of Coulomb integrals:

V ~ =V, = . =0
cvu v ucu u

C. Nonorthogonality of initial and final states
Vcc'c"v = ~cc'uc" = ' ' ' =0

s (32)
Complications arise in the RCHF approximation due

to the lack of strict orthogonality between the X-electron
ground state ~40 ) and the final (excited) states c„ch ~40 )
or c„c,chc(~4O ), respectively. In the case of a single-
hole ionic core the overlap integral may be evaluated as
follows:

~ctc„~Q ) = g &g'„'~(II)„)x'"' (31a)

where the spectroscopic amplitudes x,' ' are specified by
Eq. (19). Similarly we find

~C„C CJct~@N) = y & q(„)~y ) (jhl) (31b)

D. Core-valence separation approximation

Specialization to the case of K-shell ionization allows
for a considerable simplification of the RCHF transition

in the case of a 2h-1p satellite; the spectroscopic ampli-
tudes x,'J"" are given by Eq. (27). As a consequence of
this nonorthogonality the dipole transition amplitudes
A„h [Eq. (3)] depend on the choice of origin of the
molecular coordinate frame. In our explicit RCHF ex-
pressions [Eqs. (24), (25), and (27)—(29)] this becomes ap-
parent through the occurrence of origin-dependent in-
tegrals such as & it)'h ~d ~(I')„) or & f„~d ~p„). Clearly such
contributions bear no physical meaning and are a mere
artifact of the RCHF model. How can one distinguish
between these artificial contributions to the transition
amplitude and the genuine conjugate contributions in the
RCHF approximation? In general, the answer is by no
means clear. In the case of E-shell ionization, however,
on which we shall focus here, the artificial nonortho-
gonality contributions can be discarded in a well-defined
way as discussed in Sec. II D.

&q„~y, &=O, roc (34b)

(34c)

An immediate consequence of the CVS approximation is
that the initial-final state overlaps in Eqs. (31a) and (31b),
vanish, and there are no longer artificial contributions in
the transition amplitudes. Applying the CVS approxima-
tion Eq. (34) to the amplitude A, h for a E-shell single-

Vcc'vu'= Vvu'cc'=0 ~

where c, c', and c" and U, U', and U" label K-shell and
valence orbitals, respectively. The errors introduced here
in the wave functions and energies are of the order of
V/b, E and V /be, respectively, where V stands for one of
the neglected Coulomb integrals (32) and be is the core-
valence energy separation. To see the effect of the core-
valence separation on the RCHF amplitudes, consider
the relaxed core orbital ~g, ). The perturbation expan-
sion of ~f, ) in terms of the frozen orbitals ~P„) through
first order,

lq, &=ly, &+ g "'"
ly, &+o(2),

p C

I'W C

shows that the relaxed orbital differs from the frozen one
by the admixture of valence orbitals, the mixing
coefficients being of the order of V„,„/(e„—E, ). In Eq.
(33) y is a constant, depending on the specific RCHF
treatment. Obviously, in the CVS approximation, the
relaxed- and frozen-core orbitals are identical (up to an
eventual phase factor) leading to the following
simplifications for the relaxed-frozen overlap integrals:

(34a)
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hole state c ', the RCHF result of Eq. (24) becomes X(je)) &q ~y &eff&4I)N~(I)N& (43)

~, „= &1('„-'~d"~(t, &
—y &q'„-'~y„&(s-')„„

x&y„,~d"~y, & &4,"~C,"& .

as can be readily shown, the quantity

P = y ~((, &(s-')„„,& q„, ~

(35)

(36)

gt &1((
—

)~d"~(t) &&C)N~C)N (38)

we see that the effect of the conjugate contribution is to
project out a certain part of the continuum orbital, name-

ly, its occupied frozen-orbital components, as can be seen
from the zeroth-order approximation to the projector
[Eq. (36)),

(39)

is a non-Hermitian projection operator, and using this
definition the amplitude A, k may be written as

~„,=&y( )l(1 —P)dl(t, &&+ONION.
N& . (37)

Comparing this result with the direct amplitude,

is readily identified as the spectroscopic satellite ampli-
tude. Comparison of the direct and the full amplitudes
clarifies the effect of the conjugate part: except for intro-
ducing the projection operator P in the direct part, there
arises an additional term formally obtained by exchang-
ing the role of j and k in the first ("effective" direct) part
( A~'e) k

—h Ake) ~
). We may call this latter part the

"effective" conjugate shake-up amplitude. It should be
noted that the quantity

a„=&q,~(1 —P)d ~y, &&a,"~C,"& (44)

III. POTENTIALS FOR K-SHELL
PHOTOELECTRONS

represents the transition moment for a bound I( -shell sin-

gle excitation (j'c ') in the CVS approximation.
The expressions (35)—(40) for K-shell ionization ampli-

tudes in the RCHF and CVS approximations are still in
terms of (primitive) spin-orbital representations. The
construction of spin-free equations for ionic states of
proper spatial and spin symmetry is straightforward.
The resulting expression for the 1s-hole main state in the
1s photoionization of CO will be given in Sec. V. The
case of E-shell satellites will be discussed in a forthcom-
ing publication.

(40)

Here P is given by Eq. (36) and the "effective" overlaps
are defined:

&@,iy, &"=y &y, l((, &(s-')„, , (41a)

& q(
—

)~y &eff y & y( )~y &(S (41b)

A further understanding of the contributions to the
RCHF amplitude will be gained from the perturbation
point of view given in Sec. IV B.

In the case of a 2h- lp satellite (j ', c ', l '
) where c

denotes a core orbital, the general RCHF result [Eqs. (8),
(27), and (28)] simplifies considerably in the CVS approxi-
mation [Eq. (34)] and the final result for the amplitude

A,,& I, can be put into the compact form

+ & Q [( 1 P)d
/ qb & & q' —'

f (() &
' ]& 0 "f(Ih"

&

Single-particle scattering equations may be derived
from the variational expression '

& fikpN/p —E/ pNk& =0 (45)

~C
N —1

&
—g ~q)N&

may be written as

N
~'ph, ) &

= —(&),.&h. +u),))(thp) ~@o &

(46a)

(46b)

where the second-quantized notation introduced in Sec.
II A is used and a and P are the usual spin states. The
analogous RCHF state reads

where ~kp & is an N-electron final state expressed in terms
of target-state orbitals that are kept fixed and a continu-
um orbital 1(I, '& which is to be determined. Here the
variation ~5k' & arises from the variation of the continu-
um orbital ~5$), & only. In the FCHF model for the pho-
toionization of a closed-shell molecule the final state
(with S=O) corresponding to a single-hole ionic state

The direct amplitude above is given by

&,',), g=&y'p )Idly, &( &y, l(y) &"&4—ONI+0N&), (42)

where the factor

—(C)t(2C))(2+C)tghP) l~ () & (46c)

In either case the result of the variation of Eq. (45) takes
on the form'

t+ g (2J; —k;)n;+J„+ICh+E() —
sff E~k&+~h &&h~k&—(E() —2s), +J),ff

E)—
l

iAh

+Ih )(h 2+ X (2J; E; )n; k)+ )+ X (2J; E;)n; lh )(hl—k)=0, (42)—
l

iWh i&h
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where the notation l
i ) applies to the frozen orbitals l P; )

or the relaxed orbitals lP, ), respectively. In Eq. (47) t
represents the kinetic energy and the electron-nuclei at-
traction, J; and k,. denote Coulomb and exchange opera-
tors associated with the orbitals li). The energy ez of
the open-shell orbitals is given by

c.&
= h t+ 2J, —,n,. h (48)

which still applies if lb ) is not an eigenfunction of the in-
serted HF operator. Furthermore,

is the Coulomb self-energy of the orbital lb ) and

E~=(NlPlN) (50)

0=(Eo —E)(hlk& =(e„——,'k')(hlk), (52}

where the second equation follows by writing the total
energy E as

E =E~—~ + &k'. (53)

Obviously, Eq. (52) requires ( h l k ) =0 for positive ener-
gies —,'k and with this orthogonality constraint one ob-

tains the familiar improved virtual orbital (IVO} equa-
tion

t+ g (2J; —k;)n;+Jz+Ez —
—,'k lk) =0 . (54)

iWh

It should be noted that the orthogonality properties,

(klan ) =0, n,=1.
are not automatically fulfilled by the solution of Eq. (54)
but rather must be introduced as an additional con-
straint.

Turning to the case of the RCHF model we write the
continuum function as

represents the (first-order) energy of the frozen
(lN) = l4o ) ) or relaxed (lN ) = l4o ) } ¹lectron
ground state. In deriving Eq. (47) orthogonality was as-
sumed between the continuum orbital l k ) and the doubly
occupied orbitals lr ), n„= 1, rAh, but no such restric-
tion with respect to the open-shell orbital lh ) was im-

posed on lk).
To discuss the complications introduced by the possi-

ble lack of orthogonality between the orbitals lk) and

lb ) we project both sides of Eq. (47} on lb ), yielding the
equation

h t+ g (2J; —k;)n;+Jq k

iAh

+(Eo e~ ——E)(hlk) =0 . (51)

In the FCHF model, since lb ) is an eigenfunction of the
(ground-state) HF operator, this equation reduces to'

i&h
(56)

c ——'k
h

for the bound-free overlap ( h l k ) . In general, the
numerator on the right-hand side of Eq. (56) does not
vanish and one is faced with the situation that the varia-
tional principle explicitly requires a nonvanishing overlap
(hlk). Besides the much more complicated coupled
equations that may result from Eq. (47) for lk') and
( h

l
k ), it is by no means clear how a properly normalized

N-particle final state could be constructed in this case.
Fortunately, specialization to E-shell ionization allows

one to get rid of these complications to a very good ap-
proxirnation. If lb ) = lc ) is a K-shell orbital the absolute
value of the denominator in Eq. (56) is of the order of the
core-valence energy gap. The matrix elements appearing
in the numerator are small since they are of the mixed
core-valence type t,„and V,„„„-.Hence only a very small
error is introduced by setting ( h lk) =0, i.e., by adopting
the strict core-valence separation approximation dis-
cussed in Sec. II D. Thus in the RCHF model of J( -shell
photoionization we may safely adopt the IVO Eq. (54).

IV. ANALYSIS OF THE RCHF MODEL

A. Resonance positions through second order
of perturbation theory

In the FCHF description of shape-resonant E-shell
photoionization the potential does not include the effect
of screening of the ls hole by the reorganization (relaxa-
tion) of the valence electrons. The FCHF potential is
hence too attractive and the resulting resonance positions
are usually several eV below the experimental values. A
substantial shifting to higher energies has indeed been
found by Lynch and McKoy for the cr' shape reso-
nance in N2 by allowing for electronic relaxation through
the RCHF potential. While the shape of the resonance is
now in much better agreement with the experiment the
calculated resonance position lies a few eV above the ex-
perimental value. This discrepancy in resonance position
was tentatively attributed to an "overscreening" intro-
duced by the RCHF potential. To clarify this concept
and to get a better understanding of the frozen- and
relaxed-core approximations we compare the resonance
energies in the FCHF and RCHF models with the exact
result through second order of perturbation theory.

We specifically consider the energy E„ofa singlet core
excitation

l 4„,) obtained from the unperturbed singly
excited state

le„&= —(at a, +at~, &)lNo") .N
v'2

Here
l
v ) represents an unoccupied (valence) orbital, e.g. ,

~' or o *, and c a 1s orbital. The term value

lk&=1k'&+&+1k&l& &, (55)
(58)

where ( h lk') =0. Equation (51) can then be transformed
to the following equation:

i.e., the energy with respect to that of the 1s-hole state,

l

qglv
—1 ) l

(px )
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can be positive or negative. In the former case the term
value is related to a resonance position, while in the latter
it refers to the position of a bound state below the 1s-
ionization threshold. A11 perturbation expansions used in
the following are defined with respect to the ground-state
HF representation.

Let us begin with the FCHF model. Here the term
value R," is given by the eigenvalue c,", of the FCHF
Eq. (54):

f FCi FC) =EFCI FC)

The FCHF operator f" can be written as

f" =f —J,+2k, ,

where

fv=t+ g (2J; —I;)n;

(59)

(60)

(61)

is the ground-state HF operator. The form of the right-
hand side of Eq. (61) makes the perturbation expansions
for ~v" ) and s"„obvious:

~vcqc +2 ~vccq
~uFc&=~u&+ g ""' ""'n,~q&+O(2),

q v ~q

qWv

R" =c" =c —J +2K +2K
(62a)

f =t+ g (2J —k )n;+J,'+k,'

t

iWh

(63)

has the same form as the FCHF operator but —as indi-
cated by the primes —the Coulomb and exchange opera-
tors here are defined with respect to the relaxed orbitals
~g;) of a HF calculation for the ion. To derive the
desired perturbation expansions we decompose the
RCHF operator according to

fRC J +fRC

f? = —J,+2k, + g (2J —k,' —2J;+k, )n,

(64a)

lac

+J,'+K,' —J, —K, , (64b)

( Vucqc 2Vvccq } nq

q
Ev Cq

qWv

+O(2)+O(3) . (62b)

The direct part ( —J„,) of the first-order contribution to
the orbital energy accounts for the lowering of the elec-
trostatic repulsion upon removal of a 1s electron. The
second-order term for the energy (and the first-order term
for the wave function} refiects the adjustment (relaxation)
of the relevant orbital

~
u ) to the is vacancy. It should be

noted that the perturbation expansions (62) already in-
clude the effect of the orthogonality constraints
(v" ~r ) =0, n„= 1 of the FCHF model by restricting the
summations to unoccupied orbitals ~q ).

In the RCHF model too, the term value R„ is given
by the single particle energy c."„, . The RCHF operator

where one has to take into account that the perturbation
part f? itself has its perturbation expansion

fRC f RC(0)+f RC(1)+. . . (65)

The zeroth-order term is clearly identified as

f (0)= —J +2k (66)

niqq)+O(2) . (6g)
q

qAv

Here, in addition to the first-order FCHF form, admix-
tures of occupied orbitals ~q) occur. Note that in the
latter part the exchange terms have the factor y instead
of 2; this guarantees the orthogonality constraints
( v" ~g ) =0 for the occupied relaxed orbitals ~?j?, ) [Eq.
(67}] through first order. For the RCHF energy s"„ the
second-order expansion

(
—V„, , +y V„„)g RC RC FC(2)+ ~ "q

v v v 7lq

q v

+&vlf?" (1)~u)+O(3) (69a)

comprises the FCHF result s"„(2) [Eq. (62b)] and two ad-
ditional terms, the first of which is associated with the
occupied-orbital admixtures to ~u ). The other term
reads

(u~f?" ~v &= g &u~2J„' k,' 2J„+k,~u&n„— —

roc

r, q

roc

Vrcqc+ Y Vrccq } Vuruq vrqv }

&r ~q

Xn, n (69b)

where real-valued Coulomb integrals have been assumed
for simplicity. This term has the obvious physical mean-
ing of a screening energy for the orbital ~u ), since it ac-
counts for the change in the electrostatic respulsion be-
tween the orbital ~v ) and the occupied valence orbitals
upon relaxation of the latter. It should be noted that in
the core-valence separation approximation, which for
simplicity will also be adopted in the present perturbation

and the first-order term may be easily evaluated once the
ionic HF operator generating the relaxed orbitals has
been specified. Obviously this operator may deviate from
the IVO form of Eq. (54); it may even be the case that the
relaxed orbitals are calculated by a generalized HF pro-
cedure where the operator approach does not apply at all.
In any case, we may assume the following form for the
expansion of the relaxed orbitals through first order

l&, &=I)&+ g '"' '"' ~q&+O(2),
q

where y is a parameter, depending on the choice of the
ionic HF equations. Now the perturbation expansion of
the excited RCHF orbital

~

u" ) may be written as

~vcqc +2 ~vccqluRc)=lu&+ &
"" ""'n, lq&
&v ~qq

qAv
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studies, ig, ) =ic) and hence the part J,'+k,' —J,—k,
off I vanishes.

Now we may compare the FCHF and RCHF approxi-
mations with the exact term values R„ through second
order. The second-order expansion of the energy of the
excited state i%„,) has the following form:

S=2 g
q, » q

q&v

1
Vcrcq Vuruq Vcrcq Vvrqu

Vcrqc Vuruq + crqc Vvrqv ) r q

( Vcrcu + Vcruc }Vuruu r (75c)

E„,(2) =ED (1}+e, —e, —J„,+2K„,+ U,', '(p-h)

+ U„', '(2p-2h ) + U„', '( 3p-3h ) . (70}

1 22 X ( Vuruq vruq Vurqu + Vurqu } r q
Eq E„

qXv

Here Eo (1)=(40i8i@0 ) is the ground-state HF ener-
gy. The three terms U„', '(p-h), U„', '(2p-2h), and U„', '(3p-
3h ) represent the second-order contributions arising from
the interaction of i4,„) with (other) p-h states, 2p-2h
states, and 3p-3h states, respectively. Similarly, we find
for the energy of the ionic state the expansion

E '(2)=E (1)—e, +U' '(2h-lp)

+ U'~'(3h -2p), (71)

where U,' '(2h-lp} and U,' '(3h-2p) arise from the interac-
tion of the single-hole state with 2h-lp and 3h-2p states,
respectively. Combining the expansions (70) and (71)
yields for the term value

Rv(2) =e„—Jvc+2Kvc+ Uv'P(p-h)+ U,', '(2p-2h)

—U,' '(2h-lp)+ U„', '(3p-3h) —U,' '(3h-2p) .

(72)

The second-order contributions appearing here have been
specified elsewhere ' in the case of primitive (spin-
orbital) excitations. Here we have to consider the some-
what more complicated spin-free expressions appropriate
for a singlet excitation (57) and a doublet ionic state.
Again using the core-valence approximation we find

(V„, , —2V„„)
q v

qWv

This result is readily identified as the second-order contri-
bution of the FCHF energy (62b). The contribution

(73)

U,' '(2h-lp)
22 V&»&q +2 V&&q& 2 V&»&q V

nq n„(74)
», q &q &»

U,'„(2p-2h) =Q+S+P, (75a)

2 2X crcq Vcrcq Vcrqc + Vcrqc } r q
q, » q r

qWv

(V„,„+V, , ) n„,1

~v ~»
(75b)

represents the second-order relaxation energy of the ionic
state. For discussion of the 2p-2h contribution U,'„'(2p-
2h) it is useful to split it into a part U„', (2p-2h) arising
from excitations of the form (q)'(U)'(c) '(r) ' and a
remainder U,'„'(2p-2h). The former part, being the essen-
tial one, can be brought into the following form:

1 V„„n„.
Ev 6»

(75d)

Each of these parts has a distinct physical meaning. The
first part Q is identical with the 1s relaxation energy (74),
except for the term in which q =u. With respect to the
term value this means that the 1s relaxation energy large-
ly cancels out, the remainder being

U(p)( 2h 1 )
crcu cfcv crvc crucV —4V V +V-p= n„. (76)

Up to terms with exchange integrals, this part is retrieved
in the RCHF energy E„,namely, in the second term on
the right-hand side of Eq. (69a). The next part S in Eq.
(75} obviously recovers the screening energy (69b) intro-
duced by the RCHF approximation. It should, however,
be noted that there remain discrepancies with respect to
exchange contributions irrespective of the choice of y
[Eq. (67}] adopted for the relaxed orbitals. Neither the
FCHF nor the RCHF approximation includes the third
part P accounting for the polarization of the ionic core by
the bound or free electron in the orbital v. The energy as-
sociated with the polarization is clearly negative, shifting
the term value or the resonance position to lower energy.

The remaining second-order contributions are the
remainder of the 2p-2h part (8 denotes the exchange en-
ergy)

U,'„'(2p-2h) =— 2V~q, , +6'

, q q
q+&q' &» &v

q (q'(4v)

(77)

and the difference

i(3h-2p) —U~ ~(3h 2p)

2V, „„.+8
n n„n„(78)

r, »' ~v +q ~» »'
»(»'

mainly reflecting the difference of correlation energies in
the excited and the ionic states. Both contributions are
absent in the single-particle approximations but are ex-
pected to be only of minor importance.

We can summarize our results as follows. Of all
second-order contributions the FCHF energy includes
only the Tamm-Dancoff (TDA) term [U„'~'(p-h)] arising
from the mixing with other single excitations. The
FCHF result (in second order) differs from the RCHF en-
ergy by the screening energy (69b) and the occupied or-
bital analogous to U„', '(p-h), that is,



292 J. SCHIRMER, M. BRAUNSTEIN, AND V.McKOY 41

B. Transition amplitudes

In the preceding section, Sec. IV A, we adopted pertur-
bation theory to analyze resonance positions or term
values in E-shell photoexcitation. %'e now look at the
corresponding transition amplitudes in light of perturba-
tion theory. Again, we consider the singlet EC-shell hole
state I%„,) resulting from the zeroth-order state I4„,) of
Eq. (57), where Iu & represents an unoccupied valence or
continuum orbital. The expansion of the transition am-
plitude A, „=&V„,IBI%'u ) [see Eq. (3)] through first or-
der is

A, ,(1)=~2&uId Ic )+ &O'„,"IBIe"&

+ &e"„,IB Ie,"'&, (79)

where I%'„,") and I'Pu ') represent the first-order excited
and ground states, respectively. The first-order contribu-
tion,

&e'.,"IBI+.) =&2 y
~ucqc +2 ~uccq

Eq

(80}

arises from the admixture of other single excitations
I4, ) (adopting here again the CVS approximation).
This part of the first-order amplitude is properly account-
ed for by the Tamm-Dancoff approximation to electronic
excitation. The other first-order contribution in Eq.
(79), associated with ground-state correlation, or more
precisely, with the admixture of double excitations to the
HF ground state, is included in the random-phase ap-
proximation (RPA) which provides a consistent first-
order description of the single-excitation transition am-
plitudes; for a more detailed discussion see, e.g. , Ref. 33.
In the present context it is important to realize that for
E-shell excitations in the CVS approximation the RPA
reduces to the TDA and the ground-state correlation
contribution & 4„,IB I%'o" ) in Eq. (79) vanishes.

We can now compare the full first-order result (in the
CVS approximation) with the RCHF amplitude A,",
[Eqs. (35) or (40)]. To first order and in spin-free notation
we find

2
( ~ucqc 'Y Vvccq ) nq

&U ~q

Both contributions are positive, explaining the higher
RCHF energies. In the exact second-order result they
are retrieved (up to exchange terms) as the energy S [Eq.
(75b)] and the difference Q

—U,' '(2h-lp) [Eq. (76)] of
excited- and ionic-state relaxation energies. The major
deficiency of the RCHF model appears to be the neglect
of the polarization energy (75d) leading to too high term
values or resonance positions.

arising from the occupied orbitals in the first-order term
of Iu ) [Eq. (70)], i.e.,

q

q&V

UCqC UCCq

E,
q)

V

(82)

and the final result is seen to be identical with the full
(first-order) amplitude. Thus we have arrived at the im-
portant conclusions that the RCHF description of single
photoexcitation amplitudes in the E-shell regime is com-
plete (up to terms vanishing in the CVS approximation}
through first order of perturbation theory, and is thus
comparable to the level of the RPA treatment. Interest-
ingly, the FCHF amplitudes A,", are also consistent
through first order, since, due to the orthogonality con-
straints &u" Ir) =0, n„=l, the first-order term of Iv" )
[Eq. (62a)] contains only unoccupied orbitals Iq ).

V. CALCULATIONS

~ 1

& k
0'kl '(r ) I'i' (k } .

I, m

(r)=( —) (83)

Each partial wave gk, (r ) satisfies the Lippmann-
Schwinger equation

kkl (r } 4'klm +G V + Pklm (84)

The bound electronic wave functions required in the
present applications were obtained from Hartree-Fock
calculations for the 'X+ ground state of CO
(1cr 2o' 30' 4o' lqr 5cr ) and for the C ls and 0 ls hole
states of CO+. The SCF basis used in these calculations
consisted of the 7s/4p/2d contraction of 13s/8p/2d
Cartesian Gaussians. The exponents and contraction
coefficients (No. 6.72.2 for C and No. 8.76.2 for 0) were
taken from Huzinaga. The exponents for the d func-
tions were 0.92 and 0.256 for C, and 1.324 and 0.445 for
0. The calculations were done at the equilibrium nuclear
geometry of 2.132 a.u. For the ground state of the neu-
tral molecule an SCF energy of —112.7844 a.u. was ob-
tained; the energies for the C 1s and 0 1s hole states were
—101.8625 and —92.8818 a.u. , respectively. The overlap
integrals S; [Eq. (20)] and dipole integrals d;J [Eq. (23)]
between the frozen (ground-state HF) and the relaxed
(ionic HF) orbitals were calculated using the single-center
expansion techniques described below. The results are
listed in Tables I and II.

The methods for obtaining the photoelectron continu-
um wave functions and bound-continuum integrals have
been used in many previous applications and are amply
described in Refs. 15 and 37. In brief, the continuum
function is written as the partial-wave expansion

1/2

A, , (1)=v'2 &vIdIc)+ &v"'IdIc)

—g & v'"Ir & & rId"Ic )n„ (81)

Obviously, the conjugate part cancels all contributions

Here 6,' ' is the Coulomb Green's function with
incoming-wave boundary conditions and U is the static-
exchange potential for the molecular ion [see Eq. (54)]
taken either in the frozen core (v=v" ) or the relaxed
core ( v = v

"
) representation. Orthogonalization be-
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TABLE I. Overlap integrals S;; [Eq. (20)]. These overlaps contain an arbitrary phase due to the sign of the wave function.

3o'

lo
20'

3v
4o
5o
lm.

0.999
—0.877 x 10-'
—0.393X 10

0.569 x 10-'
—0.149x 10-'

—0.905 x 10-'
—0.998
—0.498 x 10
—0.431 X 10
—0.341x 10-'

C 1s{2o)'
—0.177x 10-'

0.622 x 10-'
—0.994

0.906 X 10
—0.196x 10-'

—0.381 X 10
0.688 x 10-'
0.887 x 10

0.988
—0.799 X 10

0.107x 10-'
—0.700x 10-'
—0.142x 10-'

0.747 x 10-'
0.976

0.986

1o
20'
3o'

4o
5'
1m

0.999
—0.693 x10-'

0.561x 10-'
—0.232 x 10

—2

—0.656 x 10-'

—0.696x 10-'
—0.999

0.229 x 10-'
0.225 X 10
0.137x 10-'

0 1s(10')
0.749 x 10-'
0.150 x 10-'

—0.995
0.732 x 10-'

—0.521 x 10-'

0.372 x 10-'
0.242 X 10
0.125 x 10-'

0.981
0. 147

0.866 x 10-'
0.107x 10-'

—0.480x 10-'
—0. 142

0.981
—0.972

'The frozen orbitals are from the neutral ground state. The relaxed orbitals are from the ion state, 2o ', i.e., the C 1s ' state of
Co+.
The same as footnote a except the relaxed orbitals are from the ion state 1o ', i.e., the 0 1s ' state of CO+.

tween the continuum and the occupied orbitals is taken
into account by means of the Philips-Kleinman pseudo-
potential as described in Ref. 15. The solution of the
Lippmann-Schwinger equations (84) is based on the
Schwinger variational method. By assuming a separable
approximation to the potential, X & a, ~

P
~
y'„, (87)

the solutions of the integral equations (84) can be written
as

f'= v+ —,1

T

of the form

(86)

Here V and D denote matrices with matrix elements

v„= & a, ~

f'~ a, &

and

(88)

(89)

TABLE II. Dipole integrals d;, [Eq. (23)] between frozen and relaxed orbitals in a.u. For the o ~cr, n~a transition d=z; for
a ~m, d =(x —iy)/&2; and for m~a, d = —(x +iy)/&2.

3o'

1o.
2o'
3o'

4a
5o.
1n.

0 913'
—0.114x 10-'

0.202 x 10-'
0.440x 10-'

—0.268 X 10
0.489 x 10-'

0.437 x10-'
1.216

0.499 x 10-'
0.176x10-'
0.697 x10-'

—0.581 X 10

C 1s(2o )
—0.181 x 10-'

0.370x 10-'
—0.257

0.705
—0.103x 10-'

0.625

0.472 x 10-'
—0.204x 10-'

—0.595
0.879

—0.885
0.160X 10

—0.234 X 10
0.853 X 10
—0.107
—0.905
—l.551
—0.329

—0.511x10-'
—0.494x 10-'

0.604
—0.126

0.297
0.283

1a
2o
3a'
4o.
5a.
le.

0.912
—0.506 x 10-'

0.260 x 10-'
0.571x 10-'

—0.205 x 10-'
—0.668 x 10-'

—0.100 x 10-'
1.216
0.358 x 10-'
0.243 x 10-'

—0.549 x 10-'
0.283 x 10-'

O 1s(1o.)
—0.144 X 10

0.369x 10-'
—0.355

0.621
0. 168

—0.600

—0.595 x 10-'
—0.188 X 10

—0.617
1.002

—0.735
—0. 143

—0.328 X 10
0.563 x10-'

—0.243 x 10-'
—0.588
—1.742

0.183

—0.605 x 10-'
—0.389x10-'

0.592
—0.108

0.327
—0.532

'Note that diagonal elements depend on the origin of coordinates and are not included in the calculation of the transition amplitude
due to the CVS approximation discussed in Sec. II D.
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The set of functions
~ a; ) referred to as the scattering

basis set consists of suitably chosen discrete functions
such as Cartesian Gaussian functions. The scattering
basis set used in the present calculations is specified in
Table III.

All matrix elements and functions arising in the com-
putation of the partial wave f'k&

' according to Eqs.
(87)—(89) are evaluated using single-center expansions
about the center of gravity. The details of these expan-
sions are as follows.

(i) Maximum angular momentum in the expansion of
the occupied orbitals in the direct potential is 29.

(ii) Maximum angular momentum in the expansion of
the occupied orbitals in the exchange potential is 25 (lcr ),

l

25 (2cr ), 15 (3cr ), 15 (4cr ), 10 (5cr ), and 10 (lm ).
(iii) Maximum angular momentum in the expansion of

1/r&z in the direct and exchange terms is 58 and 29, re-

spectively.
(iv) All other single-center expansions were truncated

at 1=29.
The partial-wave expansion of the continuum orbital,

Eq. (83), was truncated at lz =8. The resulting radial in-

tegrals were obtained using a Simpson-rule quadrature.
The grid contained 500 points and extended to 69.0 a.u.
with a step size of 0.01 a.u. near the nuclei and a max-

imum step size of 0.40 a.u.
Following Eq. (35}we introduce the spin-free transition

amplitudes It „for the partial waves pkI

1
Imp ( ~ 1sa, klmP+ ~ 1sP, klma }(p) (p) (90a)

= vZ &e(~)le," & &y';, 'lv„ly„& —y &y', , 'ly, &(S '}„,, &g, lt„lou &

'
. (90b)

(I) (II)
limp ~imp +rim@ (92)

according to Eq. (90b), is obvious. The dipole integrals

(fk, (r„~p„) and overlaps (gkt ~p„) were calculated
with the single-center expansion technique specified
above. The total photoionization cross section for the
1s-hole main state averaged over all molecular orienta-
tions is obtained from the partial amplitudes (90b) by

4m'cr= cok g /II „/ (93)
I, m, p

The corresponding asymmetry parameter P of the photo-
electron angular distribution (with respect to the polar-

TABLE III. Scattering basis sets used in Eq. (87).

Continuum
symmetry

Type of gaussian
function'

Cartesian s
Cartesian z
Cartesian p
Cartesian d„,

Exponents

10.0,4.0,1.5,0.5,0.1

2.0,1.0,0.5,0.1

10.0,4.0,1.5,0.5,0.1

1.0,0.1

'Cartesian functions are centered on each nucleus. For details
of the forms of these functions and their use see Ref. 15.

Here, the dipole operator components

+ (x+Py ) l&2 for p =+1,
(91)

z for p, =0

are used and ~P„) refers to the core orbital C Is (2cr ) or
0 ls( lo ). In Eq. (90b} only spin-free (spatial} quantities
are retained, and, in particular, S represents the matrix of
spatial relaxed-frozen overlap integrals (g„~P„). The N-

electron overlap (4o ~4o ) is given by the square of
det(S). The decomposition of the full amplitude It „
into the direct I'" and conjugate contribution I'"',

I

ization of the light) is given by

P= k g ( —1) "I( qI(' „[(2l+I)4

l, m, p

X (2l'+ 1)]' ( 1100~20)(/l'0~20)

X ( 11 pp'~ 2p" ) (—ll' —m —m
'

~
2 —p" ) .

(94)

Here (l, m, l2mz~lm ) is the Clebsch-Gordan coefficient

(l, m, l2m2~1, !2lm) in the notation of Edmonds.

VI. RKSUI TS AND DISCUSSION

A. C (1s) ionization

Figure 1 shows the shape-resonant C ls photoioniza-
tion cross section in CO calculated both in the FCHF and
the RCHF approximations, together with experimental
results by Kay et al. and by Truesdale et al. As for
Nz, the two results are significantly different. Without
valence-electron relaxation one finds a relatively narrow
and intense peak about 5 eV above the C 1s ionization
threshold (296.2 eV). The relaxed description (RCHF),
on the other hand, results in a substantial lowering,
broadening, and shifting of the o' resonance centered at
11.2 eV above threshold. This difference is clearly an
effect of the screening of the 1s hole by the relaxed
valence electrons leading to a much less attractive poten-
tial than the "unscreened" potential of the FCHF model.
The experimental resonance position, somewhat obscured
by autoionization structures, appears to be between 8 and
9 eV, that is 2 —3 eV below our RCHF result. According
to the discussion in Sec. IV A the overshooting of the cal-
culated resonance position seems to be primarily induced
by the neglect of target polarization in the present ap-
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channels we see a significant enhancement of the cross
section upon inclusion of the conjugate contribution.
The modification due to the bound-free overlap terms is
largest at low photoelectron energy and becomes small
towards larger energies, as expected. At the resonance
position in the ko. channel the enhancement of the direct
part amounts to 0.16 Mb, that is, almost 30% of the
direct value. In the k~ channel the largest difference be-
tween the direct and full cross section is found at thresh-
old, being here about 30%.

A more detailed view of the bound-free overlaps is
given in Fig, 4. Here we have plotted the quantities

(95)

as a function of energy for the occupied (frozen) valence
orbitals r =3o, 4o. , 5', and 1m. Note that these quanti-
ties are dimensionless and when multiplied by the square
of the appropriate bound-bound transition matrix ele-
ment, correspond to a "conjugate transition cross sec-
tion. " It is also important to note that each l component
of the conjugate amplitude may interfere with the direct
part of the amplitude [see Fig. 90(b)]. In addition, in CO
there may be additional interference in the sum over or-
bital contributions, (r, r'), in the conjugate amplitude.

In the km. channel the squared overlap S,„(k}assumes
a value of ~ 2.75 at threshold and decreases rapidly with
increasing photoelectron energy. In the ko curves this
type of behavior is superimposed on a resonance enhance-
ment, leading to local maxima (and minima) in the 3o
and 4' overlap curves and a distinct shoulder in the 50.
curve. The value at threshold is largest for the outermost
valence orbital 5o [S, (0) ~ 3.5]; distinctly lower values,
namely, S4 (0)=0.6 and S3 (0)=0.1, respectively, are
found for the inner-valence orbitals.

The squared overlap S„(k) for the core orbitals 0 ls
(10 ) and C ls (20 ) are smaller than 10 and 0.03, re-
spectively. In the strict core-valence separation approxi-

mation the frozen- and relaxed-core orbitals are identical
and orthogonal to the (relaxed) continuum orbital. How-
ever, since this approximation has not been enforced in
the calculation of the relaxed orbitals the frozen 1s
relaxed-continuum overlap integrals are not identically
zero. These deviations give an estimate of the error in-
troduced by the core-valence separation approximation.

Figure 5 shows the photoelectron asymmetry parame-
ter P calculated in the frozen- and relaxed-core models.
The shifting and broadening of the shape resonance by
the screening of the C 1s hole are apparent in these re-
sults. Both the frozen and the relaxed P curves have a
distinct minimum in the energy regions of the respective
frozen and relaxed resonance positions, as seen in the
cross sections. Beside the shift in the position, the re-
laxed curve assumes a somewhat high P value at the
minimum and is Hatter than the frozen one. The experi-
mental data of Truesdale et al. seem to be in better
agreement with the relaxed curve, in particular, if shifted
by 2 —3 eV to lower energy in order to agree with the ex-
perimental resonance position.

Figure 5 also displays the direct part of the relaxed P
curve obtained by neglecting the conjugate contributions
in amplitude (90b}. The direct curve differs only little
from the solid curve; in particular, above the minimum
they are almost identical. This shows that the P parame-
ter is little affected by the conjugate contributions.

The 1s photoelectron asymmetry parameters for CO
have been calculated previously by Dill et al. and by
Grimm using the multiple-scattering model (MSM}.
These calculations were based on the transition state
self-consistent-field (SCF) treatment in which one-half of
an electron was removed from the K-shell. Correspond-
ingly, only half of the 1s-hole screening was accounted
for by the scattering potential. The results of such a

2.0—

1.5—

1.0—

0.0—

—0.5—

0
295 315 335 355 375

Photon Energy (eV)
395

FIG. 4. Frozen bound-relaxed continuum orbital overlaps, S,
of Eq. (95). , r =3cr; ~, r =4o; ~, r =5@;
r = 1vr. See Sec. VI for more details.

—1.0
295 300 305 310 315 320 325

Photon Energy (eV)
FIG. 5. Photoelectron asymmetry parameters for photoion-

ization leading to the 2o ' (C 1s ') state of CO+.
present results (length) in the FCHF approximation; ———,
present results (length) in the RCHF approximation;
present results (length) only using the direct part of the transi-
tion amplitude; A, experimental results of Ref. 6.
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"half-relaxed" method lie, of course, somewhere between
those of the frozen- and the fully relaxed-core approxima-
tions. In spite of the usually better agreement with ex-
periment there is little physical justification for this pro-
cedure, since the shortcoming of the RCHF model is not
"overscreening" but neglect of target polarization.

B. 0 (1s) ionization

The 0 1s photoionization cross sections calculated
both in the frozen- and relaxed-core approximations are
shown in Fig. 6, along with experimental results of
Barrus et al. " (photoabsorption) and Truesdale et al.
and previous theoretical results of Padial et al. ' ob-
tained using the FCHF model and STMT methods. As in
the C 1s cross section, the shape resonance is drastically
shifted and broadened in the relaxed potential compared
to the frozen-care potential. However, here the
differences between the frozen and relaxed calculations
are more dramatic. The shift of the resonance position
induced by the screening of the 0 1s hole in the RCHF
model is about 10.5 eV, which is over 4 eV larger than in
the C 1s cross section; concommitantly the relaxed 0 1s
resonance peak is even flatter and more extended than its
C 1s counterpart. The difference in the screening effect
for the C 1s and the 0 1s hole is, of course, a consequence
of the larger electronic reorganization (relaxation) in the
presence of a 1-shell hole at the atom with -higher nu-
clear charge. The relaxation shifts for the C 1s and 0 1s
ionization energies of about 13 and 21 eV, respectively,
may serve as a measure of this difference.

As in the C 1s case, the experimental shape resonance
result lies between the frozen and relaxed theoretical
curves. Again, we expect that inclusion of polarization in
the RCHF potential would lead to better agreement with
experiment. However, here the experimental resonance

2.0—

position (about 7.5 eV above threshold) differs by 5.5 eV
from the result of the relaxed-core calculation, and this
discrepancy appears somewhat too large to be accounted
for only by polarization. The overall spectroscopic factor
~x& ~

contained in the relaxed-core result (but absent in
the frozen-core result) was calculated to be 0.74, a value
larger than the previous ab initio result of 0.61. The 0
1s cross section calculated by Padial et al. ' in the FCHF
approximation using the STMT method is again at vari-
ance with our frozen-core result even at high photon en-
ergy.

The decomposition of the relaxed-core 0 1s cross sec-
tion into the ko and km subchannels is shown in Fig. 7.
Also plotted here are the direct parts of the respective
cross sections, thus making apparent the role of the con-
jugate contributions. As in the C 1s ionization they re-
sult in a substantial enhancement of the cross section in
both channels. Remarkably, the direct km cross section
increases even at 100 eV above threshold, and the
enhancement by the conjugate contribution is still of the
order of 10%.

The frozen and relaxed photoelectron asymmetry pa-
rameters for 0 1s ionization are plotted in Fig. 8. For
both curves the P values at low energies are higher than
for C 1s ionization. As in the cross sections, the
differences between FCHF and RCHF P's are qualitative-
ly the same as in C (ls) photoionization. The relaxed P
curve exhibits a pronounced maximum near threshold.
The synchrotron data by Truesdale et al. are somewhat
scarce and scattered, making the comparison between
theory and experiment inconclusive.

VII. SUMMARY AND CONCLUSIONS

The relaxed-core Hartree-Fock model used here to
study molecular E-shell photoionization cross sections
and angular distributions contains the following approxi-
mations.

(i) The ¹lectron initial state is given by its HF repre-
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FIG. 6. Photoionization cross sections leading to the lo
(0 1s ') state of CO+. , present results (length) in the
FCHF approximation; ———,present results (length) in the
RCHF approximation; ——,calculated FCHF results of Ref. 18
using the STMT method; o, experimental results (photoabsorp-
tion) of Ref. 11;0, experimental results of Ref. 6.
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FIG. 7. Same as Fig. 3 except for photoionization leading to

the 1' ' (0 1s ') state of CO+.
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sentation, that is, as a Slater determinant of "frozen" or-
bitals.

(ii) The relaxed orbitals generated by a HF calculation
for the 1s-hole state are used to represent the ion and the
potential for the electron-ion scattering. The photoelec-
tron continuum orbitals are constrained to be orthogonal
to the occupied relaxed orbitals.

(iii) The ¹lectron final state is—apart from spin (and
spatial symmetry) coupling —represented by an anti-
symmetrized product of the ionic state and the continu-
um orbital.

2.0—

1.5—
0

0 o
~o 0

oo
o

In addition, we have introduced the core-valence separa-
tion approximation, which is justified in the case of K-
shell ionization due to the large energy separation be-
tween the 1s and valence levels and to the small coupling
matrix elements for states with difering K-shell occupa-
tions. In the CVS approximation the N-electron initial
and final states are strictly orthogonal and thus one gets
rid of unphysical contributions to the RCHF N-electron
transition moment. Furthermore, in the CVS approxima-
tion the familiar IVO form of the static-exchange poten-
tial is consistent with the general variational principle
used to derive the RCHF potential.

Compared to the more widely used frozen-core
Hartree-Fock calculations, the essential computational
complication of the RCHF model arises from the
nonorthogonality of the frozen and relaxed orbitals in the
initial and final states, respectively. The method pro-
posed here to evaluate ¹lectron matrix elements for
determinants with mutually nonorthogonal orbitals has
proven to be particularly practical and transparent in the
case of the RCHF transition moment. Besides the com-
putational aspect, the new formulation also leads to a
conceptual clarification, since it allows one to make a dis-
tinction between the direct and the conjugate parts of the
transition moment. The latter part arises due to the lack
of orthogonality between the (relaxed) continuum orbital

and the frozen occupied orbitals, which is reflected in the
bound-free overlap integrals introduced here. The direct
part, on the other hand, is characterized by the oc-
currence of the usual bound-free dipole (transition) in-

tegrals, and prevails, of course, also in the case of ortho-
gonality between bound and continuum orbitals. The
effect of the conjugate part can be viewed as a
modification of the bound-free dipole integral, essentially
projecting out the occupied frozen orbital contributions
in the continuum orbital. An explicit study of the rela-
tive importance of these contributions was made for the
case of C 1s ionization. Here the conjugate contributions
were seen to enhance quite substantially the "direct"
cross section at low photoelectron energy. Towards
higher energy their influence becomes small, as the
bound-free overlap integrals tend to vanish rapidly.

To better understand the potential and the limitation
of the RCHF approximation we have analyzed its results
by means of perturbation theory. With respect to ener-
gies, i.e., resonance positions or term values (below the ls
threshold) the RCHF description is complete through
first order but only partially recovers the correct second-
order contributions. As expected, the RCHF comprises,
apart from exchange terms, contributions associated with
ionic relaxation. In particular, the screening of the 1s
hole by the reorganization of the valence electrons is
correctly described in second order. It is this efFect that
leads to considerably larger resonance energies than cal-
culated using the unscreened ls-hole potential of the
FCHF model. The analysis in second order reveals also
the main deficiency of the RCHF approximation: the
neglect of target polarization, i.e., effects associated with
the response of the ion to the presence of the photoelec-
tron. The polarization correction makes the ion-electron
potential more attractive and leads to a lowering of reso-
nance positions. The discrepancies found between the
RCHF results and experimental results have to be at-
tributed mainly to this source. The analysis by perturba-
tion theory has also been applied to the S-electron transi-
tion moment. Apart from contributions vanishing in the
CVS approximation, here a consistent first-order treat-
ment is achieved at the RCHF level.

The picture emerging from this study shows that,
recognizing its limitations, the RCHF approximation es-
tablishes a good approach to the theoretical description
of K-shell ionization, and is, indeed, superior to the
FCHF model which ignores the important relaxation
effects. A very eScient computational scheme, combin-
ing our methods for solving the single-particle scattering
equations with the new formulation of the transition mo-
ment, is now available for further such studies.

0.0 1
J I [ ~ J I 1 ~

1

540 560 580 600 620 640
Photon Energy (eV)

FIG. 8. Photoelectron asymmetry parameters for photoion-
ization leading to the 1o ' (0 1s ') state of CO+.
present results (length) in the FCHF approximation; ———
present results (length) in the RCHF approximation; 0, experi-
mental results of Ref. 6.
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l~o & =d«( v)lc 0 &

hold, where

(A7b)

APPENDIX: OVERLAP AND TRANSITION
MATRIX ELEMENTS FOR FROZEN

AND RELAXED STATES

In the following we consider two distinct sets t lg; ) I

and t Ig; ) I of orbitals, e.g., the sets of frozen and relaxed
HF orbitals discussed in Sec. II. The associated opera-
tors in second-quantized notation are denoted by a; and

c;, respectively. The Slater determinants of the first N or-
bitals,

(A 1)
I@'p &=IOI (A2)

within each set are referred to as the frozen and relaxed
ground states, respectively. Further definitions needed
are the relaxed-frozen overlap matrix S,

S; =&/;lg ), i j (N (A3)

and the matrix d of dipole integrals

where p=(lp, &, . . . , I&N &) and @=(i&i&, . . . , IPN &)

denote rows of the first N frozen and relaxed orbitals, re-
spectively. The biorthogonalization procedure for the
two sets P and f of mutually nonorthogonal functions
consists of determining the unitary transformations

f=Q U, (A5a)

P=f V (Asb)

within each of these sets, fulfilling the condition that the
overlap matrix for the transformed orbitals be diagonal
(&):

(P,P)=V (f,P)U=V S U=b, . (A6)

As in (Al) and (A2) one may define Slater determinants
i4'0 ) and I@0 ) for the sets of biorthogonalized orbitals
P and P. Since U and V are unitary matrices the rela-
tions

l~ DN& =det(U)1~0 &, (A7a)
I

d,, =&y, Idly, &, i,j&N. (A4)

Both matrices are N XN matrices defined for the sets of
occupied orbitals 1, . . . , N. In a more compact (matrix)
notation we may write

S=(P,P),
d=(f, dP),

Idet( U) I

= Idet( V) I
=1 .

Using these relations and Eq. (A6) one readily arrives at
the well-known result

) =det(S) (A8)

for the relaxed-frozen ground-state overlap, which, of
course, can also be obtained directly. Next we consider
the (N —1)-electron overlap integral of the relaxed and
frozen single-hole states cq I@0 ) and az I@0 ), respective-
ly. Using the biorthogonalized orbitals we may write

N

ap= g U, N, ,
s=1

N

cq= P Vq„c„.
r=1

(A10a)

(A lob)

Now the matrix element on the right-hand side of Eq.
(A9) is readily evaluated, yielding

&4,"IC, &

& i,"lv'„n, le,"&=s.
Inserting this result in Eq. (A9) we obtain

&c,"lc,'u, la, ) = y v,'„U,„(&y„ly„&)-'&4,"I+,"& .
r

(A 1 1)

(A12)
Comparison of the expression on the right-hand side with
the relation

S-'= U a-'v' (A13)

which follows from Eq. (A6), leads to the final result

&(yNI t ICN) (S—1) &(PNIgN)

The important feature of this result is that all "biorthogo-
nalized" quantities have dropped out and the final expres-
sion requires only the simple overlap matrix S. Proceed-
ing in the same way we may evaluate the transition mo-
ment for the single-hole states:

(A14)

= g V,'„U, &@olv'„a, l@0 &det(U V') ' . (A9)
r, s

Here the operators c, and 8', are defined with respect to
the biorthogonalized orbitals with transformation rela-
tions reading

&~ Olcqt&a, lcoN&= y vq', &„&@0NI~',Bn, lc 0N&det(U v') '

&@NICN)

r%$

& @NI@N)

=[—(S 'd S ') +(S ')~qTr(d S ')]&40 l@0 ) . (A15)
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Here d is the matrix of relaxed-frozen dipole integrals defined by Eq. (A4). For the following quantities we give only the
results.

(i) Overlap relaxed single excitation-frozen ground state

N

&C,"~c,'c, ~e, &= y &1(, ~y„&(S-')„,&e,"~e, & .

(ii) Transition moment relaxed single excitation-frozen ground state

y &q, )d(y„&(S-')„,+y&q, )y„&(—S-'d S-'+Tr(d S ')S '}„,'&e, )eo & .

(iii) Overlap relaxed 2h-1p satellite-frozen single-hole state & 4 o ~ct ct, c a„~4o & [see Eq. (27)].
(iv} Transition moment relaxed 2h-1p satellite-frozen single-hole state & 4 o ~ci ct, c Da„~&o & [see Eq. (28)].

(A17)
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