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Time-dependent spectrum of a strongly driven two-level atom in the squeezed vacuum
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The time-dependent fluorescence spectrum from a strongly driven two-level atom damped by a
broadband-squeezed vacuum is obtained analytically using the counting-rate definition of Eberly
and Wodkiewicz [J. Opt. Soc. Am. 67, 1252 (1977)] and employing the high-field approximation.
The spectrum shows considerable modifications compared to the corresponding time-dependent
spectrum in a normal vacuum. It is now dependent on the relative phase between the squeezed vac-
uum field and the coherent driving field. In particular, the time development of the central peak of
the Mollow triplet (which is known to show a phase-dependent linewidth in the steady state) is dis-
cussed. The effects of detuning on the spectrum are also presented.

I. INTRODUCTION

The time-dependent physical spectrum of resonance
fluorescence has been studied recently, for both two-level'
and three-level>”* atoms. Such studies not only reveal
the idea of time dependence in a spectral measurement
but also take into account the existence of physical mea-
surement devices such as the Fabry-Pérot interferometer,
and thus give deeper insight into the understanding of the
fluorescence process itself.’ Eberly, Kunasz, and Wod-
kiewicz' have studied the time-dependent spectrum in
considerable detail for a strongly driven two-level atom
and observed changes in the spectrum with time and
found that the total spectral intensity oscillates according
to the Rabi flopping frequency. The calculated transient
spectrum is symmetric and has a three-peaked structure
for a resonant field but is quite asymmetric under off-
resonance conditions before reaching the steady-state
values. The effect of laser noise! in the time-dependent
spectrum is also accounted for. More recently, the time
dependence of resonance fluorescence from a two-level
atom has been studied both experimentally® and theoreti-
cally’"'7 by various groups. Some of these stud-
ies” 1%~ 17 include also the effect of the slowly varying
pulse shape of the irradiating laser field on the time-
dependent spectrum.

The recent successful generation of squeezed light
has opened new avenues in the studies of atom-field in-
teractions. A broadband squeezed light can modify the
spectroscopic properties of an atom. Gardiner?! has con-
sidered the interaction of a two-level atom with a
broadband-squeezed vacuum and shown that the atomic
dipole decay is phase dependent. That is, one quadrature
of the atomic polarization decays with an enhanced rate
and the other with a reduced rate compared with the nor-
mal atomic decay. Carmichael, Lane, and Walls?? have
considered the interaction of a coherently driven two-
level atom with a broadband-squeezed vacuum and have
obtained the steady-state spectrum of the fluorescent ra-
diation which shows very interesting features as com-
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pared with the Mollow spectrum in the normal vacuum.
It is now dependent on the relative phase between the
driving field and the squeezed vacuum. If squeezing is
large, coherent scattering is negligible at low driving
fields, whereas it dominates in normal resonance fluores-
cence; the incoherent scattering is composed of com-
ponents one of which is much broader and the other nar-
rower than the natural linewidth. At very high driving
field intensities, the fluorescence spectrum is a phase-
sensitive triplet. In particular, it is possible to change a
spectrum with a broad central peak into one with a sub-
natural linewidth by changing the relative phase between
the squeezed vacuum and the driving field by 7.22 The
possibility of obtaining a subnatural linewidth in the ab-
sorption spectrum of a two-level atom in a broadband-
sqt;g.ezed vacuum has been discussed by Ritsch and Zoll-
er.

The above theories describing the interaction of an
atom with squeezed input fields are essentially based on a
white noise or broadband assumption. For a realistic
source of light such as the output of a degenerate para-
metric amplifier, this assumption is not strictly valid.
More recently, the spectroscopic properties of an atom
embedded in a finite bandwidth squeezed vacuum have
been reexamined.?* 2

In this paper we discuss the transient spectra of a two-
level atom driven by a strong coherent field and interact-
ing with a broadband-squeezed vacuum field. In Sec. II
we formulate the problem and obtain the equation of
motion of atomic variables in the high-field approxima-
tion. In Sec. III we obtain the analytical solution for the
time-dependent spectrum in the high-field approximation
and discuss the results.

II. FORMULATION OF THE PROBLEM

A. Master equation for a two-level atom
damped by a squeezed vacuum

The Hamiltonian describing the radiative decay of a
two-level atom of transition frequency 4 via its interac-
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tion with the multimode field is given by?* [under the
rotating-wave approximation (RWA) and #i=c =1]

H,=w,S,+H,+(S,Ty+S_T}), (1)

where  S,=L([2)2]—=|1)(1]), S,=[2)(1], S_
=|1)(2| with the ground state and excited state denoted
by |1) and [2), respectively. H, is the term for the free
radiation field and I'; and I‘S are bath operators corre-
sponding to the positive and negative frequency com-
ponent of the radiation field. We assume (1) a
broadband-squeezed vacuum centered around w; (which
will be the frequency of the coherent driving field also)
and (2) all the modes coupled to the atom are squeezed so
there is no spontaneous emission to the unsqueezed vacu-
um modes. As large squeezing modifies the polarization
decay rate and one polarization quadrature decays faster
than the natural lifetime, this assumption requires a
squeezing bandwidth much larger than natural linewidth.
In other words, the squeezing bandwidth should be much
broader than the spectral width of fluorescence so that
the fluorescent spectrum falls well within the bands of
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squeezed-vacuum modes. Finally, the bandwidth of
squeezing is assumed to be sufficiently broad so that it ap-
pears as &-correlated squeezed white noise to the atom.
The correlation functions can be expressed as follows:

(CHOT(t)) =yN8(t —1")
(T4t =p(N +1)8(r —1') ,
(To()To(t")) =yM exp( —2iw )8t —1') ,
(TiOTit))y =y M*exp(2iw, 1)8(t —1') .

Here y is the radiative damping constant inio the
unsqueezed vacuum. The parameters N and M describe
squeezing and obey the following relationship:

[M*<N(N+1),
M = |Mlexplip) ,

where phase ¢ will depend on the specific details of the
scheme used to generate the squeezed vacuum.

The master equation for the reduced density operator
can be easily obtained using Eqgs. (1) and (2) as follows:

= —ia)A[Sz,p]*f-—?z/—(N-i-1)(2.S',pSJr —S+S_p—pS+S_)+-?21N(ZS+pS, —S_Sip—pS_S,)

—yMexp(—2iw, t)S  pS, —yM*exp(iw t)S _pS_ . (3)

B. Equation of motion for atomic operators

The Hamiltonian describing a two-level atom driven by a coherent field and interacting with a squeezed vacuum can

be written as

H=—[pE exp(—iw t)S,; +p*E*explio t)S_]+H, ,

4)

where E is the amplitude of the driving field, w, the frequency of the driving field. u is the atomic dipole moment and
H, is given by (1). The master equation with this Hamiltonian can be easily obtained as follows:*?

ot

9 _ i[UE exp( —iw t)S +(uE)*exp(ith)S‘,p]—-ia)A[Sz,p]+l;—(N +1)2S_pS, —S,.S_p—pS;:S_)

+—72/—N(2S+pS_ —S_S.p—pS_S,)—yM*exp(—2iw t)S, pS —yM*exp(lio t)S_pS_ . (5)

From Eq. (5) we can get equations of motion for (S ),
(S_), and (S, ) in a frame rotating with frequency o,
as

(S)=[iIA—y(N+1KS, ) —yIMle (S_)

_IQ()<SZ) >
(S_)=[—iA—y(N+DHS_)—yIMle*(S, )

+iQy(S,) , (6)
(S,)=—y(2N +1) (Sz)+2N+1 2i0.(S ;)

+2iQ(S_ ),

where A=w , —w,, Qy=|nE| and ¢ =24, —¢.
A great deal of simplification results if we restrict our-

[

selves to the case of a strong field (Qy>>v). For this we
transform to operators defined by?’

R,=S,,
R,=—(A/2Q)S,+(Q/Q)S, , (7
R,=(Q,/Q)S,+(A/2Q)S, ,
where Q2=Q3+A?/4.
Next, we go to the interaction picture defined by
(S,
(s_)|. (8)
(S,)

QUMR, | 2R,

v= ve » Y=

With this, the resulting equation splits into two parts:
one containing no oscillatory terms and the other involv-
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ing rapidly oscillating terms like exp(12iQ2#) and  be written in the compact form
exp(*=4iQ¢). If we make the secular approximation, i.e.,

neglect oscillatory terms and revert back to the (R (t+7))=(R (1) Yo HATT 4T

Schrodinger picture, we arrive at the following equations: (R(t+7))=(R,(t)e ""—(yVF) /v, . "
(1? +(1))=02iQ—y (R +£t)> ) ©a) The steady-state solutions are
(R () =—7R,(1))~Vry, ©0) (R, )=0,

where -

<R )ss y/}/O)‘/
+=(y/2) (2N +1)3—r)/2—|M|(1—r)cosd] ,

Yo=7v[(2N +1)(1+r)/2+ |M|(1—r)cosd] , (10) III. TIME-DEPENDENT FLUORESCENCE
SPECTRUM
r=A%/4Q°.
The time-dependent fluorescence spectrum can be writ-
Equations (9a) and (9b) can be solved and the solution can  ten as a double convolution integral®

|

I(D,t,I")=2I"Re

[lare = [T are TS (1408 _(1) ] . (13)
0 0

In Eq. (13), T is the full width at half maximum (FWHM) of the transmission peak of the Fabry-Pérot interferometer
used to measure the frequency spectrum of the fluorescence, D is the detuning or the frequency offset of the Fabry-Pérot
line center (w) above the laser frequency, that is D =w—w,. This scheme for calculating the spectrum assumes that
there exists a small “window” of unsqueezed vacuum modes through which we can view the fluorescence.?

We note that?’

S, =i/20+V7r)R, +i/201=V7r)R_+(1—r)R, ,

S,=—i/20—r"¥ R, —R_)—V'rR, e
so that for an atom initially in the ground state we get
(S, (4S5 ()= L1—rVire (=@ g 72T,
FLA=I[E=VFv/vge T RV y et M
1= A[(1+VT e QIO D) (R
T () B S A G S BV P A
HIVE (r (=Pl + V7 e T (1= e T
+H1=re T+ L=y /vgde T+ —rr(y /yo) . (15)

After substituting the above expression in Eq. (13), and carrying out integration completely, we finally arrive at the fol-
lowing explicit expression for the time-dependent spectrum:

I(D,,T)= zsn, (16)

n=1
where

—(P/24y )t —(F/2+
e c

S\=—11—rVr[(x,{e '~

os[(2Q—D)t]} — "+Min[(2Q—D)t)

—Z e e )—[0——0]],
S, =11=n[(L=Vry/yelx,—e "' {X,cos[(2Q2—D)t]— Y,sin[(2Q—D)t]} —Z,(1—e " T/))
+1+Vry/ylQ——Qll,
S;=—L(1=n[(1+V7 e "[(X;—2Z;)cos(20)— (Y, —Z,)sin(2Q1)]

—e T X cos[ (20— D))+ Yisin[ (20— D))} +Zse 7T —(1-VF )[Q——Q]]
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(C=y )t

S,=—11—r((1+V7){e [(X,—Zs)cos(2Q1)— (Y, — Z, )sin(2Q1)]

(F/2=yg)t

—[X,cos(Dt)— Y,sin(Dt)]e J—(1—=vVr[a—-a)),

4eon” 17
Ss=1Vr (y /r1=r(1+Vr ) e T [(Xs—Z;)c08(200) = (Y5 — Zg )sin(2021)]

—e T2 X cos(Dt)— Yssin(Dt) ]+ Z,e T —(1—VFr)[Q——Q]),
Se=—L(1—rr(y /¥ (X¢—Zgle *—e [ Xcos(Dt)— Y¢sin(Dt)]+ Zge "™ ,

2I(1—r) N
(T/2+7,)?+D?* |?
2r 1
—_ s Ji41
(I‘/2)2+D2[2 2

7

_ Yo _ — (/24 vyt
e T+ —(1—e TH—e 0

1 T cos(Dt) |,

Sg=r(1—r)y /7o) e Ti—e T205(D1)],

where [ — — ] represents preceding terms with Q interchanged with — Q. Here, coefficients X;’s are defined as fol-
lows:
X, =2I[(T/2)*—y% +(4Q—D)?1/{[(T /22—y )+ (2Q—D*(T /2+7y ., —7,)*+(2Q—D)*]} ,
X,=2T[([/22—y% +Q—D)’)/{[(T/2—y .+ (2Q—D?](T /2+y, )*+(2Q—D)1} ,

X,=T[0([/2—y,)—2D(2Q—D)]/({[(T/2)*+D?|[(T /12—y, )*+(2Q—D)?1}),
AT /12—y 4 +y (T /2—yy)+D(2Q+D)] 18)
[(C2—y +y.)*+2Q+D?(T/2—y,)?*+D?] ’
B C[T(T/2—y,)+2D(D +2Q)]
S /24D /2=y, P+(D +20)]
B [T /2—y,)+2D?]
¢ [T /22+D[(T/2—y,2+D?]’

4

and Y,’s are defined as follows:

Y, =4I 2Qy ., —y.D)/{[(T/2—y P+ Q2Q—D)?J(T /24y, —v,)?*+(2Q—D)*]} ,
Y,=2I[2y,(2Q—D)]/{[(T/2—y . )+ (2Q—D*](T /2+y . )*+(2Q—D)*]} ,
Y,=2I[D(T/2—y,)+T/22Q—D)1/{[(T/2?+D*J(T /2—y . )*+(2Q—D)*]} ,

Y, =2T[2UT /2—yo)—D(T /24y =2y )V/{[(T /2=y . +7)?+(2Q—D)?](T /2—y,)*+D?*]} , 1
Ys=2I(Dy ,+TQ)/{[(T/2)*+D2|(T /2—y . *+(D +2Q)*]} ,

Yo=2IDy,/{[(T/2*+D*|[(T /2—7,)*+D?} ,
and finally the Z,’s are defined as follows:

2T /2—y,

Y _py -
1 Ty /[(r/z v 2+(2Q—DY], Z,

(C/2—y )+ (2Q—D)?
Z,=2T[(T /2~y )*—202Q—-D)]/{[(T/2—y . P +4Q*](T /2—y . *+(2Q—D)?]} ,

Z,=(4Q—D)NT /22—y ) /{[(T/2—y )} +4Q*](T /2—y . )*+(2Q—D)*]} ,

Z;=(TL 2=y (T —y )+2QD)/{[(T /12—y +D*[(T —y, )} +4Q%]} , (20)
Z,=[2QUT /2—yo)—D(T—y DI/{[(T/2—v,)*+D*[(TC —y . )*+4Q%]} ,

Z,=T[[(I'—y ) +20D)/{[(T /2)*+D?*(T —y ., )*+4Q%]} ,
Z;=2T[D(Ir'—y,)—TQ)/{[(T/2?+D* (T —y,)*+4Q%]} ,

Zy=T?/{(T—yy (T /2)*+ D} .

>
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The expression (16) of the transient spectrum gets very  spectrum _ with squeezed vacuum bath [with
much simplified under the exact resonance condition |M|=V'N(N +1)] for the parameters |M|=0.2 and
(A=0). In Fig. 1 we have plotted the analytical time- A/y=0, 2Q,/y=20. In Fig. 2 we have kept ¢¥=0,
dependent spectrum for the unsqueezed vacuum bath (for I'=0.1 and in Fig. 3 it is ¢==, [ =0.1. These spectra
which N =0, |M|=0) for the atom initially in the groun show some interesting behavior as compared to the spec

Q.

m
state with 2Q,/y =20 and A/y=0. We have also com- tra in the unsqueezed vacuum. We find that the central
remains broadened (Fig. 2) or narrowed (Fig. 3) with

puted the spectrum with direct numerical integration of
Eq. (5) and these are in excellent agreement with each
other. In Figs. 2 and 3 we have plotted the transient

-
Y
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FIG. 5. The same as Fig. 4 but for squeezed vacuum
|[M|=0.5and ¢=0.

to note (in Fig. 3) a time lag between central peak and
sidebands. In Figs. 4-6 we have introduced off-
resonance conditions by fixing the detuning parameter
A/y =17 (but all other conditions are the same as Figs.
1-3, respectively). In Fig. 4 we find, as expected for the
unsqueezed bath, the symmetry of the spectrum is re-
tained (i.e., peak heights of sidebands are equal) as it
reaches steady state. But in the squeezed vacuum under
the off-resonance condition of excitation there is asym-
metry in the spectra both for ¢=0 and 7 (Figs. 5 and 6)
throughout its time development towards the steady
state. Now the peak heights of sidebands are unequal
with respect to each other and one of the sideband peaks
competes with the central peak. Nevertheless, it is in-
teresting to note that the nature of the asymmetry in the

I (ot,n)

1%

FIG. 6. The same as Fig. 5 but for ¢ =.

two cases (¢ =0 and =) is opposite.

In conclusion the results presented here are valid for
an atom embedded in a broadband-squeezed vacuum. In
practice the light will not be perfectly § correlated (say,
in a four-wave-mixing process), but this analysis would be
valid provided the input squeezing bandwidth is much
larger than the fluorescence linewidth. However, the
present results are expected to show further interesting
modifications when finite bandwidth squeezed light is
considered. For a colored squeezed vacuum, the atom
not only interacts with the squeezed vacuum modes but
also with the unsqueezed ones. A competition between
these two interactions would considerably modify the na-
ture of the steady state?> as well as the time-dependent
spectrum.
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