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We employ recently published data on the dc Kerr effect and electric-field-induced second-
harmonic generation in N„O&, H&, and Ar gases to calculate the nonlinear-optical indices govern-

ing self-focusing, self-induced changes in the state of polarization, and third-harmonic generation,
over a wide range of wavelengths in these gases. We construct a new, one-parameter, dispersion for-
mula that not only fits all existing data on the above gases, but also fits recent quantum calculations
of each tensor component of the third-order optical susceptibility of helium, over a wide range of
frequency arguments. We compare the difference between the predictions of this formula and the
predictions of a previously used formula based only on linear refractive-index dispersion. The
difference is negligible at 1053 nm but becomes significant at blue or shorter wavelengths ((350
nm), where it indicates the uncertainty in our dispersion calculations. We find the coefficient for
self-induced polarization changes in one atmosphere of air to be c,2„(—co, ~, cu, —cu )

=(24+2) X 10 ' esu, at 1053 nm and 20'C. This is consistent with one of two reported measure-
ments of this coefFicient.

I. INTRODUCTION

The intensity-dependent change in the state of polar-
ization (ICSP) of a high-power laser beam as it propa-
gates through the amplifiers, lenses and air paths of a
large laser system such as Nova' has been observed to
cause various unwanted effects, such as a reduction in the
efficiency of harmonic generation and energy loss from
polarizing surfaces. ' These and other effects of non-
linear refraction, such as the self-focusing of a high-
power laser beam in an isotropic transparent medium are
described by two medium coefficients, which by com-
mon convention are called c» „(—co, co, to —co) and

c»2, (
—to, co, to —co), and are often referred to as the "e

coefficients" for degenerate four-wave mixing
(DFWM). ' Two published, independently measured,
values of c „2, for air at 1053 and 1064 nm differ by a fac-
tor of 2. ' In this paper, we use recently published mea-
surements at 515 nm of the dc Kerr effect and electric-
field-induced second-harmonic generation to calculate
the ICSP (Ref. 10) and self-focusing coefficients over a
wide range of wavelengths for N2, 02, H2, air, and argon
gases. We construct two methods to predict the disper-
sion of nonlinear coefficients, and compare their predic-
tions to assess their uncertainties. The first method is
old, having been tested with Kerr data in gases as early as
1924." This simple method requires a knowledge of
linear-index dispersion only. The second method is new.
It requires only a single accurate string of nonlinear
dispersion data (e.g. , for the Kerr constant) to determine

a single parameter (an effective ultraviolet resonance fre-
quency too) in the formulas we have constructed. This
second method fits all the past calculations for all beam
polarizations of self-focusing, ICSP, electric-field-induced
second-harmonic generation (ESHG), third-harmonic
generation, and Kerr effect in helium gas, to ultraviolet
(uv) wavelengths. It also fits all other known experimen-
tally observed dispersion, especially the recent ESHG
measurements in the gases of interest here. The
difference between the predictions of the two methods is
not great throughout the visible. We use this difference
to estimate the uncertainties in our calculations. Our cal-
culation of c,2»( —|o,to, co, —to) at 1053 nm for air agrees
with the measured value reported by us in Ref. 7. We
predict high dispersion in the blue and uv for this and
other indices.

There is in the literature some variation in the
definitions of nonlinear coefficients. Therefore we first re-
view the exact definitions we will employ in Sec. II. Then
in Sec. III we relate these coefficients to physically
measurable effects in the long wavelength limit (LWL)
where coefficients approach their LWL values asymptoti-
cally. In Sec. IV we review the existing literature on dc
Kerr and ESHG measurements, summarizing the results
relevant for the gases of interest here. In Sec. V we con-
struct two methods for estimating dispersion of nonlinear
indices, whose formulas we apply in Sec. VI to the deter-
mination of Kerr effect, self-focusing, ICSP, ESHG, and
third-harmonic generation coefficients throughout the
visible for the gases of interest.
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II. REVIEW OF NONLINEAR
SUSCEPTIBILITY TENSOR DEFINITIONS

and

CO
— G7; (Sb)

and

P(r, t ) =Re++ P;(r, td; )e (2)

Here the plus subscripts on the sums indicate that they
are over positive frequencies co, only. In general, the
sums extend to an infinite number of frequencies, and
they may sometimes be most conveniently represented as
integrals over frequency. In what follows, we will
suppress the space variable r when it is understood that it
is the same in every term. Electrostatic units (esu) will be
used throughout. Note that some authors express the
fields in terms of Fourier amplitudes which are one-half
of the ordinary E and P amplitudes in (1) and (2).

We will treat isotropic media (gases, liquids, and
glasses} for which the linear relation holds for all frequen-
cies td in the limit ~E~~0:

P(td)=g(td)E(td) .

The linear susceptibility g is related to the linear refrac-
tive index n by n =( I+4my)' . In isotropic media there
is no "second-order" component of the complete "non-
linear" polarization density P that is proportional to E
due to the requirement of spatial inversion symmetry.
The lowest-order nonlinear response, and the only order
we need consider for the effects of interest here, is a
"third-order" polarization density P that is proportional
to E . To express this we will use the commonly em-
ployed nonlinear susceptibility function, or "c tensor"
c p~s(td;, td~, cdk, ddt }, defined by Maker and Terhune,
which relates different frequency components as follows.
First, we express the complex vector amplitudes E(co)
and P(cd) in terms of their Cartesian spatial components
E and P (a=x,y, z). Then the nonlinear part of the
ath space component of the polarization density ampli-
tude P (cd) is related to the impressed electric vector
comPonents Ep(td, ) by

I' (co) =Dc
& z(co„co,&uk, cur )E&(~J )E~(~k )E~(~I ) .

(4)

The summation convention is assumed for repeated space
indices P, y, and 5. Also, by convention, the coherence
of the nonlinear response is expressed in the requirements

cc); + coJ +coj +col
—0 (Sa)

Maxwell's equations govern the nonlinear propagation
of a real-valued optical electric field vector 6(r, t) which
creates a real polarization density vector P(r, t) in the
medium. It is always possible (and often convenient) to
express these real vector fields in terms of complex ampli-
tudes E(r, cd; ) and P(r, cd; ) of (a possibly infinite num-

ber of) components having (temporal} frequencies
cd, (i =1,2, . . . ) as follows:

C(r, t ) =Re g+ E(r, cd, )e

Although it is customary to make cd positive (and co; neg-
ative), one or two of the field frequency arguments could
be negative. If, for example, co were negative, we would
find from (1) that

Ep(td) ) =Ep(itdj i), (6)

which follows from 8 being a real electric field. The de-
generacy factor D in (4) takes on the values 1, 3, or 6
when either all three, or any two, or none of the last three
frequency arguments of c & &, respectively, are equal.
This factor ensures that all tensor components approach
the limit c pr&(0, 0,0,0} uniformly as their frequency ar-
guments approach zero in any order. The coefficients
c &~t; are sometimes denoted g~&z& with the same fre-
quency arguments, and sometimes written 4g' py$ when
field conventions differ by a factor of 2, and occasionally
written otherwise by authors who omit the degeneracy
factor D.

It will sometimes be convenient to use the abbreviated
notation (ijkl) for the argument set (td;, cdj, tdk, cdl) of the c
tensor in (4). From the form of (4) it follows that the c
tensor must be invariant to simultaneous interchange of
any of its last three space and frequency indices '

c ps(ikjl)=c p s(ijkl)= (7)

For isotropic materials (gases, liquids, and glasses) the
c tensor must have the form

c p~s(tjkl) =5 p5„sc»z2(tjkl)+5 ~5psc, »z(tjkl)

+5 &5p~c, 22, (ijkl), (8)

where 5 p is the Kronecker delta (unity for a =P and zero
otherwise). This says that three independent complex
tensor elements c1122 c1212 and c1221 r every requency
argument set (ijkl) are enough to determine all 81 ele-
ments of the c tensor for isotropic media. Here, the in-
dices 1 and 2 represent any two orthogonal space direc-
tions.

As one consequence of (7) and (8), the ICSP coefficient
can be written in several equivalent forms

Ci22i( Q), td, td Cd) —C&&&2( td, Cd, td, Cd)

C~pip( Cil, td, Cd, td),

with similar equivalences for other coefficients. One must
specify both space and frequency arguments to specify a c
coefficient. Here we will use the ordering where the last
two arguments are identical, unless stated otherwise.

In this paper, we wi11 need to consider the c coefficients
which describe the following five eff'ects: (i) self-focusing
of linearly polarized beams (SF), (ii) intensity-induced
change in the state of polarization, (iii) electric-field-
induced second-harmonic generation, (iv) dc Kerr effect,
and (v) third-harmonic generation (THG). All five of
these effects wi11 be seen below to be described by argu-
ment sets (ijkl) in which two of the last three arguments
are equal. This fact, with (7) and (8), allows these cases to
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n2 =(12m/n)ci»i( —co, —co, co, co), (12)

in which the subscripts "1" indicate any single space
direction. There is, in general, no relation between this
tensor element c»» ( —cti, ~, co, co) and the element

c»z2( —a~, —cu, cu, co) which we noted above governs the
ICSP.

The index governing ESHG (D =3) is
c «» (

—2', O, co, co) for the usual geometry in which all op-
tical fields are polarized parallel to an applied dc electric
field whose direction in the isotropic medium is
represented by the subscript "1." Again, there is, in gen-
eral, no relation between this coefficient and that in (12)
describing self-focusing. The dc Kerr effect (D =3) is

governed by c,z&i ( —co, co, 0, 0).' Parallel-polarized
third-harmonic generation (D = I ) is governed by
c» „(—3', co, coco). For these five effects at long wave-

lengths in a gas of atoms like argon, all the above
coefficients are very close to the two "limit" coefficients
c»»(0, 0, 0, 0) and c,22, (0,0,0,0) which are necessarily
real-values since there is no dissipation in this limit. For
atoms, the latter becomes one-third the former, as will
become evident in Sec. III.

However, for molecular gases such as Oz, normal opti-
cal frequencies are well above the rotational and vibra-
tional Raman frequencies of the molecules, and therefore
the coefficients need not be near the two independent lim-
iting values c»»(0, 0, 0, 0) and c,22, (0,0, 0,0) that are ap-
proached when all frequencies are below the Raman fre-
quencies. %'e will review the well-known phenomenology
for dealing with this type of "strong dispersion" in Sec.
III. This phenomenology, together with "weak disper-
sion" corrections, will allow us to infer the e coefficients
for self-focusing and ICSP over the visible region from
those that have been reported for Kerr effect and
second-harmonic generation for N2, 02, and H2. The
desired coefficients for air are obtained from these by a
weighted sum of those for N2 and 02. Since atoms like
argon have no low-frequency vibrational or rotational ex-
citations, their nonlinear coefficients have much simpler
dispersion at optical frequences and we can deduce simi-
lar values for argon even more easily.

enjoy the extra symmetry

C12i2(&;~&J~&k~Mk ) —C1221(&,~&J ~&k ~&k )

so that there are only two independent tensor elements
required in (8) to describe these effects. We now review
the coefficients that describe these five effects.

Self-focusing of a linear-polarized beam is often de-
scribed in terms of a nonlinear-index coefficient n 2, which
is related to the change hn in refractive index experi-
enced by a monochromatic optical field at frequency co

due to its own intensity by

b, n =n, (8 ) =
—,'niE*(co) E(co),

where the time average ( ) is to be taken over several op-
tical cycles. Of course, n2, like n, experiences "disper-
sion, " i.e., some, usually weak, dependence on ~ at opti-
cal frequencies. Comparing (11)with (4) gives

+b(t —s)C(s)C(t) C(s)] . (13)

Here the real constant 0. describes the electronic contri-
bution to the nonlinear response, i.e., that which would
occur if all the nuclei were frozen in some typical
configuration. This coefficient (divided by density) does
not depend on temperature. The impulse response func-
tions a(t) and b(t) describe the "isotropic" and "aniso-
tropic" components of the nuclear contribution to the
nonlinear polarization density. These "nuclear" terms
are much larger for gases of molecules than of atoms, and
they depend strongly on temperature. For example, a (t)
describes the modulation of the optical susceptibility by
the "symmetric" Raman vibrations (such as the stretch-
ing vibrations in N~ and Oz), while b(t) describes the
modulation of the optical susceptibility by the rotation of
the anisotropic molecule. ' These functions obey causali-
ty so that a (t) =b (t) =0 for t & 0.

The form (13) which we will use to interrelate Kerr
effect, self-focusing, ICSP, ESHG, and third-harmonic
generation is the expression in real time of commonly
used frequency domain expressions, such as Eqs. (2), (3),
and (9) of Ref. 19 for a gas of nonpolar molecules. In Eq.
(9) of Ref. 19 one sees the same separation into electric
and nuclear (rotational and vibrational) terms which we
have in (13). Our equation (13), however, expresses the
general form for obtaining model-independent, experi-
mentally determined, coefficients. These coefficients are
commonly expressed as one or a few of the frequency
components of the Fourier transforms 3, and 8,, of a (t)
and b (t) defined by

3,,:—3',, +i A', ,

' = dt e' 'a t),
and similarly for 8, The function 8" has peaks at pure
rotational Raman frequencies as well as at the 0 and S
rovibrational-branch frequencies. The function 3 ',,

' has
in addition, peaks at the frequencies of the vibrational
Raman Q branch. The magnitudes of the functions 3„

III. PHENOMENOLOGICAL THIRD-ORDER
SUSCEPTIBILITY PARAMETERS

FOR NONPOLAR GASES

It has been customary to study relations among c
coefficients for nonpolar molecular gases (and liquids) by
starting from their values in the long-wavelength limit,
i.e., where the optical frequency m is above the molecular
vibration frequency coi, but far below an effective elec-
tronic excitation frequency co, . In this limit, the real
third-order polarization density P "(t} is related to the
electric field 6'(t) (at the same position r) by a particular
form of expression that results from the Born-
Oppenheimer (BO) approximation. ' Terms that deviate
from this are fractionally smaller by the order (cubi, /cps),
which is always much less than 1%. This estimate fol-
lows from our treatment of dispersion in Sec. V. The
form dictated by the BO approximation is generally writ-
ten (omitting acoustic terms) as'

PNL(t}=-,'c7@(t)C'(t)

+I ds[a(t —s)C(t)t (s)
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Ao= —Bo/3 . (16)

Experiments have verified this relation to within a few
percent. ' We will proceed using (16) as if it contributes
no error to the analysis.

When one uses (13) to analyze intensity-induced
changes in the state of polarization of a monochromatic
beam, one finds'

and

cot co » co )LWL
= ( o' +28 p ) /24 (17a)

c]q]i( co, co, co, co)Lw—L=(cr+2Ap+Bp)/24 . (17b)

When one uses (13) to analyze electric-field-induced
second-harmonic generation, one finds for nonpolar mol-
ecules and atoms that'

and 8, fall rapidly toward zero as the frequency v in-

creases beyond all Raman, acoustic, and absorption fre-
quencies.

In practice, for optical waves propagating in optically
transparent media at the longest wavelengths where the
medium is still transparent, (13) gives the third-order
nonlinear polarization density to within —1%. (Actual-
ly, if acoustic effects, like stimulated Brillouin scattering,
become involved, one must extend the time integral to a
space-time integral over dr', as well as ds, in which a and
b become functions of r —r' as well as t —s. '

) This
asyinptotic region (where waves have frequencies co far
below ultraviolet resonances but still above acoustic, Ra-
man, and infrared-absorption frequencies) is the region
we will call the "long-wavelength limit" (LWL). In this
region we can always neglect any terms in P containing
A, , and B,, in which v is of the order of the optical fre-
quency ~ or larger.

Most nonlinear measurements are at visible wave-
lengths where the form of (13) is quite good but the
values of cr, a(t), and b(t) have shifted significantly
(-1—100%) from their long-wavelength limit. There-
fore much of the later sections of this paper will be devot-
ed to estimating these weak dispersion corrections to the
long-wavelength parameters in the already dispersive
(13).

When one uses (13) to analyze the "nonlinear index"
n2 (for self-focusing of a linearly polarized monochromat-
ic beam), or the related c coefficient of (8), one finds that,
in the LWL, '

C ]ill( Co Co& CD& CoL)WL CJ/8+( Ap+Bp)/6 . (15)

Here and below, the subscript LWL indicates that the
quantity is evaluated in the long-wavelength limit where
the frequency argument ~ is small but still well above any
Raman, acoustic, or infrared absorption frequencies of
the medium. The real numbers Ao and Bo are the values
of A, and B, at v=O. For simple molecules such as we
consider here, pure vibrational (b,J=O) Raman transi-
tions (Q branch) contribute a negligible fraction to Ap as
compared to the rotational and rovibrational Raman
transitions. In this limit theory predicts that'

Similarly, for third-harmonic generation, one finds in the
long-wavelength limit '

c]]]](—3 CD, CO, Co/CO)LwL=Cr/8 . (18b)

Our nonlinear-index values for molecules will be found
to depend heavily on recent measurements of the dc Kerr
constant. In these measurements a static dc field EO is

applied to the gas, and the small difference between the
optical refractive indices parallel (nii) and perpendicular
(ni) to this field are determined by measuring transmis-
sion through a crossed polarizer. The results are ex-
pressed in Ref. 8 in terms of a quantity E defined as

(nii n]—)pEp, where p is the nuinber density of atoms or
molecules. Now n

ll

—n i is proportional to
c»»(ijkk) —c»32(ijkk) which, by (8) and (10), equals
2c]2»(ijkk) Th.erefore we obtain the well-known rela-
tion'

24c]2~] ( coico)0)0)LwL cr +Bp (20)

Our analysis will be built upon Kerr measurements that,
after correction for dispersion, yield 0+Bp and also
upon ESHG measurements that yield cr. These give to-
gether the value of o+2Bp which, with (17) and further
dispersion corrections, will enable us to compute the
desired ICSP coefficient as well as the self-focusing
coefficient over a wide range of wavelengths.

Most measurements of nonlinear coefficients in gases
are partly or entirely normalized to a similar measure-
ments in helium gas. Helium is by far the best calibrated
of all gases, by virtue of careful experimental
confirmations of even more precise theoretical calcula-
tions made over the past twenty years by many workers.
The main body of existing results is reviewed by Bishop
and Lam (BL) who contributed extensive theoretical
checks and refinements. " Our confidence in these results
is high since many of the results have been calculated in-

dependently by other workers, and agree closely. Their
results are given in terms of single-atom coefficients,
expressed in "atomic units, " which they call

( co4 cD] co2 co3 ) and y„„„(co4, co „co&,co3 ). They calcu-
lated these elements for all the effects we have mentioned
above. Since these all have co~=co3 and obey (10), these
are all of the independent tensor elements for these cases.
For frequency arguments approaching zero, y„„ap-
proaches the single electronic nonlinearity parameter y,
defined in Ref. 16 along with the conversion factor for
converting atomic units (a.u. ) to electrostatic units (esu).
One may convert the important results for helium to our
parameters, using the atomic number density p(cm ),
and the relation'

5.036X10 y„„(co4,co],coq, co3) a.u.

n —n,
ll =24c]2~]( co, co,—0,0)/n .

2m.EO

By comparing P " as obtained from (4) and from (13),
one obtains the well-known relation for the long-
wavelength limit'

C]]]]( 2CO Co Co 0)LwL lT /8 (18a)
—1=24p c,]],(co4, co],co2, co3) esu . (21)
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TABLE I. Compendium of relevant data on dc Kerr eA'ect in five gases. Values in parentheses are
limits of error of last figures given by source. All other values have estimated error limits of +10%%uo for
reasons explained in text. When both absolute values and helium-based values are available at the same
wavelength, the average given was obtained by weighting the former three times more than the latter,
as this was our estimate of the relative accuracy of the two values.

Gas

{20'C, 760 Torr)

N2

Op

Ar

Hq

He

(nm)

515

633
515

515

633
515

633
515

633

Normalized to He

129'"

281'

25.5'

22{3)'
3.2'

n~~
—n,

{10 " esu)
2m.EO

Absolute

257'
251{36)
515'
559'
46.7
50.7'
40{6)
59')

64.1'
52, 5

1.83g

1.99( 13)'
1.808

1.76g

Average

252

251{36)
549

49.7

40{6)"
63

52.5'

'Values of Ref. 8 divided by their value for helium.
Obtained by multiplying the value to the left by the theoretical value given for helium in this table.

'Absolute value given in Ref. 8.
From Ref. 17 which has no value for He by which to calibrate the static electric field.
Value as quoted in Ref. 18, divided by the helium value also given there.
From Ref. 19 which has no value for He by which to calibrate the static electric field.
'From the value per atom calculated from Eqs. {14)and (16) of Ref. 15, assuming ideal gas law; error es-
timated as —+3%%uo.

When converted to esu, the y parameter of Ref. 16 equals
3o. /Jo. Fortunately for our dispersion estimates, 8L cal-
culated y„„and y„„„ for Kerr effect, self-focusing,
ICSP, and THG over a a wide range of frequency argu-
ments, so that we have an accurate example of dispersion
with which to compare the two different dispersion
correction methods we will describe in Sec. V. First we
summarize the Kerr and ESHG data upon which our
final results will be built.

IV. SUMMARY OF EXISTING DATA FOR FIVE GASES

We will base our complete specification of the c tensor
of N2, 02 (and air), Ar, and H2 on existing Kerr data (ab-
solute and relative to He) and on electric-field-induced
second-harmonic data (relative to helium). We will as-
sume, for the purpose of normalizing the data, that the
results of BL (Ref. 15) for helium are perfectly accurate.
The estimated errors there (a few percent) are well below
the experimental errors involved. Their results are for
c»&, (ijkk) and c„22(ijkk) for the four arguments sets
(ijkk) corresponding to (3', co, co, co } (2', 0, co, co ),
( —co, —co, co, co) and (

—co, co, 0, 0). The range of co calcu-
lated is from zero to near the first resonance (uv). These
helium data are the main data by which we can evaluate
our extrapolation and dispersion formulas.

The de Kerr data and their sources are given in Table

I. The most important data of Carusotto et al. at 515
nm were quoted absolutely by them with errors around
2 —3 %, except for the value for helium where an error of
+7% was quoted. Their helium value is, unfortunately,

9% above the value obtained from the later calculation of
BI., ' and 6% above the value from a more recent up-
date. ' This discrepancy is no doubt due in part to the
diSculty of measuring the unusually small Kerr effect in
helium. However, there is likely to be an additional, al-
though probably smaller, error arising from the uncer-
tainty in calculating the spatial rrns value of the dc elec-
tric field Eo over the path of the probing optical beam.
Carusotto et al. ' do not comment on how they corrected
for the non-uniform field distribution between their elec-
trodes, so their high helium Kerr constant may in part be
due to their Eo being smaller than they estimated. To
deal with this discrepancy we have obtained two Kerr
constant values for each gas as reduced from their data,
and give a weighted average, along with miscellaneous
older data at 633 nm in the last column of Table I. We
obtained the first value by dividing their value for a gas
by their value for helium (the values with superscript a in
Table I) and then multiplying by the theoretical values
for helium from BL to obtain the values (superscripted b)
in the fourth column of Table I. We obtained the second
values (superscripted c in Table I) directly from the
values in Ref. 8 based on the dc field calibration. The
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averages of these two, quoted in Table I, weight the
values given in Ref. 8 three times as heavily as the
helium-renormalized values. This reflects our estimate of
their relative errors. In addition, our final estimated er-
ror values have been increased to +10%, which would
encompass the values of the Kerr constants that one
would obtain by normalizing signals to the helium signal
rather than by estimating E0 absolutely.

The determination of the four-wave-mixing (ICSP and
SF) coefficients for air from the Kerr constant depends to
some degree ((20%) on the electronic part 0. For-
tunately, 0. values of more than sufficient accuracy can be
obtained for our gases from the second-harmonic (ESHG)
data of Mizrahi and Shelton. Their measurements from
700 to 450 nm show dispersion, resulting in a rise in c»»
values from 15% to 26% over this range, depending on
the gas. We found that all of this data fits the following
form (after removing helium normalization) to within ex-
perimental error:

c»i, (
—2', co, co, O) =(o /8)(1 —6' /c00) (22)

The long-wavelength limit parameters cr obtained from
these fits are listed in Table II. The form of (22) will be
justified in Sec. V. It is an example of the second disper-
sion formula B which we develop in Sec. V B, where we
list the corresponding nonlinear "Sellmeier"-like disper-
sion frequencies coa to be used in the dispersion calcula-
tions of Sec. VI.

V. ESTIMATION OF WAVELENGTH
DISPERSION OF NONLINEAR COEFFICIENTS

TABLE II. Value of the electronic nonlinearity parameter 0.

derived from ratios of the coe%cient c, „1(—2', ~, co, 0) for vari-
ous gases relative to helium, as reported in Ref. 9. This ratio
was extrapolated to the long-wavelength limit, as explained in
the text, and then multiplied by the value 1.76X10 "esu for
He (20'C, 760 Torr), calculated in Ref. 15. Estimated errors in
final digits are given in parentheses.

The published nonlinear Kerr, and other nonlinear
coefficients were measured at wavelengths which were
clearly not in the long-wavelength limit. Calculations
that use only the LWL formulas of Sec. III could easily
produce predictions for ICSP coefficients at other wave-
lengths which are in error by anywhere from several per-
cent to factors of 2 or larger. Therefore we develop here
two independent dispersion formulas, analogous to the
Sellmeier equation for the linear refractive index, in order
to assess dispersion corrections for the nonlinear
coefficient.

We develop two formulas for two reasons. First, be-

TABLE III. Frequencies co, of the poles of the Sellmeier
equation for the dispersion of the linear refractive index, taken
from Ref. 20.

Gas (20'C, 760 Torr)

N„-

0,
Ar
H.
He

co, (10 cm ')

131
113
130
111
187

cause there is no single known "accurate" formula, and
we can use the difference between the predictions of our
two formulas to indicate the order of magnitude of the
accuracy of our dispersion corrections. Secondly, we
need two formulas with different capabilities. One for-
mula (which we call A) can be applied without the ex-
istence of prior nonlinear dispersion data, with only
known linear dispersion, The second, presumably more
accurate formula (which we call B) can be used to extra-
polate nonlinear dispersion data when they exist, for ex-
ample from ESHG measurements, to all other third-order
nonlinear effects (as is done in Sec. VI).

c &,,s(ijkl)=c, & &(ijkl)LwLF "(ijkl) . (23)

We use a form for F that has often been used in the
past, even to collate prelaser measurements such as the
Kerr measurements of Szivessy. " Its justification was
summarized in Ref. 12. We may write it as

F "(ijkl ) = Q [n (co, ) —I ] LWL (24)

where the n(co, ) represent the linear refractive indices at
each of the four frequency arguments and n LwL is the
long-wavelength limit of the refractive index. It is more
than sufficiently accurate for our purposes to use the
single-resonant-denominator form of the Sellmeier equa-
tion for nonpolar gases to calculate n (co). We then ob-
tain from (24) the following form of the dispersion factor

TABLE IV. Characteristic optical frequencies cu0 of disper-
sion formula B for gases. These were derived from fitting the
ESHG data of Ref. 9 as described in the text. The uncertainties
quoted span the values which give a satisfactory fit to the data.

A. Dispersion formula A

Formula 3 assumes that all c-tensor elements scale by
a universal "dispersion factor" F "(ijkl ) which ap-
proaches unity in the long-wavelength limit. That is,

Gas (20 C, 760 Torr)

N,
O~

Ar
H2
He

o (10 " esu)

36.5( 1.4)
37.8(1.1)
47.4( 1.8)
27.9(0.3 )'

1.76(0.05 )

Gas (20'C, 760 Torr)

N,
02
Ar
H2
He

m0 (10' cm ')

115+10
90+5

115+10
100+10
158+5'

'See also Ref. 21. 'Fit to the calculations of Ref. 15.
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for method 3 which we will use throughout:

4

F (cip4, coi, F2, c03)
—Q ( 1 co; /co ) (25)

coL 5 —,'co, . A more precise limit, found in the next sec-
tion, turns out to be 333 nm for air and oxygen, and a
somewhat shorter wavelength for the other gases.

( 2+ 2+ 2 + 2)1/2
J (26)

is less than two thirds of the characteristic frequency coo

of (22). We find that coo ranges from 80% to 90% of co, in

our gases, and so the relation (25) is useful typically for

Here the characteristic Sellmeier frequencies co, are the
usual ones to describe the short-wavelength dispersion of
the linear refractive index (as opposed to that arising
from infrared resonances). We will use the co, values

given in the Landolt-Bornstein Table 2863, and repro-
duced in our Table III for the gases of interest here. The
Sellmeier frequency co, is available for hundreds of com-
mon gases and liquids, and so method A is generally ap-
plicable to any c-coefficient dispersion. The range of co,

over which method A may be applied is not always clear.
In the calculations of the c-coefficient dispersion for heli-
um, it is found that the similar, but improved formula 8,
of the next section fits the BL results for He well in a
range where an "effective optical frequency" col defined
as'"

c&~22(ijkl) =c~,2z(ijkl)LWLF ))22(ijkl), (27)

and similarly for c,z, 2 and c»z2. Again, the frequency ar-
gument set (co, , co, , cok, col ) is abbreviated (ijkl) We h. ave
found that the following simple one-parameter form for
the F factors nicely fits all the values of c„„and c„»
of helium calculated for the argument sets: (

—3', co, co, co)
for THG (

—2', 0, co, co ) for ESHG; ( —co, co, co, co ) for
DFWM; and ( —cu, co, 0,0) for the dc Kerr effect, for co

ranging from 0 to 2coz/3. We discuss the quality of the fit

B. Dispersion formula B

The calculations by BL (Ref. 15) of c coefficients for He
gas showed, as was expected, that each of the indepen-
dent c-tensor element in (8) varies a little differently with
frequency, and so one must, in general, develop three
dispersion factors (rather than one as in formula A). In
our 8 formulas we will call these F»22(ijkl) F,~z, (ij kl),
and F,~,z(ijkl). The first independent c-tensor element
will be written in terms of its long-wavelength limit as

TABLE V. Extrapolation of Kerr data to the long-wavelength limit (LWL) using the dispersion fac-
tor F"(—co, m, 0,0) in dispersion formula A. The Kerr coeScients are taken from Table I and the
"Sellmeier" frequencies co, are taken from Table III.

Gas
(20'C, 760 Torr)

N2

02

Ar

Hq

He

(nm)

515
633

515

515
633

515
633

515
633

F"

1.046
1.030

1.062

1.046
1.030

1.064
1.042

1.022
1.014

10' (o+Bp)esu
(esu)

241(9)
244(4)

517

47.6(10)
38.8(6)

59.2(5)
50.4(3)

1.95(2)
2.18(1)'

1019( +B )c

(esu, average)

242

517

44.4
(47.4)'

55.8

1.76g

'Dispersion factor which equals {1—co'/co,')
Computed by dividing the experimental Kerr coe%cients from last column of Table I by the value of
F". Relative weights for computing the averages in the next column are given in parentheses. These
are proportional to the inverse of errors quoted by sources.
'Average computed using relative weights assigned in previous column. For reasons given in the text
we believe that, except as noted, the uncertainties in these values are at least —+10% {i.e., greater than
quoted by the data sources). This quantity is equivalent to c»»( —co, co, 0,0)L~L.
From Ref. 8.

'From Ref. 18.
Value which will be used in calculation. It comes directly from 0. of Table II and has +5%%uo uncertain-
ty.
Precise value from theoretical calculation of Ref. 15. Experimental values shown only for comparison

purposes.
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in more detail below. Our formulas are

F)]2/ (lgkl) —(1 —co] /p2/coo )

where

co„~2=[13coi +6(co, co +cokcoI )]/12,

with the same formula for F&&2, , but with

co)~2) = [13coi +6(co;a)I +a))cok )]/12,

(28)

(29)

(30)

and si~ila~ly for F,», , with

~)2)2=[13cor +6(a);cok+co a)i)]/12 . (31)

In each case the factor multiplying 6 is made up of fre-
quency arguments paired in the same way the space sub-
scripts are paired. (Recall that 1 and 2 represent any or-
thogonal space directions).

We note that, as in the results of BL for He, (29)—(31)
give

TABLE VI. Some degenerate four-wave mixing (DFWM) c coefficients obtained from formula A.
All frequency argument sets here are ( —co, —co, co, co) and co(cm ') —=A, '. These coefficients were ob-
tained using the dispersion factor F" calculated from Eq. (24) with the dispersion frequencies m, of
Table III. The uncertainties in these c-coefficient values are at least +10%, arising from the uncertain-
ties in the Kerr constants, plus uncertainties from the errors in F"discussed in the text.

Gas
(20'C, 760 Torr)

N2

(nm)

261
333
522
694

1053
LWL

F"

1.43
1.241
1.090
1.050
1.021
1

10 C 1122

(esu)

26.7
23.1

20.3
19.6
19.0
18.6

10 C 1 ]11

(esu)

39.2
34.0
29.9
28.8
28.0
27.4

Op

333
522
694

1053
LWL

1.34
1.124
1.068
1.028
1

55.6
46.7
44.3
42.7
41.5

77.7
65.2
61.9
59.6
58.0

Ar
261
522
694

1053
LWL

1.43
1.090
1.050
1.021
1

2.83
2.15
2.07
2.02
1.98

8.47
6.46
6.22
6.05
5.93

Hq
300
522
694

1053
LWL

1.46
1.129
1.070
1.030
1

5.09
3.94
3.73
3.59
3.49

9.62
7.44
7.05
6.79
6.59

Air'
333
522
694

1053
LWL

29.7
25.6
24.6
23.8
23.3

42.8
37.0
35.5
34.4
33.6

'The shortest wavelengths tabulated are those below which formula B is known to have larger than
10% error.
This dispersion factor equals (1 —co /co, ) by Eq. (24).

'Calculted by subtracting a values from Table II from twice the o+Bo from Table V, and multiplying
by F /24. See Eq. (17).
Calculated by adding (o.+Bo)/9 from Table V to o./72 from Table II, and multiplying by F".

'Coefficients by adding 0.78 times the N2 value to 0.21 times the 02 value.
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0 1
c

1 i i] (2'), cd, ri), 0)=
2 2+24 1 7Q) /Q)

2

1 —11' /2coQ

(32)

The data of MS fall in the range 0. 12coQ&co(0. 35coQ,

where (32) is seen to difFer from (22) by less than 0.2%.
Hence we fitted their data by the simpler (22) to obtain

2 2 2 2
1122+ ~1221+1212 ~L

That is, in the 8 formulas, the "effective" frequency coL

equals the rms value of the effective "tensor" frequencies
defined in (29)—(31).

For the arguments calculated by BL, cok =coI, in which
cases F,2, z =F»z, [see Eq. (10)]. In these cases, the e»»
calculated by BL must, by (8), equal c„22(ijkk)
+2c&2iz(ijkk). Furthermore, for Ar and He, Ao and Bo
are negligibly small; thus the long-wavelength limits of
the c»22, c,z», and c,z» in (8) are all 0 /24. In the case
of He, the choice cuQ=161146 cm ' reproduced all the
BL, results to better than 10% at coL =2coo/3, and to
better than 3% at coL=coo/2. Some coefficients were
reproduced much better than others. This percentage de-
creased to less than 0.2% as coL approached zero. In the
limit of low frequencies, the asymptotic data were fit even
better (in fact, within the estimated 0.1% accuracy), by
coQ 1 53 009 cm ' . This gives an estimate of the uncer-

tainty in the best value of coQ to use for He. From
(27)—(30) one may verify that F»zz( —co, —co, co, co) is by
far the most sensitive of the three coeScients up to co

near 2coo/3 where it changed by —4.4% for a 1% in-

crease in coQ.

One sees that, according to the above rule 8, the
ESHG measurements of Mizrahi and Shelton ' ' (MS)
should be imitated well (as they are in fact) by

the o values of Table II and the values of ~Q given in

Table IV. The errors in coo quoted in Table IV ( —10%),
give the range of values which fit the data of MS to
within experimental error. These errors contribute an
uncertainty to e values calculated by formula 8 that is be-
tween 10% and 40% of the diff'erence between the predic-
tions of formulas A and B.

VI. CALCULATIONS OF c COEFFICIENTS
WITH DISPERSION

Using the two dispersion formulas A and B, we mill

now make two estimates of the long-wavelength limit for
the Kerr coefficient (++Bo) from the data. With the

values of o. from ESHG measurements in Table II and

the assumption of (16), we may deduce the coefficients for

any any of the five effects reviewed in Sec. II at any
"efFective" wavelength (col ') down to the ultraviolet re-

gion. To illustrate this we will tabulate some numerical

examples for ICSP and self-focusing for the gases we have

considered, as these coeScients are of most immediate

concern in high-power laser applications.
The application of the A formulas, Eqs. (23) and (24),

to extrapolate Kerr data to the long-wavelength limit re-
sults in values of 24ci p]( N Q) 0 0) LwL= '0+B ogiven

in Table V. In Table VI we list the two independent e
tensor elements for the degenerate four-wave mixing ar-
gument set (

—co, —co, co, co) that we derived from Table V
with the aid of relation (16) and the electronic nonlinear
parameters o of Table II. The sample optical frequencies
chosen were at the fundamental (1053 nm) and harmonic
(522 nm) of large glass lasers, at the ruby laser frequency
(694 nm), and at col =2coo/3 (which the comparison with
the calculations for helium showed to be a probable limit
of accuracy of formula B). The dispersion factors were
calculated using (24) with the "Sellmeier" parameters of

TABLE VII. Extrapolation of Kerr data to the long-wavelength limit of Eq. (21), made using the
dispersion factor F„21 defined as in Eq. (28) with the characteristic argument col„, which, for our argu-
ment set, equals 13''/6 from Eq. (30). The expected uncertainty in these values is —+10% for reasons
explained in the text.

Gas
(20', 760 Torr) (nm) B

F1221

10'"(o+Bo) esu
From data" Average

Op

Ar

H2

He

515
633
515

515
633

515

515
633

1.066
1.043
1.112

1.066
1.043

1.089

1.036
1.024
1

240(9)
241(4)
494

45.6( 10)
38.4(6)
57.9( 5)
49.7(3)

240

494

42.9
(47.4)"

54.8

1.83'
1.80'
1.76

'Parentheses contain weights used to compute average. %'eights are inversely proportional to estimated
errors.
Value which will be used in calculation. It comes directly from o. of Table II and has +5% uncertain-

ty.
'These values, obtained by multiplying 1.76 by the F»z, factor, agree with the values calculated in BL
(see Table I) to within 0.5%.
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Table III. It would be difficult to assess the accuracy and
useful wavelength range of method A without the follow-
ing treatment of the same coefficients by method B.

The results of extrapolating Kerr data to the long-
wavelength limit with the aid of the B formulas (27)—(31)
are given in Table VII. These are then used to obtain the
c coefficients for DFWM displayed in Table VIII. These
results are presumably more accurate than those of Table
VI because they are based on the experimentally mea-

sured dispersion in c»
& &(

—2', O, co, co), rather than on the
measured dispersion in the linear refractive index n.

Consider the values of Tables VI and VIII for the ICSP
coefficient c&&zz(

—co, —~, co, co). This was recently mea-
sured in air at co

' equal to 1053 nm. The formula A

and formula B values are 23.86 and 23.8 (10 ' esu), re-
spectively, within 0.3% of each other, and in good agree-
ment with the measured value 20+5. Since the formula
A and formula B values are based on the same data num-

TABLE VIII. Some degenerate four-wave mixing c coefficients obtained from formula B, and all
having frequency argument sets ( —co, —co, ~,co) with co(cm ') being equal to I, '. These coefficients
were obtained from Eq. (27) using the long-wavelength coefficients of Table VII, multiplied by the
dispersion factors F,1» and F1212 of Eqs. (28) and (31), with the dispersion parameters of Table IV. The
errors carried over from Kerr measurements are -+10% except for argon, which is +5%, being based
on more accurate ESHG data (normalized to helium). The shortest wavelength in each list is

3/[coo(cm )], which we estimate to be the limit of usefulness of the B dispersion formulas, Eqs.
{26)-(30).

Gas
(20'C, 760 Torr)

N2

(nm)

261
333
522
694

1053
LWL

10 c 1122

(esu)

45.3
29.0
21.7
20.2
19.2
18.5

10 c1212
19 b

{esu)

6.90
5.63
4.79
4.59
4.45
4.35

10"c
(esu)

59.1

40.3
31.3
29.3
28.1

27.2

02
333
522
694

1053
LWL

97.4
52.2
45.9
42. 1

39.6

12.6
9.32
8.65
8.22
7.91

123
70.8
63.2
58.2
55.4

Ar
261
522
694

1053
LWL

4.84
2.32
2.16
2.05
1.98

2.45
2.18
2.08
2.02
1.98

9.74
6.67
6.33
6.09
5.93

H2
300
522
694

1053
LWL

8.36
4.23
3.83
3.58
3.40

2.44
1.75
1.65
1.58
1.54

13.2
7.73
7.13
6.74
6.48

Air4

333
522
694

1053
LWL

43.1

27.9
25.4
23.8
22.7

7.04
5.69
5.40
5.20
5.05

104
61.8
36.1
34.1

32.9

'Calculated by subtracting o. values from Table II from twice the cr+Bo from Table VIII, and multiply-

ing by F„»/24 from Eq. (28).
Calculated by adding (o.+Bo)/72 from Table VIII to o/36 from Table II and multiplying by F»12

from Eq. (31).
'Equals c~,zz+2c, z, z. See Eqs. (8) and (10).
Coefficients calculated by adding 0.78 times the N2 value to 0.21 times the 02 value.



2776 R. W. HELLWARTH, D. M. PENNINGTON, AND M. A. HENESIAN

bers, the value 0.3% is a reasonable estimate of the error
arising from the dispersion correction. This error is in-
dependent of the +10% limit on the Kerr-experimental
uncertainty, and so we are led to a state that, for air at
20 C, 1 atm, and at 1053 nm,

c„z2(—co, —cu, co, co) =(24+3) X 10 (33)

in esu, with the stated limit being absolute. We feel from
the foregoing discussion that the probable limit of uncer-
tainty is smaller, perhaps —+2 (rather than +3) around
the most probable value of 23.8 X 10 ' esu.

Similarly, A and B versions of the self-focusing c
coefficients for air under the same conditions are listed as
34.31 and 32.55 (10 ' esu), respectively. This 5%
difference is well below the 10% Kerr experimental un-

certainty. Using the B value as the more probably
correct value and a 15% absolute limit of uncertainty, we
obtain the following value for the common self-focusing
coefficient or "nonlinear index" (12) of air at 20'C, 760
Torr, and 1053 nm, in esu:

n q
= ( 1.2+0.2 ) X 10 (34)

This value is two order of magnitude less than for com-
mon laser glasses. The n2 for argon under the same con-
ditions is seen to be less by 5.4 and its ICSP coefficient
less by a factor of 11. From these argon values, one can
calculate the advantage gained by substituting argon for
air in the path of a 1053-nm laser, an advantage that was
seen in the experiments of Ref. 7.

Of course, for any comparison of our calculated
coefficients with experimental ones to be valid in molecu-
lar gases, the experimental laser pulses must have a
power spectrum much narrower than the Raman
linewidths in the gas. In air these linewidths are around
3 GHz. This is about five times the spectral width of
the Nova laser used in Ref. 7. To estimate the error from
this source, we see from our Tables I and II that the elec-
tronic term in formula (17) for the ECSP coefficient (33}is
7% of the total. The nuclear term derived from (13) is
seen to decline for shorter (or spectrally broader} laser
pulses by the ratio of laser-to-Raman linewidths, in this
case 20%. Therefore the experiment might be expected
to indicate a value for this coefficient that is about 20 Jo
lower than in (33). Similar considerations apply to other
coefficients to the extent that they are not entirely elec-
tronic in origin.

At the second harmonic (522 nm) of the glass laser
wavelength, we see that the self-focusing coefficient pre-
dicted by method A is 40% less than that predicted by
method B. As we explained above, we prefer the value
predicted by method B, but think that +40% is a reason-
able estimate of its uncertainty. The difference between
the predictions of the two methods is less for all the other
coefficients, being, for example, only 8% for the ICSP

coefficient at 522 nm. We would also expect a compar-
ison between methods A and B to give meaningful ranges
of predicted values for other c coefficients, such as those
which govern the stimulated Raman effect, that we have
not discussed in this paper.

A useful pattern can be seen in a comparison of the
two dispersion parameters co, and coo for the six gases
studied here. The values of ~o range between 80% and
90% of their corresponding co, values. If, instead of
Table IV, we had used coo=0. 85co, everywhere, the pre-
dictions of the B formulas would not have been
significantly changed. Therefore both A and B methods
can be meaningfully compared to estimate dispersion of
any third-order optical effect in any isotropic material
(for coL ~ 2mo/3) by using the universally available
Sellmeier frequencies co, only.

Whole beam self-focusing of a 308-nm beam in pressur-
ized air has been studied recently by Shimoji et al.
From these studies they estimate a value of
n -22.9X10 ' esu per atmosphere of air at 300 K.
Formula A (Table VI) predicts a value of 1.6X10 ' esu
and formula 8 (Table VIII) predicts 3.9X10 ' esu, at
333 nm. The average value of the two formulas is
2. 8 X 10 ' esu, which is surprisingly close to the mea-
surement. The possible sources of error in their measure-
ments have not yet been evaluated by Shimoji et al. , but
such measurements at longer wavelengths are typically
uncertain by +50%. '

In summary, we have developed a general method for
calculating third-order nonlinear optical susceptibilities
describing a particular effect at one wavelength from the
susceptibilities of other effects measured at other wave-
lengths. We have used this method to calculate the sus-
ceptibilities for five eff'ects (self-focusing, intensity-
induced change in polarization), dc Kerr effect, electric
field-induced second-harmonic generation, and third-
harmonic generation) throughout the visible in Nz, Oz,
Ar, Hz, and air. The method is most accurate when
some nonlinear dispersion data is available, but can be
used with only linear dispersion data (in which case the
advantage of an independent check is lost). Dispersion
corrections can exceed factors of 2 or 3 at the violet limit
of the usefulness of the method. A recent measurement
of the ICSP index in air at 1053 nm is consistent with the
calculation here based on Kerr data at 515 nm.
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