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We describe the nonlinear dynamics of intracavity doubled multimode lasers. Baer [J. Opt. Soc.
Am. B 3, 1175 (1986)] observed irregular amplitude fluctuations in a multimode yttrium aluminum

garnet laser with an intracavity potassium titanyl phosphate frequency-doubling crystal; we identify
type-III intermittency as the route to chaos. Subsequently, Oka and Kubota [Opt. Lett. 13, 805
(1988)] demonstrated the stabilization of such a laser by the introduction of a quarter wave plate
into the cavity. A generalized model of rate equations for this case is introduced. It is shown that a
second route to chaos through a Hopf bifurcation, synchronization, and period-doubling sequence
occurs on rotation of the quarter wave plate within the cavity. In addition, we predict that the laser
output may be stable for particular lengths of the doubling crystal.

I. INTRODUCTION

The development of novel solid-state laser materials
has resulted in compact, narrow linewidth sources of ra-
diation in the near-infrared region. Furthermore,
through intracavity frequency doubling of these lasers, it
is possible to generate light in the visible range. Such
lasers and their doubled counterparts have been used for
injection-seeding high-power lasers and will in the future
replace more delicate, difficult to maintain gas lasers in
many applications. '

Our emphasis in this paper will be on fundamental
nonlinear dynamical phenomena like those that have
been experimentally observed in intracavity double yttri-
um aluminum garnet (YAG) laser by Baer. With a
frequency-doubling crystal in the cavity, Baer noted large
amplitude fluctuations in the output intensity during
multimode operation. Kennedy and Barry carried out
the stability analysis for such a laser operating with a sin-

gle longitudinal mode. The steady-state solutions of the
multimode rate equations used by Baer, and their stabili-
ty characteristics, have been analyzed thoroughly by Wu
and Mandel. ' Until now, there has been no comprehen-
sive analysis of the global nonlinear dynamics which un-
derlie the observed multimode instabilities. Such an
analysis is motivated not only by the desire to stabilize in-
tracavity doubled lasers; it also provides an important il-
lustration of the rich and complex phenomenology asso-
ciated with relatively simple nonlinear experimental sys-
tems. Predictions that are made in the course of this
analysis will allow the validity of the basic models to be
tested experimentally.

We will use numerical integration to examine the pre-
cise nature of the instability that was observed in an in-
tracavity doubled YAG laser and the experimental reso-
lution of this difficulty by Oka and Kubota. We general-
ize the model of laser rate equations to include arbitrary
angular settings of a quarter wave plate (QWP) within the

cavity. The dynamical behavior described by these new
equations is then studied. Two different routes to chaos
are established, one through intermittency and the other
through a Hopf bifurcation and period doubling.

This paper is organized as follows. The basic rate
equations for multimode intracavity doubled lasers are
given in Sec. II. The modification of these equations
when a QWP is inserted in the cavity is then dealt with
for arbitrary settings of the plate's fast axis. The chaotic
dynamics of the laser without the QWP is studied in Sec.
III. We examine the route to chaos as the cross satura-
tion parameters for the modes are varied, and discover
intermittency. A quite different approach to chaos is ob-
tained when we vary the setting of the QWP for a fixed
value of the cross saturation parameters, as seen in Sec.
IV. A Hopf bifurcation, synchronization, and period
doubling are observed as the laser proceeds towards
chaotic behavior. We conclude with a summary of our
results and suggestions for future experiments. This pa-
per expands upon a previous work.

II. MODELS FOR INTRACAVITY-DOUBLED LASERS

The laser system we use to exemplify intracavity dou-
bling is the diode-pumped YAG laser with an intracavity
potassium titanyl phosphate (KTP) crystal shown in Fig.
1. The left end of the YAG rod is coated to transmit the
diode laser radiation, and reflect the YAG fundamental
wavelength (1.06 pm) and second harmonic wavelength
(0.532 pm) with high efficiency. The KTP crystal is
type-II phase matched. The output mirror transmits the
green, but is a high reflector for the fundamental wave-
length. It is possible to select a small number of lasing
modes by introducing etalons into the cavity.

Without a quarter wave plate in the cavity, Baer ob-
served large, irregular amplitude fluctuations of the total
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FIG. 1. Schematic of the diode-pumped YAG laser with in-
tracavity KTP doubling crystal. Baer's laser used no QWP.
Oka and Kubota included the QWP but did not restrict the
number of longitudinal modes with etalons.

intensity of the second harmonic when the laser was
operated in three or more longitudinal modes. In two
mode operation, periodic pulsations were observed. To
utilize the larger power output available in multimode
operation, it is often necessary to eliminate the irregular
fluctuations. Oka and Kubota did just this; they devised
a scheme with an intracavity quarter wave plate that
decoupled the field components along the fast and slow
axes of the birefringent KTP crystal. Stable multimode
operation of the laser was obtained with the fast axis of
the quarter wave plate aligned at m/4 radians with
respect to the extraordinary axis of the KTP crystal.

Solid-state lasers like the Nd: YAG fall into the
category of class-8 lasers defined by Arecchi et al. Also
included in this class are Ti:sapphire and semiconductor
lasers. For all class-B lasers, the relevant equations of
motion are those for the intensity I and the population
inversion G; the polarization is adiabatically eliminated.
The rate equations used by Baer to model N longitudinal
modes in an intracavity doubled laser were

hand, the total intracavity intensity at the second-
harmonic wavelength is the combined effect of
frequency-doubling and sum-frequency generation. The
intensity of this signal is then

e QI +4+ IIq (2.2)
j=l jkj=1

j~k

This distinction is important in order to compare the
model with experiments, in which either the total funda-
mental or second-harmonic intensity is easily measured.

When a quarter wave plate is introduced into the laser
cavity, its orientation is defined by the angle P between
the extraordinary axis of the birefringent KTP crystal
and the fast axis of the QWP (Fig. 2). The birefringence
of the QWP can split each longitudinal mode into two
frequency components with different polarizations. Oka
and Kubota examined the special cases when g=m /4 and
when /=0 or m/2. For the latter settings, they showed
that the polarization modes were coupled through sum-
frequency generation. At g= n/4, how. ever, there was no
sum-frequency generation; the intensities of the polariza-
tion modes were thus uncoupled, and the second-
harmonic output was stabilized.

The analysis performed by Oka and Kubota began
with the computation of the round-trip Jones matrix for
the cavity configuration in Fig. 1, with no restrictions on
the number of longitudinal modes. We extend their
analysis to include arbitrary values of the QWP angle g.
Let 5=(n, no)(2—r/rA, )l be the single-pass birefringent
phase shift of the fundamental wave (of wavelength A, ) in
the KTP crystal of length l; n, and n., are the refractive
indices along the ordinary and extraordinary axes of the
crystal. The Jones matrix can be determined from

dI X

G~
—

a~ eIJ 2e —gIk —IJ,
k=1
kwj

dG.
=G)~ G/ I+pJIJ+—g p&kIk

kWj

(2.1a)

(2.1b)

M =C(5)R(g)C(n/2)C(m. /2)R ( —f)C(5), (2.3)

exp(i5)cos(2$) sin(2$)
M =i

sin(2$) —exp( —i5)cos(2$) (2.4)

where C(5) is the matrix for the KTP birefringence, R (f)
is the QWP rotation, and C(n. /2) is the QWP retarda-
tion. The expanded round-trip matrix is then

where j =1,2, . . . , N; ~, and ~f are the cavity round trip
time and fluorescence time, respectively; a is the cavity
loss for the jth mode; G is the small signal gain; p, and

p k are self-saturation and cross saturation parameters;
and e is the nonlinear coupling coefficient due to the pres-
ence of the intracavity doubling crystal. In Eq. (2.1a), the
quadratic terms I and I Ik account for the loss in inten-
sity of the fundamental frequencies through second-
harmonic generation and sum-frequency generation.
Whereas in the first process two photons from the same
longitudinal mode are converted into a green photon, the
combination of photons from two different modes pro-
duces the sum frequency described by the intensity cross
products. Baer identified this sum-frequency coupling as
the nonlinearity which destabilizes Eqs. (2.1).

For a multimode laser modeled by these equations, the
total intracavity intensity at the fundamental wavelength
is expressed as the sum I, +I2+I3+ . . On the other

e
j)

fast
axis

0

KTP
CRYSTAL

FIG. 2. The angle P is defined by the relative position of the
KTP crystal extraordinary axis and the fast axis of the QWP.
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and

E, (co, ) =( ~E, ~/N, )exp[i(co, t+g, )]
1

r

B2
E2(a)2) =( ~Ez/N2)exp[i(co2t+qr2)]

2.

(2.5a)

(2.5b)

where y, and y2 are arbitrary phase shifts and

8, =cos(2$)cos5+[cos (2$)cosz5+sinz(2$)]'~2,

C, =sin2$,

82 =
( cos(2$)cos5

—[cos (2$)cos 5+sin (2g)]'~') /sin2$,
(2.6)

I

An electric field oscillating in a cavity described by the
matrix M must be an eigenvector of that matrix. Two
general polarization states E,(~,) and E2(m2) with com-
ponents along the extraordinary and ordinary axes of the
KTP crystal can be defined as

B,

C2=1,

~ =(B2+C2)&/'2

N =(8'+C')'" .2 2 2

These normalizations were chosen so that E, and E2 are
still orthonormal in the limit as $~0 or vr/2 T.he fre-
quencies co& and co2 are generally very close but not identi-
cal, so the sum frequency (co, +co&) is very near 2', . It is

possible, in fact, that E, and E2 are generated by the
same longitudinal mode, due to the optical path
difference through the QWP fast and slow axes. In that
case, co, and co2 are spaced by half of the cavity resonant
spacing since the optical path length for the two polariza-
tions differs by half a wavelength.

Now the polarization P introduced by E,(co, ) and
E2(cu2) can be calculated. Let E, be the sum of the ordi-
nary components of E, and E2, and let E, be the sum of
their extraordinary components. Then

P(co) +m z)=d, trE, (co), cuz)E, (col, u2)

E)B] i(~, r+g, ) E2B2,(„2,+

] 2

E]C( I {Q),+q ) E2C2 I(&~,t+g, )

(2.7)

where d, ff is the effective nonlinear coefficient for KTP.
In this general setting, we can now work out the time-

averaged second-harmonic output:

I ( a), + co~ ) = {P ( cu, + co~ )P *(co, + co ) )

the green light is generated by sum-frequency generation.
For the case where g=n. /4, g =1 and only frequency
doubling generates the second harmonic. These values,
of course, precisely reproduce the calculations of Oka
and Kubota:

=d [I,(8 C] /N, )+I (8 C /N )

+I,I2[(8,C2+82C ) ) /N )N, ] ) .

d', „I,I2, /=0 or rt/2

(d,q/4)(I i +Iq ), f=m /4 .
(2.12)

(2.8)

g =48,C, /(N, ),
o =2(B,C2+82C, ) l(N, N2) .

(2.9a)

(2.9b)

A straightforward calculation reveals the simple relation

cr =2(1—g), (2.10)

so that Eq. (2.8) finally becomes

I(co, +co~)=(d,tt/4)[g (I, +I2)+4(1 g)I, I, ] . (2.11)—
In the limits where /=0 and n /2, one finds g =0 and

The I, and I2 terms represent second-harmonic gen-
eration by the frequency doubling of each mode. The
I,I2 cross term corresponds to sum-frequency genera-
tion. It is interesting to determine the relative weights of
the coefficients in Eq. (2.8). First, a careful reduction
shows that the coefficients for I, and I2 are identical. We
then define a doubling coefficient g and a sum-frequency
coefficient 0. by

dI
C' di

N

G, —a, gcI, —2(1 —g)e g—I„ I, ,
k =]
k~j

(2.13a)

d6, =G —G 1+@I+ g pkI„
k=1
kWj

(2.13b)

Only the coefficient g contains the dependence on the an-
gle P between the QWP fast axis and the KTP crystal ex-

Varying the QWP angle g between these values causes a
trade-off between the frequency-doubling losses and
sum-frequency losses. In Fig. 3 we plot the coefficients g
and o as functions of the QWP setting g and the KTP
birefringence 6. The curves are symmetric about

/4, and the v.alues of g and o at /=0, n. /4, and n/2.
are generally independent of the coefficient 6. However,
when 5=~/2, Eqs. (2.9) indicate that g is identically 1

and o is identically 0 for all values of g. This fact has im-
portant implications which will be discussed in Sec. IV.

The rate equations for a general setting of the quarter
wave plate are now written (j= 1,2, . . . , N) as
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0 ~/4
QWP Angle qP

FIG. 3. The doubling coeScient g (thick lines) and sum fre-

quency coefficient cr (thin lines) are functions of the QWP angle

P and the KTP birefringence 5 (,5=0 and F-, ———,
5=0.4m and 0.6m).

traordinary axis. In these equations it is assumed that
the losses due to sum-frequency generation are divided
equally between the participating modes. Thus, the cross
term coefficient in (2.13a) is 2(1 —g), not 4(1 —g) as in Eq.
(2.11). The coefficient e (in units of W ) can be obtained
from the coefficient d, tr (in units of m/V) by appropriate
scaling:

e=d, tr/(4eocD ), (2.14)

III. INTERMITTENCY ROUTE TO CHAOS

The model equations (2.1a) and (2.1b) are a set of cou-
pled differential equations with quadratic nonlinearities
which describe second-harmonic generation in a class-8

where D is a suitable atomic length parameter for the
crystal. The gain equation, Eq. (2.13b), is unaffected by
the presence of the QWP.

We note a subtlety in the definition of the I, variables
in equation (2.13a). In the previous model [Eqs. (2.1)] I,
represented the intensity of a longitudinal mode at a
given frequency. With a QWP in the cavity, each longi-
tudinal mode is split into two polarization modes of
different frequencies. This is due to the optical path
difference through the fast and slow axes of the QWP.
Thus, for a laser cavity which allows M longitudinal
modes to oscillate, there can be up to 2M different fre-
quency components E, (co, ) present in the cavity. The
variables I, then represent the intensities of these fre-
quency components.

In Eq. (2.13a), the magnitudes of the losses due to
frequency-doubling and sum-frequency generation de-
pend on the value of g, which varies continuously with
the QWP setting l(t. It should thus be experimentally
straightforward to study the dynamics of the laser as the
angle P is changed. In the following sections we will
determine the characteristics of the chaotic dynamics
predicted by the model equations (2.1) and Eqs. (2.13).

a =a,
Go (3.1)

P)q =P, j,k =1,2, 3 .

We have scaled the intensity so as to let I, , P, and e be di-
mensionless, and to let /3 =1. The gains 6 are already
dimensionless. The other parameter values used by
Baer were ~, =0.5 nsec, ~& =0.24 msec, a =0.015,2

y =0.12, and e =5.0 X 10
With these parameter settings, and 0 (P (0.2910,

periodic behavior of the total intensity is observed. The
individual mode intensities cycle on and off as shown in
Fig. 4(a); we call this cycle of alternating peak intensities,
I]-I2-I3-I, — - . , a forward sequence. This periodic solu-
tion coexists in phase space with an analogous reverse se-
quence whose intensity peaks alternate in the reverse or-
der, I3 I2 I, I3 . . For -the-se -val-ues of P, the two se-

quences appear to be the only stable solutions; initial con-
ditions dictate which solution is selected.

In Fig. 4(a) we note that when I, turns on and peaks,
the other two intensities are negligible. In fact mode 1

laser. The example from which we draw parameter
values for our calculations is the intracavity doubled
YAG laser operating with multiple longitudinal modes.

The large irregular amplitude fluctuations noticed by
Baer in such a laser are clearly deterministic in origin. It
is important to note that the time scales for decay of the
fundamental intensity [(r, /a )=30 nsec] and for the
gain (r&=0 24 .msec) are rather different in magnitude in

a YAG laser. The intensities of the modes are thus deter-
mined almost instantaneously by the values of the gain
variables. Therefore, it is not surprising that three or
more modes must exist in the laser before chaotic behav-
ior arises.

The magnitudes of the cross saturation parameters P,k

determine the extent of coupling between the different
modes in the' laser. If these are very small (P k =0), the
modes are essentially independent of each other, and
there is no competition between them. They may then all
coexist in steady-state operation. This situation can
occur if the gain medium is inhomogeneously broadened
and if there is little spatial overlap of the modes. If the
coupling between the modes is appreciable, i.e., spatial
hole burning is not a major factor, and the gain medium
is primarily homogeneously broadened, the parameters
)33 k may be sizeable. Baer took P k =0.66 in his calcula-
tions and obtained irregular amplitude fluctuations. It is
possible to vary the coupling between the modes by
changing the cavity configuration and etalon characteris-
tics. In the calculations reported here, we examine the
behavior of the laser as the magnitude of the cross satura-
tion coefficients is changed.

To simplify the model and computations, we limited
the laser to three active modes which are sufficient to al-
low interesting chaotic dynamics to occur. The behavior
of the total intensity (I, +Iz+I3) then displays the ex-
perimentally observed irregular fluctuations. The basic
dynamics are also unaffected by the choice of symmetric
mode parameters in Eqs. (2.1):
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0 &P &0.2910, the numerical trajectories were attracted
to one of the periodic sequences for all the initial condi-
tions that were attempted.

We can deduce important qualitative features of the
flow dynamics from several simple observations of how M
maps the points on the curve which passes through C.
First, points on the curve to one side of C are mapped to
the opposite side of C. The point S&, for instance, is

mapped to S2. This indicates the existence of a Floquet
multiplier (of the Jacobian of M evaluated at C) with a

negative real part. Such a multiplier will eventually sig-
nal the type of intermittency in the system. Next, all the
points on the curve between S, and S2 are mapped to-
ward C, as indicated by the arrows. (This is a map, not a
continuous flow, so the arrows indicate only tendencies of
the map. ) The negative multiplier still causes points to
flip-flop across C, but along this arc they converge to-
wards C with each iteration. Finally, the points outside
the S&-S2 arc are repelled from S~ and S2 unti1 they leave
the curve. After falling off' the curve, a point will be

CD

O
O

(~) P = 0.2900

~r
S2

~ ~

CD

O
O

(b) P = 0.2905
~0 0 oo~ ~

s,
r~ ~

O

O

0.01635
I I I I I I

0.01670

O

O
O

0.01635 0.01670

CD

O
O

(c) P = 0.2910
:0

~ 4 l'
L

2

t3 = 0.2

0 = 0.2910

2T-Periodic Points

'.0O

O ~

O
I I I I I I I I

I

~I~

0.01635 0.01670
WW&WWWW&WWW&

P = 02910

FIG. 6. (a) The reflected Poincare map for p=0.2900. The stable point C corresponds to a T-periodic solution. The saddle points
Sl and S2 correspond to an unstable 2T-periodic solution. The map M is not a continuous flow in the plane, so the arrows indicate
only tendencies of the map. G2 and G3 are the dimensionless gains for the second and third modes, respectively. (b) The reflected
Poincare map for p=0. 2905. (c) The reflected Poincare map for p=0. 2910. (d) Schematic of the inverse pitchfork bifurcation of
2T-periodic points for p near 0.2910. Solid lines indicate stable points; dashed indicate instability. We note that the T-periodic point
C is also 2T-periodic.



GLENN E. JAMES, EVANS M. HARRELL II, AND RAJARSHI ROY

mapped either towards the opposite fixed point or will re-
turn to a neighborhood of the SI -Sz arc.

The global dynamics in Fig. 6(a) with @=0.2900 are
now more clear. The curve through C is strongly attrac-
tive in the transverse direction. The point C is a stable
hyperbolic fixed point of M, and corresponds to a period-
ic solution of the flow, of some period T. The points S,
and Sz map onto each other under M, and correspond to
an unstable periodic solution of period 2T. There are re-
gions of the phase space that allow passage from the vi-
cinity of one periodic sequence to the other, but once a
trajectory approaches the S, -Sz arc of one of the se-

quences, the trajectory will converge to that particular
periodic orbit. In the unreflected Gz-63 plane we then
have two stable T-periodic solutions and two unstable
2 T-periodic solutions.

In Fig. 6(b), with P=0.2905, the stable and unstable
manifolds of C retain the same structure. The point C is
completely stable, while S, and Sz are saddle points in
the plane. However, for this increased value of P, the un-
stable 2T-periodic solution indicated by S, and Sz lies
closer to C. In Fig. 6(c), P=0.2910, and the points S,
and Sz have collapsed onto C so that C is transformed
into a saddle in this plane. As 13 increases through 0.2910
we get the inverse pitchfork bifurcation sketched in Fig.
6(d). The transfer of instability at the critical value
(P=0.2910) renders the T-periodic solution unstable and
provides the mechanism for intermittency.

The laminar or regular portion of the intermittent flow
appears for points in the neighborhood of C [Fig. 6(c)].
This point is still strongly attractive in the transverse
direction. Moreover, the periodic orbit is just barely un-
stable for P=O. 3, so points near C are mapped away very
slowly. This implies that initial conditions very close to
C may appear T periodic (or even 2T periodic) for a long
time. Such flow constitutes the laminar portion of the in-
termittent behavior.

Turbulent flow appears eventually because the instabil-
ity of C forces points away from it, and all trajectories
must proceed off the end of the L, -L~ curve in Fig. 6(c).
Once o6' the curve, a trajectory wanders about in a fairly
thin attractor in the phase space until it approaches a
neighborhood of either periodic sequence. The trajectory
then reenters the laminar region of phase space. The typ-
ical time history in Fig. 7 clearly displays the laminar and
turbulent behaviors in the total fundamental intensity.

To characterize the intermittency, we have already ob-
served the inverse pitchfork bifurcation which suggests
that the primary Floquet multiplier passes through —l.
We confirm this analytically by calculating the eigenval-
ues of an approximation to the Jacobian of M in the
neighborhood of C. We denote the equilibrium C as the
vector c={c,,cz, c3,c4, c5} and the unit basis vectors as
e, , i =1,2, 3,4, 5. Next we define sma11 displacement vec-
tors h, =h, e„where the scalar quantity h, =0.001c, . %'e

then formulate a standard approximation to the Jacobian
by

M(c) —M(c —h, ) M (c) M(c hs—)—
h,

' '
h~

(3.2)

LAMINAR

P = 029201
LAMINAR

. t[«(«(t~t&t[t&t&» t I t tomtit[(itit[t[t[ [I [I t [ «[t t t (I' 0 t
CO I I I I I I I I I

[
I I I I I I I

0.0 1.0
I I

[
I I I I I I I I I

[ I I I I I I I I I

3.02.0 4.0
time (100 @sec)

FIG. 7. For P=0.29201, the total fundamental intensity (in

arbitrary units) displays regions of laminar and turbulent behav-
ior.
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FIG. 8. Eigenvalues of the Jacobian J, evaluated at the equi-
hbrium C, for P=0.2500, 0.2800, 0.2900,0.3000,0.4000 (dimen-
slonless). All eigenvalues are real for P in this range. C be-
comes unstable when the magnitude of the principal eigenvalue
(indicated by +) is greater than 1.

This approximation requires J to be nonsingular at c,
which is true except for 13 precisely equal to its critical bi-
furcation value, slightly less than 0.2910.

It is straightforward to find the coordinates of c when

P & 0.2910, where c is stable. In such a case, one simply
numerically integrates until the trajectory converges to a
small neighborhood of the periodic orbit. However, for
values of P greater than 0.2910, c is unstable and one
must find this point another way. We used the Poincare
map M and defined a function F(x)=x—M(x). Even
though c is unstable, it is still a zero of I', so we used a
discrete Newton's method to find this zero. This tech-
nique for locating unstable fixed points of the Poincare
map is known as homotopic continuation. ' '"

%e calculated the eigenvalues of several approxima-
tions to J for P=0. 3 (Fig. 8). The periodic point loses its
stability when P=0.291 and the principal eigenvalue of J
decreases through —1. This clearly characterizes the loss
of stability as type-III intermittency. '

Further evidence of type-III behavior appears in the
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FIG. 9. For p=0. 29201, 1000 consecutive peak to pe-ak-

times t(i) of the total fundamental intensity (I, +I,+I3). The
plotted cubic is 0.03(t —5.9)'+ 1.1(t —5.9)+5.9.

cal trajectory as flow whose intersection with the plane
G, =0.17 lies in the L, -Lz curve in Fig. 6(c). Since the
time of return to the plane remains nearly constant for
points near C, we approximated the duration of laminar
flow by counting the number of consecutive points which
stay on the curve. The distribution of this count in Fig.
10 conforms to the model distribution described by
Pomeau and Manneville. The long tail in this histogram
is weighted (in the limit) such that the distribution is not
normalizable. A meaningful characteristic time scale,
then, is an average of the inverse of the laminar flow
duration. We found the period of the Poincare map in
the laminar region to be approximately 18 psec. We then
defined the time duration of laminar flow

ti =(18 @sec)X (the number of consecutive points on

L, -L z) and calculated ( I /t& ) = —,', psec
The transition from intermittency to "complete"

chaos, for larger values of P, is difficult to detect numeri-
cally. The L, -L2 curve in Fig. 6(c) is an unstable mani-
fold of C, and flow on that curve eventually returns to a
neighborhood of C's stable manifold. However, the thin-
ness of the attractor around L, -L~ obscures the trajec-

time spacing between peaks in the total intensity. We be-
gin with a long numerical trajectory for the example
P=0.29 201 (part of which is shown in Fig. 7) and create
a sequence Ir, , t2, r3, . . . ) of 1000 peak-to-peak times. In
Fig. 9 we plot the second return times for this sequence,
i.e., t, +2 versus t;. The resulting figure displays the local-
ly cubic form which is typical of the generic return map
that generates type-III intermittency. '

The type of intermittency is also evident in the distri-
bution of the durations of laminar How in a single trajec-
tory. Pomeau and Manneville indicate the approximate
distribution which is characteristic of this type of inter-
mittency. ' We defined laminar behavior in our numeri-
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FIG. 11. (a) Chaotic Aow on the Poincare section Gl =0.017
for p=0. 6000. G, is the dimensionless gain for the jth mode
(j =1,2, 3). (b) Total fundamental intensity output (in arbitrary
units) for P=0.6000.



2786 GLENN E. JAMES, EVANS M. HARRELL II, AND RAJARSHI ROY 41

(a) f = 0.116007r
CC

CO

(b) g = 0.115007r

~ ~

~
~

~ 0yt«' ~

~+ Oq

y~ ~f~
~ ~

~ g
~ ~

g
~ f

Y

~0

~v 0
1 ~ ~ ~ y+ r woo

0.0155B
I I I I

0.01565 0.01554
I I I I

0.01568

O )

O
(~) $ = 0.114307r l( = 0.114057r

I I

0.0155 0.0157 0.0155 0.0157

(~) $ = 0.11400rr

'~

CQ

O

CQ
C)

C)
CO

(t) f = 0.11350rr

0++ ++A 0
~ 0 +0

ee++4+ ~ ~ ~~ ~ ~
~ ~

~
~ ~ ~ ~ ~ g

~ ~ +Vtt ~ g ~ ~
~ a ~ 0 %~II

~ ~ ~

r~C

~go

~
~ t~~

~ a',&t ~s y
~ ~ p

~0 o~ V&a .e.ij y
I

I I I I I I
I

0.0155 0.0157 0.01546 0.01572

FIG. 12. (a) —(h) Poincare maps for t( varying from 0. 11 600m. to 0.11 290m. . G2 and G, are the dimensionless gains for the second
and third modes, respectively.



INTERMITTENCY AND CHAOS IN INTRACAVITY. . . 2787

(I} f = 0.113007T (h} f = 0.112907T

1

~h

CO
C0

O
CO I T T

0.0155 0.0157

Rj
o
~

r

0.01550 0.01573

FIG. 12. {Continued).

tories returning to C. %e conjecture that, at some value
of p between 0.4 and 0.6, the unstable manifold becomes
tangent to the stable manifold. The complications in the
How contingent with the creation of such a tangency are
sufficient to produce chaos. ' '

When 0.4(p(0.96, the flow is chaotic on a strange
attractor like the one shown in Fig. 11(a). The chaotic in-
tensity output for p=0.60, the approximate experimental
value used by Baer, is shown in Fig. 11(b). Another tran-
sition occurs for p between 0.96 and 0.98. We observe an
inverse cascade which stabilizes the flow, and for p & 0.98
the only allowed solutions are those for which a single in-
tensity is stable and nonzero, while the other two intensi-
ties are forced to zero. This behavior persists for values
of P up to 2.0.

As in the numerical studies of Shih et al. ,
' we have

identified a particular route to chaos which has been ob-
served in experiments. The Poincare maps, in particular,
allow us to trace the specific origins of the instability
which generates type-III intermittency in this system. It
is also interesting to note that the chaotic behavior ap-
pears via coupling in the intensity relations rather than in
the complex field equations.

IV. ROUTE TO CHAOS VIA QWP SETTING

In this section we study the chaotic dynamics of Eqs.
(2.13) which model intracavity doubling with a quarter
wave plate (QWP) in the cavity. A comparison of Eqs.
(2.1) and (2.13) reveals that the entire eff'ect of the quarter
wave plate is contained in the parameter g, which de-
pends on the birefringence of the doubling crystal, 6, and
the angle P between the fast axis of the QWP and the ex-
traordinary axis of the KTP crystal. There is a trade-off
between the production of green light by frequency-
doubling and sum-frequency generation. The factors of
the quadratic terms in (2.13a) are such that when g =1
(/=a/4), only frequency doubling oeeurs, while when

g =0 (/=0 or m/2), sum-frequency generation is the
only mechanism for production of green light. Thus, the
QWP setting enhances the role of one or the other source

of nonlinearity in Eq. (2.13a).
Oka and Kubota have shown experimentally that the

output intensity of the laser is stable when g =1, and ir-
regular when g =0. A linear-stability analysis for the
former case supports their experimental observation; in
the latter case, a numerical study of the dynamics is
necessary to obtain a full understanding of the system.
%e report in this section the results of an investigation of
the dynamical behavior of the laser predicted by Eqs.
(2.13) for difFerent settings of the QWP, starting with the
stable behavior at 1(

=
m /4, and progressing towards

chaos as g is decreased to 0. Exactly similar behavior
would be seen if g were increased to n. /2 since g is a sym-
metric function of f (Fig. 3).

The steady-state stability of Eqs. (2.13) when g =1 is
very important with respect to g's dependence on the
KTP birefringence 5. It has already been shown that for
5=7r/2 the parameter g is identically one. This implies
that if one can produce a KTP crystal whose
birefringence is an odd multiple of m /2, the model equa-
tions (2.13) predict the laser will have stable steady state
output regardless of the QWP angle P.

We again limited our system of equations (2.13) to
X =3, the minimum number of intensity and gain rela-
tions necessary to allow chaotic behavior. %e also chose
symmetric parameters as in Eqs. (3.1). We fixed the cross
saturation parameter p at 0.60, which was sufficient cou-
pling in Eqs. (2.1) to allow the generation of chaos. We
calculated the KTP birefringence 6 using crystal length
I =3.4 mm and refractive indices' n, = 1.7458 and

n, = 1.7381. The other parameter values were the same as
in Sec. III: P =1 (j =1,2, 3), v, =0.5 nsec, v&=0. 24
msec, a=0.015, y=0. 12, and a=5.0X10

For P=vr/4, where the intensity relations are uncou-
pled, we see a stable steady-state solution with all three
intensities identical. This steady state persists until
/=0. 1250m, when two T-periodic solutions arise, a for-
ward and reverse sequence like those seen in Sec. III.
The fact that the steady state remains stable for such a
large range of g suggests that, for our selection of param-



2788 GLENN E. JAMES, EVANS M. HARRELL II, AND RAJARSHI ROY

$ = 0.1160(br 0» g = 0.11500rr

o -9—
0

o 9—
hg)0

-13
I I

0.0 2.5 5.0 7.5 10.0 12.5

Frequency ( 10 kHz)

-13
I I

0.0 2.5 5.0 7.5 10.0 12.5

Frequency ( 10 kHz)

(e& g = 0.11430rr (~) f = 0.114057T

-9—
0

o 9—

0

I I I I I I I I

0.0 2.5 5.0 7.5 10.0 12.5

Frequency ( 10 kHz)
0.0 2.5 5.0 7.5 10.0 12.5

Frequency ( 10 kHz)

(~) f = 0.11400rr (r» f = 0.11350rr

o -10—
0

o -9—
0

-14
0.0 2.5 5.0 7.5 10.0 12.5

Frequency ( 10 kHz)

-13
I I I

0.0 2.5 5.0 7.5 10.0 12.5

Frequency ( 10 kHz)

FIG. 13. (a)—(h) Power spectra Fof the total intensity output corresponding to the maps in Fig. 12.
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FIG. 13. (Continued).

eters, the laser output is not sensitive to the precision of
the QWP setting near g=rr/4. While f is between
0.1250vr and 0.1200m, the stable steady state coexists in

phase space with the two stable periodic sequences; initial
conditions dictate which solution eventually attracts a
trajectory. These three solutions all lose their stability
when g is less than 0.1200tr. At this same value of g, a
period doubling occurs (from each periodic sequence) and
produces a 2T-periodic solution. The Poincare map in
the 62-63 plane reveals the interesting flow structure in
the neighborhood of this solution. In Fig. 12(a), the 2T
periodic flow corresponds to the point at the center of the
spirals; the two inward spirals are points which belong to
a single trajectory. This suggests the presence of complex
conjugate Floquet multipliers with negative rea1 parts.
The logarithm of the frequency spectrum F shown in Fig.
13(a) is calcualted from the fast Fourier transform of the
total fundamental intensity; f, is the frequency of the
2 T-periodic solution.

The next transition, for /=0. 1150~, is a Hopf bifurca-
tion to a stable torus. In Fig. 12(b) a single trajectory
spirals outward along five distinct spirals to a closed loop
in the plane. This loop is the cross section of a stable
torus in the full phase space. There are two main fre-

quencies governing this trajectory. The first, fi, corre-
sponds to the trajectory's time of erst return to the plane;
this frequency is necessarily very close to that of the 2T-
periodic orbit. Some second frequency, f2, corresponds
to the time needed to wind transversely about the torus.
For /=0. 1150tr, f, /f2 is irrational, so the trajectory is
dense on the torus and the Poincare map shows a closed
figure. When g is further decreased to 0.1143tr, the fre-
quencies synchronize to make f, /f~ rational, and the
Poincare section in Fig. 12(c) shows the 11 periodic
points of a single trajectory. The route to chaos now fol-
lows a period-doubling sequence as P takes on values
from 0.1143tr to 0.1135m [Figs. 12(c)—12(f)]. A typical in-

tensity output in the chaotic regime is shown in Fig. 14.
For 1((0.1135tr the flow is almost always chaotic [Fig.
12(f)], but there is at least one periodic window. The five

periodic points in Fig. 12(g) represent synchronized flow
on a torus for /=0. 1130tr. The first period doubling of
this solution is shown in Fig. 12(h).

The route to chaos which begins with a Hopf bifurca-
tion and synchronization is not unusual. The Curry-
Yorke model, for instance, synchronizes to three periodic
points following a Hopf bifurcation. ' The subsequent
destabilization of flow on the torus similarly leads to
chaotic behavior.

f = 0.113S7r V. CONCLUSION

I I I 1 I I I I I
l

I I l I I I I

0.0 1.0 2.0 3.0
time ( 100 p,sec)

4.0

FIG. 14. Total fundamental intensity output (in arbitrary
units) for /=0 1135m.. .

Our study of the nonlinear dynamics in intracavity
doubled lasers began with a review of the rate equations
used by Baer. With the model restricted to three oscil-
lating modes, our investigation of intensity output as a
function of the cross saturation parameter revealed a
type-III intermittency route to chaos. We extended the
analysis of Oka and Kubota to modify these equations to
include the effect of a quarter wave plate in the cavity at
an arbitrary angular setting. We found that the intensity
output was stabilized when the KTP birefringence 5 was
an odd multiple of n. /2, independent of the QWP angle.
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We then studied the system behavior as the QWP angle
was varied. The result was a route to chaos via Hopf bi-
furcation, synchronization, and period doubling. The
presence of a periodic window was also observed.

We believe that Eqs. (2.13) require refinement to model
all the important experimental features of intracavity
doubling. A realistic model should explicitly identify the
polarization directions of individual modes and account
for the couplings between modes in the same polarization
state, as well as between orthogonally polarized modes.
We will present experimental results and a more com-
plete theoretical treatment in a future publication.
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