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By intermittently and periodically pumping X atoms and observing time-scale separation for

pumping, emission, and photon leakage from the cavity a laser with up to 50%, sub-Poissonian pho-
ton statistics can be realized. %e present a stroboscopic period-to-period description of such a laser
and clarify how pumping and spontaneous emission can be eliminated and cavity damping be mini-

mized as sources of photon noise.

I. INTRODUCTION

The classical fiction of a monochromatic plane wave
with fixed amplitude and phase finds it closest possible
approximation in the output of single-mode lasers operat-
ed far above threshold. The linewidth falls off in inverse
proportion to the intensity and on a time scale smaller
than the inverse linewidth the laser field appears to be in
a coherent state, as is manifest, e.g., in Poissonian photon
statistics. According to Heisenberg s uncertainty princi-
ple, the uncertainty product for the electric and the mag-
netic field cannot be reduced below the limit attained for
a coherent state.

Noise suppression below the coherent-state limit is pos-
sible for a certain observable, but only at the expense of
increasing the noise displayed by other quantities. For
instance, efforts are under way to achieve squeezed-state
radiation from lasers. On the other hand, one may try to
stiffen the photon number distribution to sub-Poissonian
width with the ultimate goal of producing a photon num-
ber eigenstate. In a previous paper, ' which we shall refer
to as I, we have reviewed the literature devoted to such
efforts and presented a particular scheme for photon
noise reduction.

The present paper is devoted to a more detailed study
of a simple model of a sub-Poissonian laser. Our noise
reduction scheme, due in essence to Golubev and Soko-
lov, involves intermittent periodic rather than continu-
ous pumping and separation of time scales for pumping,
emission, and photon leakage from the cavity. By mak-
ing the pumping the fastest of the three processes, practi-
cally instantaneous lifting of all atoms to the upper work-
ing level occurs at the beginning of each cycle of the laser
operation. We thus eliminate the pump as a noise source.
Photon leakage through the nonideal mirror is required
to be the slowest process for two reasons. First, the es-
cape of light from the cavity is an intrinsically random
process on the energy scale on which individual photons
can be detected and the ensuing photon noise is the
smaller the higher the quality of the cavity. Second,
small cavity damping implies strong intracavity fields and

thus rapid Rabi oscillations between the two atomic
working levels; stimulated emission is thereby favored
over spontaneous emission and a further quieting of pho-
ton noise results. For a complete suppression of spon-
taneous emission as a source of photon noise we require
fast depletion of the lower working level of the atoms by
incoherent return to the ground level. When the time-
scale requirements just discussed are respected in full the
photon noise becomes minimal in a sense: as was already
shown in I, the spectral variance of the output intensity
reaches a vanishing limit at zero frequency.

The cyclic operation of the laser in consideration in-
vites a stroboscopic cycle-to-cycle description. within
each cycle pumping, emission, and leakage take place
separately and successively, each phase allowing for
rigorous description. Even the stroboscopic description
of the sequence of cycles can be given exactly in the limit
of ideal time-scale separation. In fact, the theory of our
periodically pumped laser with separated time scales is
considerably simpler than that of the conventional laser.

Our last scheme is in some aspects reminiscent of the
so-called single-atom maser. ' The lattice device also in-
volves effectively instantaneous pumping by the repeated
injection of excited atoms in the maser cavity. Our
scheme may indeed be looked up as a generalization of
the single-atom maser to the case of periodic "injection"
of N excited atoms. With N)&1 and good time-scale
separation our scheme, even though originally proposed
for Rydberg transitions, might even work for optical fre-
quencies.

Section II of the present paper describes our model in
detail. In Sec. III we give the rigorous treatment of the
extreme case of time-scale separation. In Sec. IV we in-
vestigate the effect of a nonideal pump with pump
eSciency p & 1. Section V is devoted to corrections due
to spontaneous emission and in Sec. VI we even allow for
strong perturbations of the low-noise regime by effective
competition of incoherent atomic transitions with the
coherent emission of laser photons. In Sec. VII we illus-
trate our theoretical investigations with some numerical
results. Finally, two appendixes contain the derivation of
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rate equations governing the competition of incoherent
and coherent processes.

II. MODEL

and

emission spont (2.1)

We consider N identical active atoms in a resonator
one mode of which is brought to self-sustained oscilla-
tions. For simplicity we assume exact resonance between
the mode frequency co and two working levels of each
atom, 1 and 2, i.e., E2 —E, =%co. Two more levels will be
of interest, the ground level 0 with Eo &E„and an auxi-
liary level 3 with E3 & E2 (see Fig. 1). A periodic train of
pump pulses repeatedly brings the atoms from the ground
level 0 to the upper working level 2, via the auxiliary lev-
el 3. While the pump is off the atoms return to the
ground level, ideally via the lower working level 1 such
that with the transition 2~1 each atom deposits one
photon in the lasing atom. Under stationary conditions
the whole system will display periodic modulations in
time of the expected number of photons ( n ) in the
(nonideal) resonator as well as of the expected number of
atoms (N; ) in level i (see Fig. 2).

In order to achieve low noise in the photon number we
follow Golubev and Sokolov and require a separation of
time scales for the various processes taking place during
one cycle. Besides the period T and the duration To of
the pump pulse there are four relevant times to be con-
trolled. During a time ~p p

the atoms undergo the se-
quence of transitions 0~3~2; the subsequent coherent
emission of photons into the lasing mode and the atomic
decay 2~1~0 is characterized by a time ~, ;„„„;leak-
age through the nonideal mirror limits the lifetime 1/~ of
photons in the resonator; finally, incoherent atomic relax-
ations 2~0 (nonradiative or due to spontaneous emission
into nonresonant modes) or 2~1 (again nonradiative or
due to spontaneous emission into resonant but nonlasing
"sideway" modes) have a time scale r,„,„, The limit . we
have in mind is

+PumP

FIG. 2. Schematic time dependence of the mean photon
number and the number of atoms in the upper working level.

(2.2)

Violation of (2. 1) would not only imply reduced efficiency
of the laser but also, due to the intrinsically stochastic na-
ture of spontaneous-emission events, increased photon
number fluctuations. On the other hand, (2.2) secures
that the population of the upper working level by the
pump, the coherent emission of photons, and photon
leakage take place separately and successively.

It is easy to see, without any calculation, that the latter
separation of time scales eliminates the pump as a noise
source for the photon number in the laser mode. Due to
7

p p
« To a ll N atoms assemble in the upper working

level before the atom-field interaction begins to deplete
that population. Next by v, ;„;,„«T we make sure that
all atoms have returned to the ground level before the be-
ginning of the next cycle. Inasmuch as (2.1) precludes in-
coherent "channels" for the atoms to return to the
ground level, every atom arriving in that level is certain
to have left behind one photon in the laser mode. Up to
this point during each cycle precisely N photons have
been added to the laser mode. Only during the remaining
phase of each cycle, when on the average N photons leak
out of the resonator (in a stationary regime), can and do
uncertainties arise for the photon number since the leak-
age of a photon in an intrinsically quantum mechanical,
i.e., random, event. Even the role of this latter damping
as a noise source is minimized by T (( I/~, as we shall
show in Sec. III.

It may be well to comment in some detail on each of
the three phases of one cycle, pumping, coherent emis-
sion, and leakage. For the sake of concreteness we may
imagine the pump pulse as coupling to the atomic transi-
tion 0~3 according to the Hamiltonian

HQ3 g AQ3Q(SQ3 +S3Q )

p=l
(2.3)

FIG. 1. Level scheme for the active atoms.

Here Q3O is a Rabi frequency proportional to the electric
field of the pump. For simplicity, we take the pump
pulse to be rectangularly shaped in time such that 030 is
constant for 0~ ~~ To. The operator Sl03 lowers the pth
atom from level 3 to level 0 while S~»=(SQ3) is the cor-
responding raising operator. The population of level 2
may be achieved incoherently with a rate w32. The whole
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pumping process is then described by the following mas-
ter equation for the atomic density operator A (r),

A (r) = (i/tent')[H3O A (r)]+Ai2A (r)

A32A(r)=(w&2/2) g [[S~z» A (r)S~32]
)M=1

+ [S~ii A (r),S~i2] I,

(2.4)

where S~iz and S23 =(S~i2 } are the raising and lowering
operators for the atomic transition 2~3. The initial con-
dition for the pump is

A(o)= p lo)„„&ol . (2.5)

In the interesting limit of fast drainage 3~2 the charac-
teristic time of the process reads

~+pump +30~W32 s 30 W32
2 (2.6)

and for times ~p p&&7 & Tp the stationary solution of
the master equation (2.4},

(2.7)

is approached. Due to (2.1) and (2.2) the state of the laser
mode does not change during the pumping process. If
the full density operator just before the pump is

W(0) = A (0}p(0), (2.8)

with p(0) referring to the laser mode, then right after the
pump we have

W=Ap(0) . (2.9)

The coherent-emission phase begins with (2.9) as the
initial condition. We now have to deal with the interac-
tion between the atoms and the field mode,

H, 2=irtg g (Sii,b+S",ib ) .
@=1

(2.10)

Here g is an elementary Rabi frequency referring to a
fictitious electric field corresponding to a single laser pho-
ton. In the Hamiltonian (2.10) we encounter the photon
annihilation and creation operators b and b whose com-
mutator is [b, b ]=1. Inasmuch as we want every atom
to contribute one photon to the laser mode we must pro-
vide for an incoherent drainage of atomic population
from level 1 back to the ground level with a rate w10 by
far exceeding the rates w2, and w20 of incoherent decays
2~1 and 2~0, respectively. The full description of all
competing processes involved is given, in the interaction
picture, by the master equation

where the generators of incoherent decay A, p, A2, , and
A2O are defined analogously to (2.4), with the appropriate
rates and raising and lowering operators for each transi-
tion. We should note that in all damping generators only

W(r)= (i/A)[Hi2 W(r)]+(Aio+A2i+A)o)W(r)

(2.11)

transitions downward in energy are accounted for.
Starting from the initial condition (2.9) the density

operator W(r} solving the master equation (2.11) ap-
proaches the stationary form

(2.12)

with a reduced density operator p for the laser mode de-
pending on the frequencies w10 w20 w21, and g as well

as, in general, on the initial operator p(0). We shall dis-
cuss p and the time scale on which it is approached in the
sections to follow. The simplest situation, to be studied
in the next section, arises when w2, and w20 are com-
pletely negligible, i.e., when the limit (2.1) is taken to the
extreme. In that case p differs from p(0) only by the addi-
tion of precisely N photons. When, moreover, the leak-
age 1~0 is fast compared to the Rabi oscillations 2~1
the relevant time scale is analogous to (2.6),

1/r, ;„;,„=4g n/w, o, w, o »gi/n (2.13)

where n is a typical photon number for the laser mode,
i.e., g &n a typical Rabi frequency.

The concluding phase of each cycle, photon leakage
through the nonideal mirror, begins with (2.12) as an ini-
tial condition. Actually, since the atomic ground state is
not at all affected by the field damping we may simply
consider the evolution of the reduced density operator
p(r) away from p towards the final form p(T). The ap-
propriate master equation is

p(r)=a[[b, p(r)b ]+[bp(r), b ]) =Ap(r) —. (2.14)

We shall discuss the exact explicit form of the solution
p(r) =e"'p in the next section.

The evolution of the field density operator p over one
whole cycle may be written as p(T)=DEp(0) where
D =exp(AT) and E is the map defined by p=Ep(0). Ob-
viously, D describes the photon damping and E the corn-
bined effect of coherent and incoherent emission. We
shall, from this point on, focus our attention on the state
of the system at one instant per cycle, the moment just
before the pump pulse is switched on. The stroboscopic
description of the cycle-to-cycle evolution is given by the
dissipative quantum map

p(t +1)=DEp(t) or p(t) =(DE)'p(0),

t =0, 1,2, . . . , (2.15)

where the integer t counts the number of cycles passed.

III. SUPPRESSION OF PUMP NOISE
AND SPONTANEOUS EMISSION

We here consider the ideal case for which nonradiative
and spontaneous-emission transitions 2~0 and 2~1 are
so weak as to make w20 and w 2, entirely negligible
against g &n and w10. In that limit the stroboscopic map
(2.15) becomes so simple that it can, in fact, be solved
rigorously. Since neither the emission nor the damping
distinguishes any phase of the field amplitude, we most
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conveniently use the Fock representation for p, which is
defined by b~n ) =&n ~n

—1), n =0, 1,2, . . . . If p(t) is
diagonal, p „(t)=5 „p (t), so will be p(t+1) where-
upon the map (2.16}takes the form

p (t+1)= gD ~E~„p„(t) .
n, k

(3.1)

The matrix Et,„ follows from (2.11) and (2.12) with A2O

and A» dropped as

~kn ~k, n +N (3.2}

N

b b + g Szz =const, for wzo =w2, =0 .
JM=]

(3.4)

This conservation law once more explains why the pho-
ton number draws no uncertainty from either the pump
or the emission since the number of atoms in level 2 is
sharp both after the pump [N2=N according to (2.9)]
and after the emission [N2 =0, see (2.12)].

The element D j, of the damping matrix in (3.1) obvi-
ously is the conditional probability of finding m photons
at the end of the cycle provided there were k after the
emission phase. By writing out the master equation
(2.14) as a set of differential equations for the probabili-
ties p„one immediately verifies the well-known binomial
distribution, with d =e

Indeed, since no atom can arrive in the ground level
without having left one photon in the laser mode, the
conditional probability of having k photons in the state
(2.12) after having had n photons in the state (2.9) is unity
for k =n +N and zero otherwise. Incidentally, the cor-
responding stationary solution of (2.12),

p„x,(0), for n ~ N

0, for O~n (N
depends on the initial state (2.9). This memory is due to a
conservation law obeyed by the master equation (2.11}
with A2O and A2, dropped,

This approach to equilibrium takes place on the time
scale I/t~ as must be the case, all other time scales being
negligibly small by comparison.

Finally, in order to characterize the intensity spectrum
of the emitted radiation we must evaluate the normally
second-order correlation function

g(t)=(b (0)b (t)b(t)b(0))
= g m [(DE)'] „(n +1)p„+,( oo ),

m, n

(3.9)

where (DE)' is the tth power of the matrix DE from (3.1).
By using the Gaussian nature of p„( oo ) we had shown in
I that to within corrections of order 1/( m ) „,

g (t) = (m (t)m (0) )(1+(m ) „o„)
—(m(t)m(0) )o „+(m )„,

where

(3.10)

i.e., a variance 50%%uo below the Poissonian level. It is to
be noted that this ideal behavior results from a complete
suppression of the pump and of spontaneous emission as
noise sources for the number of photons; even the only
remaining noise source, photon leakage, is minimized in
its effect in the limit (3.7).

Higher-order moments (m") „can be calculated simi-
larly. To within corrections of relative order 1/(m )„
they can all be obtained as the moments of a Gaussian
distribution with mean and variance given by (3.7).
Needless to say, to the accuracy mentioned the photon
number can be looked upon as continuous when moments
of that Gaussian are to be evaluated.

The time dependence of the vth moment ( m "), is
readily accessible as well, since the map (3.1), (3.2), and
(3.5) couples this moment only to lower-order ones.
Especially, the mean and the variance evolve as

(m ), —(m ) „=d'((m )o —(m ) „),
(3.8)

o —o = d '(o —o )+(d' —d ')((m &
—(m & )

D k=

k
dm(1 d)k

—m

0, k(m.
k&m

(3.5)

( m (t)m (0)') = g m [(DE)'] „n "p„( co ) . (3.11)
m, n

The latter correlation functions evolve, according to (3.1),
as"

Clearly, D k must vanish for k &m since the master
equation (2.14) describes photon leakage out of the cavi-

8

By inserting the matrices E and D from (3.2) and (3.5)
into the map (3.1) and taking moments we easily find the
stationary mean and variance of the photon number as

(m)„= Nd

(m(t+1)m (0)")=d(m(t)m(0)")+Nd(m") „,
i.e.,

(m(t)m (0))=d'cr„+(m ) „,
(3.12)

(m (t)m (0) ) =d'2o (m ) +(m ) „(o„+(m ) „) .

(m&„o'„=&m') „—((m ) „)'=
1+d

(3 6) Putting together (3.10)—(3.12) we arrive at

g(t)=&m &'„—(&m ) „cr„)d',— (3.13)

Sub-Poissonian behavior is manifest since 0 d 1. Ac-
tually, in the limit AT «1, which is part of (2.2), we have
d ~1 and 1 —d ~2m T, thus

( m ) „~N/2aT)) N ))1, o „~(.m ) „/2, (3.7)

a result formally identical with Eq. (3.20) of I where the
photon number was modeled so as to undergo a Gaussian
Markov process with a continuous time. As was shown
in Sec. III of I this result implies a spectacular noise
reduction in the laser output: the spectral variance"
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(5i )„displays a Lorentzian dip below the shot noise
limit lr( m ) „,

K
(5i ) =lr(m )„1—2(1 —o „/(m ) „)

K +CO

(3.14)

The dip is centered around zero frequency and there the
spectral variance reaches the ideal value (5i ) 0=0 in

the limit (3.7).

IV. PUMP FLUCTUATIONS

p (t+1)=
oo k

dm(1 d)k —m

m
k =max(m, N)

min(k, N)

pl(1 )x —l

1=0

(4.1)

This cycle-to-cycle recursion relation for the photon
number distribution can again be solved rigorously.

As might be expected, the stationary mean photon
number is now diminished by the factor p to

We now propose to consider the effect of a nonideal
pump. ' To that end we assume each of the N atoms to
be brought to level 2 with probability p, independently of
the fate of all other atoms, before the pump pulse is
switched off. The probability of getting any subset of I
atoms excited and the remaining N —l ones left in the
ground level is then given by the binomial distribution
(l )p'(1 —p) ' and this also is the probability of getting 1

photons added to the laser mode during the emission
phase of any cycle. The photon number balance (3.1) is
therefore modified to

long as p )0, an inefficient pump not only deteriorates
the laser output but also the noise reduction. The at least
partial preservation of sub-Poissonian effects is, of course,
due to the fact that the inefficient pump considered does
not violate the time-scale separation (2.1,2).

The foregoing considerations apply not only to a
nonideal pump efficiency but also to a situation where the
number of active atoms itself undergoes cycle-to-cycle
fluctuations. The latter situations typically arises in gas
and dye lasers. To appreciate the equivalence of the two
cases one must realize that the binomial distribution for
having 1 out of N atoms pumped is essentially a Gaussian,
provided (l ) =Np )) l. On the other hand, in the limit
of a large mean the probability distribution for the num-
ber of atoms in a cell filled with a gas or a liquid is, by the
central limit theorem, a Gaussian as well. By simply
equating the means (I ) =Np and the variances
((61) ) =Np(1 —p), one may translate back and forth
between the two situations.

V. INCOHERENT TRANSITION
WITHIN THE LASING LEVEL PAIR

The most important spontaneous-emission processes
capable of generating laser noise are the ones accompany-
ing atomic transition 2~1. Such events are controlled
by the same dipole-matrix element as the coherent in-
teraction H»', they even tend to be favored over the
coherent interaction inasmuch as there are, at least for
transition frequencies in the optical range, many modes
available for accepting spontaneously emitted quanta. In
order to secure predominance of the coherent interaction
we must require the rate w» to be smaller than both the
typical Rabi frequency gQ(m ) „and the rate ttlto. The
same condition must be obeyed by the rate w20 of in-
coherent transitions 2~0, which altogether shortcut lev-
el 1. We shall actually require

(4.2) W2O&N2&&g+( m ) ~ && l8&o (5.1)

The stationary variance, on the other hand, changes as

e„=(m ) „[1+d (1 —p)]/(1+d) . (4.3)

(5i ) o=x(m )„[1—2dp/(1+d)]

=l~(m )„(1—p) . (4 4)

In brief, while sub-Poissonian effects are still present as

By reducing the pump efficiency p from unity to zero the
ratio o „/(m ) „ is increased from the "ideal" value —,

' to
the Poissonian value 1. For fixed pump efficiency, on the
other hand, the ratio cr „/(m ) „ falls monotonously to-
wards 1 —p/2 when the damping parameter d grows to
the lossless-cavity limit d= 1.

Similarly simple are the changes brought about for the
time dependence of moments and correlation functions.
Especially, the normally ordered second-order correla-
tion function g ( t ) and the spectral variance ( 5i ) are
still given by (3.13) and (3.14) with (m ) „and o „as in
(4.2) and (4.3). The minimal spectral variance no longer
vanishes but takes the finite value

thereby both implementing (2.1) and establishing a cer-
tain adiabatic limit for the atomic relaxation 2~1~0
and the accompanying coherent emission of photons.
Indeed, the right-hand inequality in (5.1) means that no
atom can complete a full Rabi cycle 2~1~2 since every
atom temporarily visiting level 1 is immediately and ir-
reversibly sucked into the ground level. It follows that all
observables can be classified as either fast or slow depend-
ing on whether or not their time rates of change have a
contribution proportional to w, 0. A few units of time
1/w, 0 into the emission phase the fast variables have set-
tled in rigid adiabatic-equilibrium relations with the slow
ones and from then on the whole system relaxes "slowly"
towards the final equilibrium state (2.12) of the emission
phase.

While for w20 =w» =0 the field part p of the final state
(2.12) was accessible without effort in Sec. III, it is not a
trivial matter to calculate the influence of finite rates w20
and w2, on p. We must study the master equation (2.11).
The adiabatic limit (5.1) actually facilitates that study
since it allows the adiabatic elimination of all fast observ-
ables. As we show in Appendix A the master equation
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+y [m (Nz+ 1)p ( m —1,Nz+ l, r)
—(m +1)Nzp(m, Nz, r)], (5.2)

where y=4g /w&o and w =woo+wc& The terms -w
constitute the simplest Markovian process for atoms in-
coherently exiting from level 2. Similarly intuitive are
the terms —y in (5.2): formally arising from Hz, and A, o

they actually constitute the simplest Markov process for
atoms generating one laser photon for each transition
2~1 such that the conservation law Nz+m=const
holds [see also (3.4); the latter conservation law is, of
course, broken by the incoherent processes involving the
rate w]. Indeed, the process described by (5.2) must be
Markovian since it follows from the higher-dimensional
Markovian process (2.11) by adiabatic elimination of fast
variables. The rate constant y=4g /w, o is most simply
calculated by using Fermi's golden rule for the interac-
tion H, z and taking the final state in the transition 2~1
as of width w, o,

' in Appendix A y will result from a sys-
tematic adiabatic elimination procedure.

Assuming all N atoms excited and mo photons present
at v=0, we are facing the initial probability

p (m, N~, O) =5 5~ ~ (5.3)

In the mNz plane all points with integer coordinates ly-

ing on the triangle (see Fig. 3)

mo —m —mo+N —N&,

O~N~ ~N,
(5.4)

become accessible for 0(~ & ~ while for ~~ ~ a sta-
tionary solution,

p(m, Nz, ~)=E,5&, ,0

with E WO only for mo & m & mo+N, (5.5}

is approached. Due to the initial condition (5.3) E is

(m, N, -1) (m+1,N~-1)

0'
m,

FIG. 3. Discrete state space corresponding to the rate equa-
tion (5.2) and the initial condition (5.3).

(2.11) and the limit (5.1) imply the following rate equation
for the probability p (m, Nz, 1 ) of having m photons in the
laser mode and Nz atoms in level 2 at time ~:

p(m, Nz, r) = w [(Nz+ 1 }p (m, N& + 1,r} N—zp (m, N&, r)]

the conditional probability for finding m photons at the
end of the emission phase after having had amo before.

We achieve some insight into the competition between
coherent and incoherent transitions by taking mo and N
sufficiently large for a deterministic approximation to
(5.2) and (5.3) to make sense. We may then extract mo-
ment equations from (5.2) and factorize as

(mNz) =(m ) (N, ) to obtain the classical equations of
motion

(N, ) = —~(N, ) —y(m)(N, ),
(m)=+@(m)(N, ) .

(5.6)

which generalizes the conservation law (3.4). Moreover,
for r~ ~ Eqs. (5.6) yield (Nz( ~ ) ) =0 as well as the
transcendental equation for the mean photon number

m=mo+N —(w/y)ln(m/mo) . (5.8)

An interesting consequence to be drawn from this equa-
tion is that the ratio w/y need not be small compared to
unity for the gain reduction per cycle to be small com-
pared to the maximum gain N; rather, we only need
w/y «N/ln(1+N/mo), which in the interesting case
mo &&N, means w &&ymo. To finally ascertain the self-
consistency of all approximations we may check, by
linearizing (5.6) around the stationary solution, that equi-
librium is approached on the time sale ~, ;„;,„=1/
(w+ym). Again, by w «ym we secure predominance
of stimulated emission over incoherent decay. It will be-
come clear below that the latter condition is a self-
consistency condition for the deterministic behavior (5.8)
to be faithful to the exact one.

It may be well to note a further property of the process
(5.2,3) which is manifest both in (5.5) and the determinis-
tic result (5.8): the field part E of the stationary solu-

0

tion, in contrast to the atomic part, still depends on the
initial state through the parameter mo. Even though the
conservation law (3.4) is now broken and the conditional
probability E therefore broader than 6 +~, there

0 0

is no photon sink accounted for in (5.2) which could
cause complete loss of memory of the initial number of
photons.

The rate equation (5.2) allows for a rigorous solution
obeying the initial condition (5.3). This is all the more in-
teresting as Kirchhoff's famous construction' fails due to
the unidirectionality of the probability flow through the
triangle of Fig. 3: Nz being forbidden to increase, proba-
bility only flows "downwards"; starting from the upper
left corner (m, N& ) =(mo, N), it spreads over the triangle
and eventually gets stuck on the N+1 points (m, O) with

mo +m ~mo+N.
For the explicit solution of the rate equation we con-

veniently employ the Laplace transform
p(m, Nz, o )= fo"dip(m, Nz, t)e 'and rewrite (5.2) as

These admit the first integral

( m (r) ) + (N~(r) ) —mo N—
= —(w/y)ln((m (r) ) /mo), (5.7)
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1

o +N~[(m +1)y+w]

X [ym (N&+1)p(m —1,Nz+ l, o )

+w (N~+ 1)p(m, N~+ 1, cr )] . (5.9)

with

f,,(e)=(mo+v+e) ', e=w jy .

(5.13)

(5.14)

1

cr +N [(mo+ 1)y+ w]
(5.10)

that contribution arising from the initial condition (5.3);
indeed, the initial point draws no probability from any
other point but only feeds its two "lower" neighbors.

Starting with (5.10) and repeatedly invoking (5.9) we

may construct p(m, N&, a ) iteratively, lowering Nz in unit

steps from the initial value N to the current one. The sta-
tionary probabilities finally follow with the help of the
limit theorem

p(m, Nz, ~ )= lim op(m, N~, o ) .
o~0

(5.1 1)

From (5.11) and (5.9) we immediately conclude that

p (m, Nz, ac ) vanishes unless N& =0, a result already anti-
cipated on physical grounds in (5.5) above.

Most easily evaluated is the probability for the minimal
photon number mo,

w 2w
p(m&, O, o )=-

o cr+ [(mo+ 1)y+ w]

3w

cr +2[(m 0+ 1 )y+ w]

Nw

o+(N —1)[(ma+1}y+w]

X- 1

o +N [(me+ 1}y+w]
(5.12)

This is a product of N + 1 factors, one (the right most)
stemming from the initial point [see (5.10)] and then one
for each of the N successive steps down the Nz axis,
m =mo. Note that all of these steps are incoherent. The
limit theorem (5.11) now yields the stationary probability

This assumes that the point (m, N~ ) lies on neither of the
two boundaries for m. If m =mo, the term -y in the
last set of square brackets must be dropped since these
points cannot be populated by coherent transitions. Cor-
respondingly, points with m =mo+N —Nz cannot be
reached through incoherent transitions and therefore the
term -w in the last set of square brackets does not arise.
Finally, for the initially populated point (m o, N) the last
term in the square brackets must be replaced with unity,

Similarly simple is the probability of the maximal number
of photons mo+N,

(mo+N)!

mo!
(5.15)

Since only a sequence of N coherent transitions can result
in the addition of N photons, this latter probability
remains nonzero and, in fact, approaches unity in the
limit w ~0, which was considered in Secs. III and IV.

The only complication arising for the other points
(mo+N —v, O) with v&O, N is the number of paths on
the triangle of Fig. 3 connecting these points to the initial
point (mo, N). Probability can flow through all of these
( )=(~,, ) paths and therefore each path contrib-

0

utes additively to E +~, ', each contribution is simi-

lar in structure to (5.13) and (5.14) except that v steps
along the path are now of the incoherent type ( —w)
while the remaining N —v ones are coherent ( -y). The
paths differ only in the ordering of coherent and in-
coherent steps. There is no difficulty in sorting out the
bookkeeping as

m0+1V —v, m0

(m 0+N —v)!
E

mo'

—pi —pp
' ' ' p, %+1 1

(5.16)

The various paths contributing to E are labeled by
0

the v fold index p, ,pz, . . . , p„which specifies which v
out of N steps are of the incoherent type.

As it stands the above E is rigorous for arbitrary
0

integer values of mo and N. Moreover, this E is

quite tractable as an ingredient in the stroboscopic laser
dynamics p(t+ 1)=DEp(t), see (3.1). We think it is
quite appropriate, though, to take advantage of some sub-
stantial simplifications arising in the limit 1 «N «mo,
e «mo in which an interesting laser would be operated.
To that end we must realize that to within corrections of
relative order 1/mo or E'/mo, the equalities p, =p in the
v fold sum may at will be excluded or admitted. We may
therefore write

I &p &p & . . . &p &g+]
1 2 v

~ ~ ~ ~ ~ ~

X+- I —v

1=—[g(mo+N +2—v+e) —1((mo+1+~)]"

1
1n

o+N +2 ~+@

mo+1+e
(5.17)
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where the digamma function g and its asymptotic behav-
ior at large argument are incurred. By finally expressing
the remaining product (gz f& ) in (5.16) in terms of the I
functions, we arrive at the compact expression

0

I (m +1)I {mp+1+e)
I (mo+ l)l (m + I+a)I (mo+N —m + I)

w m +2+a—1n
y mp+1+p

mo+N —m

(5.18)

which for the sake of consistency should be read with the
I functions approximated by Stirling's formula. It is
quite satisfactory to cheek that this asymptotic probabili-
ty E is maximal, up to corrections of relative weight0

I/mo, e/mo, and N/mo at m =m as given by the deter-
ministic result (5.8).

At this point it is an easy matter to quantitatively
study the laser noise generated by the incoherent transi-
tion 2~1. Through numerically iterating the map (3.1)
with E from (5.18) we have verified that the stationary
photon number variance cr„remains close to 50% sub-
Poissonian as long as w «y(m)„, see Sec. VII. An
even more convincing demonstration of this result fol-
lows from an asymptotic treatment of the cycle-to-cycle
evolution of the mean and the variance of the photon
number. Towards that goal we assume p (t) to be a
Gaussian with mean (m ), and variance cr, The .condi-
tional probability E may, for m, mp && l, e, also be ap-

0

proximated by a Gaussian function of m, with its peak at
m(mo) given by (5.8) and variance as

8 lnE m(mo)

0 Bm
=sin

mp

if l, e «mo, m. The expression (5.19) is valid to the same
degree of accuracy as (5.8). The photon number distribu-
tion after the emisson phase [Ep(t)] = g E p (t)

0 0 0
can then, without incurring an error beyond the ones al-
ready accepted in (5.8) and (5.19), be written as a convo-
lution of two Gaussians, p (t) being one and E with

0 0

In[m(mo)/mo] replaced by In[m((m ), )/m, ] the other.
That convolution is a Gaussian as well, the mean and the
variance being the sums of the corresponding quantities
for the two convolution partners. At the end of the emis-
sion phase we are thus confronting

m = ( m ), +N —e' In( m /( m ), ),
o =o, +e In(m /(m ), ) .

(5.20)

A complete set of cycle-to-cycle recursion relations is
finally obtained by extracting from (3.8) the effect of the
damping phase,

(m), +, =dm,

o, +, =d o. +d(1 —d)m .
(5.21)

Surprisingly, the stationary solutions (m ) „and o „of
(5.20) and (5.21) can be given in closed form since from
(5.21) we have In(m/(m)„)= —Ind. A little algebra

then yields

d (N +rind)
I —d

cr =(m ) „/(I+2)—ed Ind/(I —d ),
(5.22)

and the reduction of the sub-Poissonian effect by in-
coherent transitions is manifest from the ratio

1 ed lnd

1+d N+@ lnd
(5.23)

It is to be noted that these results are based on the limit
(5.1), i.e., e=w/y «((m ) „). However, for sufficiently
weak damping d ~ I, we have N &&( ( m ) „)and E need
not be small compared to N; we may even admit e lnd as
comparable in magnitude to the number of atoms in
which case the degradation of sub-Poissonian effects
would be quite noticeable.

VI. ALL ATOMIC TRANSITIONS IN COMPETITION

N

$A, 2 = —
—,'g„Q (S,t,"ASf~+S"ASI";),

@=1
(6.1)

with ij=21,20, 10.
A new adiabatic limit now becomes accessible in which
the effective dimensionality of the emission phase is
lowered considerably. In fact, the master equation (2.11)
with the 6A, included may be replaced by a rate equa-
tion for the probability p (m, N, ,N2, r) of finding, at time
~ during the emission phase, m photons, N& and N2
atoms in levels 1 and 2, respectively, provided we require
at least

(6.2)

or, to facilitate the derivation, the corresponding limits
for the other two transitions 2~0 and 1~0 as well. The
rate equation, to be derived in Appendix 8, reads

A situation revealing qualitatively new aspects arises
when we drop the requirement that w, p be larger than
gQ(m ) „,wzo, and w2, . Especially, allowing the same
magnitude for w» and w2p as for w, p amounts to a much
more serious assault on the photon number stiffness then
the one launched in Secs. IV and V: indeed, the
coherent-emission channel then no longer offers the
fastest return of the atoms to their ground level.

Effective competition of all decay channels requires nu-
merical analysis. For the sake of a reasonable balance of
numerical effort and insight we slightly modify the model
by including in the generators A, the effect of phase des-
troying processes. Such processes do not at all affect the
rates w; for the change of the populations of the atomic
levels i and j; they increase the decay constants for the
atomic polarizations S„with i Pj from —,w;, to
—,'(w; +rt;~). The corresponding increments of the gen-
erators read
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p m, N&, N2~= y[m(N2+1)p(m —1,N —1 N +1)—( +1—m+1 Nqp(m, N, ,Nq)]

+y m+1 (N&+1)p(m+1, N&+1, Nz —1)—mN&p(m, N&, N2 ]

+w, o[(N, + 1)p (m, N, +1),N2) N,—p (m, N, , Nz ]

+ ~20[ N2+ 1)p (m, N&, N2+ 1) N—~ (m, N&, N2 )]

+m2, [ N2+1)p(m, N, —1,N2+1) N2—p(m, N), N2)], (6.3)

where now =4 /y= g g2&. In contrast to Sec. V, no restric-
tion is placed on the relative sizes of the t deraesy and m, .

s a consequence, absorption term s -y are now present.
1J'

en at this point the limit (5.1) is imposed the o u-

lation of level 1 mamay be adiabatically eliminated

[p(m, N, N ~5
1 2 fiN, op ( m»2 ) ] whereupo n (5.2)

recovered. On the other hand th, as e incoherent side
c anne s are allowed to complete more and more
effectivel with thy

'
e coherent emission we must expect

rapid deterioration of the laser out ut as well
rom su - oissonian to super-Poissonian fl t

tions. These exxpectations are indeed borne out in the nu-
uc ua-

merical results to be presented in the next section

VII. NUMERICAL RESULTS

with a few n
We here propose to illustrate the above cons'de consi erations

ew numbers and graphs. First we would like to
demonstrate how spontaneous emission, according to the
incoherent transitions 2~0 and 2~1, ets su res

r o p otons in the lasing mode grows. To that
end we assume the vacuum thas e initial state of the

p (t)=(E'
mode, disregard the field damping (d =1) d, an consider

p = ) 0 with the conditional probability E
given in (5.13} (5.15), and (5.16). Figure 4 shows (t}

E=5 10 1 5, and 20 with N=100 and @=100. F h
same values of d

or the

dence of t
s of d, e, and N, Fig. 5 displays the t' de ime epen-

ber.
t e mean and the variance of th h

er. Once the number of photons has become large the

I

mean increases linearly with t h'1 thw i e e variance tends to
a con

' ' '
e or arge m, almosta constant. This is expected sine f 1

the n
a atoms eexcite by stimulated emission th

e number of photons precisely by N in each cycle and
leaving the variance unchanged. At earl

an, w i e ~m ', is still small, spontaneous emis-
sion dominates and the increase of (m )

'
h h

the flu
er o cyc es is sublinear. It is quite interestin t'ng o see

times.
ctuations go sub-Poissonian for suffi

'
r su cient y large

For Fi. 6w'g. we have allowed damping with d=0.99
keeping a=100 and N=100 W d', ase isplay m ), and cr as
derived from (t)=(DE '

p = ) p(0) with p(0) corresponding to
the vacuum and E from Sec. V. During the first few cy-
cles the variance is larger than th dn e mean ue to spontane-
ous emission, but is ultimately reduced below the mean,
resulting in sub-Poissonian statistics. The stationar

t e asytnptotic predictions (5.22) are, respectivel 9800
uc excellent accuracy of the asymptotic re-

ive y,

suit is not surprising since el( m ) „=0.01 ((1.

tha
Figure re ers to the same situation F' . 6as ig. except

hat the damping is larger, d=0.9, and the numb
a er, = . The steady-state photon number

is now much smaller, ( m ) = 85.2.
such that predominance of stimulated

over spontaneous emission is not reached. The fl

tions must ther
c e . e uctua-

erefore be super-Poissonian. Even thou h
the condition of validivalidity of the asymptotic results (5.22) is

ven t oug
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not violated [eI( m ) „not small] the mean ( m ) „ is still
amazingly close to that prediction (error smaller than 1

ppt); however, the variance o „=133 does reveal the
inapplicability of the asymptotic prediction, which is
about 30% too small.

In Figs. 8 and 9 we explore the effects of a nonideal
pump, allowing for an efficiency p &1. In Fig. 8, p=0.5
and in Fig. 9, p=0.01, but in both cases the mean number
of excited atoms is kept at Xp=100. To facilitate the
comparison with the ideal-pump situation in Fig. 6, the
cavity damping is set to d=0.99. The evolution of the
mean ( m ), is essentially the same in Figs, 6, 8, and 9,
but the steady-state variances are quite different. From
Eq. (4.2) we expect a steady-state mean of 9900 while Eq.

F0

(4.3) predicts steady-state variances of 7438 and 9851 for
&gs. 8 and 9, respectively. These predictions agree well

with the results of simulation (mean 9900 and variances,
respectively, 7511 and 9900); actually, such agreement
can be improved to excellent by putting together (4.2)
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FIG. 8.. 8. Time dependence of the mean and the variance of the
photon number for a nonideal pump p=0.5, Np=100, a=100,
and d=0.99.

FI~.G. 10. Time dependence of the mean photon number for
all incoherent transitions on N=100, a=100, and d=0.99. (a)

Wlp 100W2p& Wpl 0& (b) W lp
= 100W2l ~ Wpp =0~ (c) Wlp =

W2p&

W21 —0; (d) W lp
= W2l +W2p+2W2p.
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number; the relative variance grows since the atoms may
now make multiple transitions between the working lev-
els and not every downward transition 2~1 produces a
photon in the lasing mode. When wz, is further in-
creased the steady-state photon number ( m ) „ falls
drastically.

Note. After finishing this work, we learned that J. Ber-
gon, L. Davidovich, M. Orszag, C. Benkert, M. Hillary,
and M. O. Scully have independently done similar inves-
tigations reaching partially identical conclusions. We
are grateful to M. O. Scully for informing us about that
work.
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APPENDIX A

In order to derive the rate equation (5.2) from the
operator master equation (2.11) we must first employ a c-
number representative for the density operator. A con-
venient choice is

W(r) ~P „(N„Nz, So„soz,Siz, r), (A 1)

N

oi X oi oi X io
@=1 p=1

(A2)

where for the sake of clarity a caret is used to distinguish
operators. With respect to the atomic variables P is a
quasiprobability whose moments equal expectation values
of "normally ordered" products of observables as'

which is a matrix with respect to the field mode, the in-
dices m and n referring to the Fock representation,
b~m ) =&m ~m —1). The remaining variables are c-
number associates of the operators used above. The real
quantities N& and Nz count the atoms in levels 1 and 2
while the polarization variables are complex; all of these
atomic variables are meant as collective ones, i.e., are as-
sociated with the sums of the corresponding single-atom
operators over all N atoms, e.g.,

( SoiSozSizk i AzSziSzoSio ) g fdN, fdN, fd 'S„fd 'S„fd'SizP (A3)

The latter identity also holds with arbitrary integral exponents on the operators and their c-number representatives.
The c-number variables chosen form a complete set in the sense that the master equation (2.11) for W(r) can be

translated' into an equivalent equation of motion for the quasiprobability I'

P „=g L „„.P .„.+(Azo+Az, +A, o)P „.
m'n'

(A4)

The coherent-interaction piece in (2.11), LW= —(i/vari)[H, z, W], here gives rise to the tetrad L „„.whose elements
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are differential operators with respect to the atomic variables,

L „„=g&m 5 ~,5„.„[e ' 'S, +d*, (N, N—)+O'S', —8; S*, ]
—g m + 15 ~,5„„(S&z +B*,Spz )+H. c. , (A5)

where H.c. implies m~n and I'~n' as well as complex conjugation for all polarization variables, S, ~S,*,

0,"=8/BS, ~B,*-, and the population variables N, and 8, —:8/8¹ remaining unchanged. The exponentials e ' appear-
ing here and below signal that the population variables N; take on integer values only.

The generators A2p, A22, and A&p do not directly involve the lasing mode and are thus diagonal with respect to the
photon number indices

t]
l 2A„=-,'~„I [1+a„a;,e '+( —a„+a„a„)(—a;,+a;,a;, )e ']

X[BpzBpz(N —N, —Nz)+B, zB*,ze 'N, +e 'Nz

1 a2 a2+ 2BpzB]ze (Sp] +ByzSpz )+2Bpze Spz +28&ze S]z ] Nz (BpzSpz +ByzSyz )+C.C ~
J

cl
l 2

Az&
=

—,'u'z, { (e '+B&zB;ze ')

X [BpzBpz(N N Nz )+B~zB~ze 'N, +e 'Nz

8
1 a2 a2

+2BpzB&ze '(Sp&+B&zSpz)+2Bpze 'Spz+2B&ze 'S&z] —Nz —(BpzSpz+B&zS&z)+c. c.I,
aA„= ~ ~„I [1+a„a;,e '+( —a„+a„a„)(—a;,+a;,a;, )e ']

X[8,B*,(N N&
—Nz—)+e 'N&+28, e '(Sp&+B&zSpz)] N, —Bp&—S,+B,zS,z+c.c. I .

(A6)

Due to the normal order of the operators S ", worked into
the definition of the quasiprobability P the above c-
number versions of the generators A; do not follow from
one another by mere index juggling. It may also be well
to note that the second and higher derivatives with
respect to the polarizations secure consistency with the
microscopic constraints S "; S "k =S ";k', this is how the col-
lective c-number variables remember that they refer to a
collection of three-level atoms. Finally, the conservation
law S ~pp+S ~»+S ~22= 1 is the only one of the microscopic
constraints on the observables of a three-level atom with
a simple macroscopic consequence Np+N&+N2 =N; this
is why the collective population of the ground leve1 need
not be considered as an independent variable and why
neither Np nor Bp show up in (A6).

The most important property of the quasiprobability P
is that it easily lends itself to an implementation of the
adiabatic limit (5.1) to which we now proceed. All vari-
ables assigned nonzero time rates of change for their
means by A&p are fast; these are obviously N, , Sp, , and

S,2. The remaining variables N2 and Sp2, as well as the
photon number, are slow. On the time scale 1/w&p the
fast variables relax into a certain adiabatic equilibrium
contingent on the current values of the slow variables;
they play no independent dynamical role any more dur-
ing the subsequent slow relaxation towards a final station-
ary state. To achieve adiabatic elimination we must con-
struct the evolution equation p = lp for the reduced
quasiprobability of the slow variables'

I

The generator l of the slow evolution can be calculated as
a power series in the small time-scale ratios implied by
(5.1).

To keep the promise of deriving (5.2) we must eventu-
ally go two more steps. First, the generator I, a tetrad
I „„ like the coherent interaction piece (A5), will turn
out not to couple the diagonal elements p with the
offdiagonal ones p „with mAn Secon.d, to leading or-
der in the time-scale ratio the polarization Spz and the
population N2 will be seen to evolve separately such that
we can, without additional approximations, simply in-
tegrate out Spz and thus find (5.2) to hold for

,Nz»—= fd'Spzp. (Nz Sp» } (A8)

P(0)=Rp(0), f R =1, A, pR =0,
fast

(A 10)

It must be stressed that this latter elimination of Sp2 and
the off'-diagonal elements p „with mXn is not an adia-
batic elimination; it rather arises from the fact that the
lowest-order evolution of p „(Nz,Spz, r ) separates
rigorously into several subdynamics.

For the first, adiabatic elimination we rewrite (A8) in
the form

p(r)= f P( )=rf e " " " P(0}, (A9}
fast fast

and assume, for the sake of technical convenience, the
special initial condition

p~„(Nz, Spz, r) =f P~„(N&,N SpzS z~, Sp& r)z,
fast

f = fdN~d Sp, d S z .
(A7)

with a reference distribution R which is normalized and
stationary with respect to A&p evidently, R is associated
with the atomic ground state. Putting together (A9) and
(A10) we find the quasiprobability p(r) related to its ini-
tial form by the time evolution operator



2820 FRITZ HAAKE, SZE M. TAN, AND DANIEL F. %ALLS

U(r)= e
(L +A2p+A2] +A]p)T

fast
(A 1 1)

and thus the time rate of change P(r) to p(r) by
jr(r) = U(r) U '(r}p (r). The formal generator of
infinitesimal time evolution U(r)U(r) is time depen-
dent, but relaxes towards a stationary form 1 on the fast
time scale 1/w, p,

I = lim U(r) U(r)
r» 1/w lp

(A12}

X[Bp Bzp (zN Nz)+e Nz+Bpze Bpz]+c.c. I

It may be well to point out that a different choice of the
reference distribution, not obeying A, pR =0, would yield
a different operator U(r) U(r) ' at finite times r 5 1/wip,
but the same asymptotic reduced generator (A12).

By expanding U(r) in powers of (L+Azp+Azi),
U(r) = U' '(r)+ U"'(r)+ U' '(r)+. . . ., we perturbative-
ly construct the generator l. This calculation follows
standard lines and requires only a few comments. In ad-
dition to the properties of R noted in (A10) we shall need
the identity f&, A, p( ) =0 as well as

f,.„af i(. )=0 where 8&„, may denote the derivative

with respect to any of the fast variables Sp„S,2, and N, .
We then immediately have U' '(r)=1, U"'(r)
= U '"( ~ )r, and thus I' '=0, I"'=U '"(~ )
= f r„,(L +Azp+Az, )R. Moreover, the reference distri-

bution R being related to the atomic ground state it as-
signs vanishing means to the fast variables

N1R = S12R = S01R =0

By inspection of (A5) and (A6) we at once conclude

f„„LR=0 and

2l"'=
—,
'

I [wzi+wzp(1+BpzBp e ')]

This indeed gives the incoherent-transition terms in the
rate equation (5.2).

The coherent-transition terms (-r) in (5.2) arise in

second order. Given that there are three original slow
processes (-wzp, wz„g) one might expect contributions
to I' ' from all six bilinear combinations of these small
rates. Actually, due to the properties of R already men-

tioned, only g arises. As the single new ingredient in the
second-order calculation we meet the time-dependent
mean

10 . . . 10

.fast fast

By immediately integrating out S02 we arrive at

T' '= f "drfd s f0 fast

S02 L R
N1P fast

(A15)

—
—,'(m +n +2)5 5„„]. (A16)

Obviously now, if p„(Nz, t) is diagonal in the photon
number indices, so is P „(Nz, t) and that time rate of
change is given by the matrix I' ' „„., which, in fact,
yields the coherent-interaction terms in (5.2).

APPENDIX 8

The derivation of (6.3) proceeds quite similarly to the
one of (5.2) just presented. If

We finally insert L into (A5) and find the tetrad, with

r =4g'/w ip

a2T' '.„„=r[&rnne '5,5„.„

—
—,'(w„+w„)(N, +a„S„+C.C. ) . (A13) ~21 + W21& W20, W10, 920, 910 (B1)

At this point a result anticipated above becomes accessi-
ble: by simply integrating out the polarization S02, we

obtain the first-order contribution to the generator for
the motion ofp (m, Nz, r) as

I =(wzi+wzp)(e ' —1)N, . (A14)

only the polarization S,2 is fast and can be eliminated
adiabatically. However, the other two polarizations Sp2
and S01 behave similarly as S02 in Appendix A and can
be integrated out in the end.

To proceed with the calculation, the increments 5A;
from (6.1) must be translated into c-number form

—8
5Aip= —7)ip[ [Bp~e +Biz( Bpz+ BpiBiz )8 ][5@i(N Ni Nz ) +e (Spi +Bizspz )]+c.c. )

5A =
—,'r) p[[5p —

Bp,B,z)[s z+e ' '8; (Sp, +B,zsp )+e 'Bpz(N —N, N)]+c.c. ), —

5Azl —uzi ( Blz[BpzBple '(N —Nt —Nz )+Bpze ' '(Spi +Bizspz )

By+8)+5*,zBp, e ' '(Sp, +B,zspz)+size ' 'N, +Bpispz+Siz]+C. C. J .

(B2)

Due to (Bl) 5Azi now generates the fast part of the evolu-
tion. The adiabatic reduction integration isf„„:fd'S„an—d weobviouslyhave f ,rA5=zi0.

It is again convenient to adopt an initial condition

analogous to (A10) with a normalized reference distribu-
tion R which is stationary with respect to 5A2, . Formal-

ly, R =lim, e
5A21 vRp

with Rp arbitrary save for

f Rapl. We need not construct R in full since only
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its moments

5A2)~(S,2)z= lim f S,2e "Ra=0,
fast

(B3)

will occur; these are easily found by considering their
time rates of change before taking the limit of t~
The third of Eqs. (B3) requires special comment. One
might expect R and its moments to depend "parametri-
cally" on the slow variables; after all, by its very
definition R invites the interpretation as an adiabatic

equilibrium distribution of S,z contingent on the "param-
eters" in 5Az, such as So&,X, , . . . . But 5A2, also con-
tains the "parameters" B,, t)2, . . . and therefore the mo-

ments of R may and do involve these operators as well.
These explanations given, the remainder of the argu-

ment is the same as in Appendix A. The incoherent-
transition terms in (6.3) arise in first and the coherent-
transition terms in second order of the expansion in
powers of the slow generators.

Needless to say, if all three phase destruction rates g,-.
are much larger than the w,. and g+ ( m ) „,all polariza-
tions may be eliminated adiabatically. The rate equation
(6.3) comes out unchanged.
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