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Role of pumping statistics in laser dynamics: Quantum Langevin approach
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We study in detail the influence of pumping statistics on the laser dynamics. We apply the tech-

nique of quantum Langevin operators and generalize the corresponding noise operators to incorpo-
rate the statistical properties of the pump mechanism. These equations are then used to derive ex-

pressions for the phase and intensity fluctuations of lasers with various pump statistics. We find

that a reduction of pump noise can lead to a significant squeezing of the photon number noise below
the shot-noise limit. This is in complete agreement with our previous analysis, which used a
density-operator approach.

I. INTRODUCTION

Noise-reduction schemes in lasers and masers have
played an important role in quantum optics during the
last decade. Important examples are squeezed states of
the radiation field' and correlated emission laser (CEL)
schemes. In most of these systems the emphasis was put
on altering the characteristics of the quantum noise that
is generated by spontaneous-emission events. In the
present work the chief purpose is to study in depth the
effects of the various pumping schemes and their fluctua-
tions on the noise characteristics of the outcoming radia-
tion.

In our previous paper, we analyzed the influence of
the pump statistics on the amplitude and phase fluctua-
tions of the laser radiation through a density operator
analysis. A generalized Scully-Lamb master equation
was derived, in terms of a parameter p, in which p
represented the probability of an atom to be excited to
the upper state before entering the radiation cavity. The
two extreme cases were p~O (Poisson statistics) and

p = 1 (regular injection). We found that the pump statis-
tics have no influence on the phase fluctuations but can
have a drastic effect on the photon number fluctuations.
In the high-intensity limit the photon number noise can
be suppressed below the shot-noise limit, producing
squeezed states of the radiation field.

In the present paper we discuss the influence of the sta-
tistical properties of the pump mechanism on the elec-
tromagnetic field from a different point of view. We ap-

ply the formalism of Langevin operators and generalize
the familiar noise operator to include the effect of pump
noise. This allows us to analyze from first principles the
effect of pump fluctuations on the radiated laser light.
We demonstrate that well above threshold the photon
number fluctuations can be squeezed below the shot-noise
limit, provided the noise of the pump source is smaller
than that of a Poisson statistic. Furthermore, we show
that the possible amount of squeezing in a pump-noise
suppressed laser depends on the decay constants of the

lasing atomic levels. This generalizes the discussion of
our previous paper and enables an easy comparison with
the results of other authors.

In Sec. II we derive the Langevin operator equations
for the field and atomic variables. Furthermore, we cal-
culate the correlation functions for the corresponding
noise operators. These noise operators now incorporate
the effects of two different noise sources: the usual fluc-
tuations due to the coupling to damping reservoirs and
the influence of fluctuations of the pump mechanism.

In Sec. III, we convert the operator Langevin equa-
tions into c-number stochastic differential equations. We
then assume that the atomic time scale is much shorter
than the time scale of the radiation field. This allows us
to eliminate the atomic variables adiabatically so that we
obtain an equation for the electromagnetic field alone.
The calculated diffusion coefficients for the field then
completely specify the noise properties of the radiated
light.

In Sec. IV we discuss the implications of our results on
the phase and intensity of the electromagnetic field. In
agreement with our previous density-operator analysis,
we find that the phase diffusion is unaffected by the fluc-
tuations of the pump mechanism. However, the photon
number noise crucially depends on the pump fluctuations.
In the case of equal decay constants of the lasing atomic
levels we find up to 25% squeezing of the photon number
noise, provided the atoms are injected regularly (p = 1).
If the decay constant of the lower level is much larger
than the one of the upper excited level, squeezing of up to
50% is possible. Such a situation is of particular interest
for semiconductor lasers and the results are in agreement
with treatments by other authors.

II. QUANTUM LANGEVIN EQUATIONS

In our physical model of a laser with various pump
fluctuations, a beam of three-level atoms is injected into a
laser cavity (see Fig. 1). The atoms are initially prepared
in the upper level ~a ). The two levels ~a ) and ~b) con-
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(Fy(t)) =0,
(F (t)F (t'))=n, „5(t t—'),
(Fy(t)Fy(t')) =0,

(6a)

(6b)

FIG. 1. Physical model of a laser with arbitrary pump fluc-
tuations. Three-level atoms, which are initially in the upper ex-
cited state, are injected into the laser cavity. The specific way of
atomic injection models various types of pump fluctuations.

stitute the lasing transition which is coupled to one mode
of the radiation field inside the cavity. The lowest atomic
level Ic ) is an inert ground state to which the atoms de-
cay with a decay rate I. Note that no assumption is
made for the particular way of atomic injection. In fact,
the statistical distribution over the injection times of indi-
vidual atoms determines the fluctuations of the pump.
This enables us to discuss different cases of pump fluctua-
tions within a unified framework. The Hamiltonian of
such a system in the rotating wave approximation is
given by

H =Acta a++(e, Ia ) (a I+eg Ib ~(b I+&, Ic ) (e)J
J

+A'gg B(t t )(a oj—+cr' a) . (1)
J

Here a and a are the creation and annihilation operator
for the electromagnetic field, while 0 J is the atomic polar-
ization operator (Ib ) (a I) . The parameter g denotes the
coupling constant between atoms and field and 8(t) is the
step function. The cavity losses and the atomic decay are
modeled in the standard ' way by coupling the radiation
field and each atom to heat reservoirs. We then find the
following quantum Langevin equations for the field and
atomic operators:

in which n, h is the number of thermal photons in the cav-
ity. For simplicity we assume that the heat reservoir is at
zero temperatures so that n, h is equal to zero.

The moments of the atomic noise operators are dis-
cussed in detail by several authors. ' If the reservoirs
only induce a decay from the atomic levels a and b to the
ground state c, these moments are particularly simple.
Some of the nonvanishing moments of interest are given
by

(F]t(t)F].(t') ) = I (o',.(t) )5(t —t'),
(Fj,(t)F/(t')) =I (o'„(t))5(t t'), l =—a, b

(F].(t)F,'.(t') ) = I (o'(t) )5(t t'), —

(F).(t)F),(t')) =I (o' (t))5(t t') . —

(7)

We now eliminate the tluickly time-varying part in
Eqs. (2} to (5) by moving into a rotating frame For si.m-
plicity we assume resonance between the cavity mode fre-
quency and the atomic transition frequency, i.e., co=co,&.
We can then define the slowly varying operators

a(t)=e' 'a(t), o J(t)=e'"'o'(t) .

The equations of motion for a and o J are the same as
those for a and crJ with the only di6'erence that the terms
proportional to co and co,b are omitted. We will therefore
drop the tilde on the operators in the following analysis,
keeping in mind that the operators a and crJ now denote
the slowly varying operators in the rotating frame.

As a next step we change from the operators for indivi-
dual atoms to operators which describe the macroscopic
atomic properties. This proves to be necessary for the
approximation techniques employed in Sec. III. While
the individual atomic operators are very sensitive to-
wards an adiabatic approximation, the averaged, macro-
scopic quantities can be treated by such a technique.
Therefore we define the operators

a = icosa ——a —igg B(t t )cr'+F—
2 J 1

J

crj= —ico,'t, cr —I oj+igB(t —t )(oj„crt')a+—Fj, ,

cr'„= —I o'„+igB(t —t )(a o' cr~ a)+F.,', ,
—

c'r
&&

= —I ot,& igB(t t —)(a crj cr a)+—F]&, —

(2}

N. (t) =QB(t t, )o'.,(t), —
J

Nb(t) =QB(t t, )cr~bb(t) . —
J

(10)

in which o~„={Ia )(a I)J, o~&& ={Ib )(b ) I,~a'nd
6) i,

= ( e et, ) lfi. For simplicity we have assumed all
atomic decay constants to be equal. This assumption will
be relaxed later in Sec. IV. The operators F on the right-
hand side of Eqs. (2)—(5) are the typical Langevin noise
operators which arise through the interaction with a heat
bath. These operators are specified through their first
and second moment. The normally ordered noise corre-
lation functions for F are found to be

a+gM+F
2 |' (12)

The Langevin equations for the atomic operators can

The operator M represents the macroscopic atomic polar-
ization. The factor ( i) in Eq.—{9) has been chosen be-
cause of mathematical convenience. Furthermore, N,
and X& specify the number of atoms in the two excited
atomic levels a and b, respectively. With these definitions
Eq. (2) for the electromagnetic field simplifies to
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i—g 8(r —
r, }F].(r) .

J
(13)

The first term on the right-hand side of Eq. (13) corre-
sponds to a pumping of the atoms into their upper excit-
ed state. To see this most clearly let us calculate the ex-
pectation value of this term,

+5(t r, )~&,—(r, ) = +5(t —t, )(cr'..(ti)),
J J

be found by diff'erentiating Eqs. (9)—(11) and substituting
Eqs. (3}—(5), respectively. For example, for the operator
N, we obtain

N. =+[5(r r—, }cr'..(r ) +8( r —r, )cr ~.( r )]
J

=+5(t —tj)a~„(t, ) —I N, —g(a M+M ci)
J

value of the first term and obtain

N, =R —I N, g—(a M+M a)+F, ,

with

F,(t) =g 8(t —t )F„(t)+g5(t t —)o J, (t ) R-
J J

The operator F, is the total noise operator for the atomic
quantity N, . It incorporates the contributions from the
reservoir-induced decay of the atoms and the influence of
pump fluctuations. It is easy to verify that the expecta-
tion value of F,(t) is equal to zero at all times, as expect-
ed for a Langevin noise operator.

In a similar way we can derive the equations for the
remaining atomic operators

= Z 5(t t, )),—. (14)

Here we have made use of the fact that the atoms are
initially prepared in their upper atomic level so that
(,o'„(t )) =1. The index S on the brackets in Eq. (14) in-

dicates that we still have to perform the statistical aver-
age over the injection times, i,e., the average over the
pump statistics. If we assume a mean, time-independent
atomic injection rate R, this average can be calculated as

Nb = I Ns+—g(a M+M a)+Fb,
M= —I M+g(N, —

Ni, )a+F~,
with

F, (r) =+8(r r, )Fj,—(t)+ +5(r t, )crJ»(r,—),
J J

F (t)= —i+8(r r, )F(),(r)—i+5(r —t, )cr'(t, —) .
J J

(18)

(19)

(20)

(21)

Alternatively, Eq. (15} can be regarded as the definition
for the averaged atomic injection rate R.

In order to separate the drift terms from the noise
terms in Eq. (13) we add and subtract the expectation

Note that there is no pumping term in the Eqs. (18) and
(19) because we assumed the atoms to be initially in the
excited state ~a ). A generalization of this assumption is
straightforward and will be discussed elsewhere.

We now turn to the evaluation of the noise correlation
functions. As an example, let us calculate the two-time
correlation for F,

(Fit)F, (t'))=(,Z (t et, )e(t' t„)(F,', (t)F—(t')) —+ +„5(t—t, )6(t —t )( (tt',tt) (ttt)) —Rtpt
j,k j, k

(22)

In Eq. (22), we again have to consider two different averages: the usual quantum average over the bath variables and a
statistical average over the injection times. We explicitly indicate the latter by a subscript S. Furthermore, we denoted
the expectation value (0„(t,) ) by p„ to emphasize the different kinds of terins in the following analysis. At the end
we will set p„equal to 1 to be consistent with the initial preparation of the atoms.

For the evaluation of the different terms Eq. (22), we note that the individual atoms are completely independent of
each other. Therefore only the terms with j =k contribute to the first term in Eq. (22). Furthermore, in the second
term we can separate the expectation value {cJ'„(t }0,",(t„)) for jXk into the product {cr'„(t, ) ) (cr,",(tk ) ) =p„. We
then obtain

(F.(i)F, (t ))=(QB(t —'t, )I'(0'..(t))) 5(i t')+(X5( t, )6(tt —t, )—p.. + Z' 5(t t, )6(t t„)) —R' p' .'—. ,
—

J J jWk

(23)
which we can simplify to

(F (t)F, (t')=(IN, )6(t —.t')+(Z6(i —
t, ) p..5(t —i )+ Z 6(t —t, )6t't' —t„)) —R' p'.. .

J jWk
(24)

t

in which the parameter p is a measure of the amount of
antibunching among the atoms. For a perfectly regular
atomic injection we find p =1. For a Poissonian injection
statistic, which reveals a strong bunching effect among

In Appendix A we have shown from first principles that

(25)Z 5(t —t, )5(t' —t„))t—R' = —pR5(t t'), —
jWk
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= [(rN. &+R (1—p )]5(t —t') . (26)

The remaining noise correlation functions can be cal-
culated in an analogous way. Some nonvanishing corre-
lation functions of interest are

the atoms, the parameter is given by p =0. Note that
this parameter corresponds to the parameter p in our pre-
vious density operator analysis. Substituting Eqs. (15)
and (25) into Eq. (24) we find our final result for the noise
correlation function

(F (t)F, (t') & =[(IN, &+R(p„—pp )]5(t —t')

equations. It is easy to see that the diffusion coefficients
for the noise force 7 are the same as for the normally or-
dered noise operator F, so that

(34)

However, some of the atomic diffusion coefficients change
in the transition from operator to c-number equation. As
an example, let us calculate the diffusion coefficient D~.
From the operator equation (19), we obtain

—(M(t)M(t) &
= —2I (MM &

d
dt

(FM(t)F M(t') &=[I (N, &+R ]5(t t'), —

(F„(t)F,(t')&=(rN„&5(t —t ),
&F,(t}F (t')&=&rM&5(t —t ).

(27)

+g[((N, Nb —)Ma &

+&M(N. —N, ) &]

+ (MFM &+ (FMM & . (35)

Equations (12), (16},(18), and (19}now constitute a com-
plete set of coupled operator equations which completely
describe the laser with arbitrary pump statistics.

III. CORRESPONDING C-NUMBER LANGEVIN
EQUATIONS

Before solving the equations of motion for the four
macroscopic quantities we first convert the operator
Langevin equations into corresponding c-number equa-
tions. This simplifies the following analysis. In order to
convert the operator equations we have to define a cer-
tain ordering of the operators, to which the c-number
equations correspond. This is necessary because the c
numbers commute with each other while the operators
do not. Therefore we obtain a unique relationship be-
tween operator and c-number Langevin equations only if
we define the correspondence between a product of c
numbers and a product of operators. We here choose the
normal ordering a,M, N„Xb,M, a, and can now derive
four c-number Langevin equations for the variables 8, JH, ,
JV„and JVb such that the equations for their first and
second moments are identical. Equations (12), (16), (18),
and (19) are already in chosen order so that we immedi-
ately obtain

6+gJK+ 2
2 r ~

r~+g(w. w, )c+—v—
W. =R —rW. —g(@'u+u*@)+V. ,

w„= —rw, +g(@*w+w*c)+v, .

(28)

(29)

(20)

(31)

The functions 9' in Eqs. (28)—(31) are again the typical
Langevin noise forces with the expectation values

(V„(t)&=0,

(91,(t)Vi(t') &
= (2D«&5(t t'), —

(32)

(33)

in which P„and 9', can be any of the above noise forces.
The diffusion coefficients Dkr are now determined by the
requirement that the equations of motion for the second
moments are also identical to the corresponding operator

We note that the third term in the square brackets is not
in our chosen order because the operator M is to the left
of N, and N&. Therefore we have to use the commuta-
tion [M, N, Nb]=2—M to bring this term into chosen or-
der. Also, the last two terms vanish so that we obtain

—(M(t)M(t) &
= —2I (MM &

dt

+2g ((N, —Nb )Ma &+2g (Ma & .

(36)

+&2D~~& . (37)

If we require the left-hand sides of Eqs. (36) and (37) to be
equal we see that the diffusion coefficient D~ is given

by

2D~~ =2g JN6' . , (38)

The remaining non vanishing c-number diffusion co-
efficients can be calculated in an analogous way and are
summarized in Table I.

We are now in the position to solve the Langevin Eqs.
(28)—(31). Typically, the atomic decay rate I is much
larger than the photon decay rate y, so that the evolution
of the atomic variables happens on a much shorter time
scale than the electromagnetic field. We can then adia-

TABLE I. c-number di6'usion coefficients for the atomic po-
larization and population variables.

2D, =rA. +R
2D z~ =2gJR@+c.c.
2D~ ~ =I JR+c.c.
2D~ ~ =I JV, +R(1—p) —g(@*&+A 4)

a a

2D~ ~ =I JVb —g(N*A+Af*@)
b b

2D„g ~ =g(@ A, +A*@)"a b

We now use Eq. (29) to obtain the corresponding c-
number equation

—(W(t)u(t) &
= —2r(uu &+2g &(JV, —A, )A 8 &

d
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batically eliminate the atomic variables A1. , JV„and JVb

and derive an equation for the field e alone. Thus as a
first step we set the time derivative of JN in Eq. (29) equal
to zero and obtain the adiabatic value for the atomic po-
larization,

A= —(JV' —A' )6'+ —2g
a b r JN. (39)

2

6= —+8+ (JV —Ã )6+2 +—V~,y r Af

2 2

A', =R —I JV, — (Ã, —JV, )6 '8

(40)

Substituting this result into the equations for 6, JV„and
Ab yields

saturation coefficients for a laser. They are defined as

2g R 8g R
12 ' 14 (49)

The noise force 9't- is characterized by the correlation
functions

& v, (t) &=0,

& W*,(t)V, (t') &
= &2D,., &S(t —t'),

& V~(t)V@(t') &
= &2D~s &5(t t') .—

(SOa)

(50b)

(Soc)

The diffusion coefficients D +& and D& determine the
strength of the noise and can be calculated from the
definition of 7@. A lengthy but straightforward calcula-
tion yields the results

r (7~6'+ 6'"V~)+V, ,

2 2

JVb = —I JVt, + (JV, —JV~ )6'8

+—(9'~6+ 8'P~)+ V~,

(41)

(4» and

1

1+P/aI

'2

1+ I 3 —++ I—P P
4n 2 a

(51)

We next adiabatically eliminate the population vari-
ables Ã, and JV& by setting their time derivative equal to
zero. Equations (41) and (42) then reduce to a set of two
coupled linear equations which can be easily solved. The
result is

2 2 2 2

JV, = R 1+ I + 1+ Ir2 a

2

2D@@= —a 8 3+++ I—
1+P/aI 4a 2 a (52)

IV. DISCUSSION

These results will now be used to discuss the steady-state
operation and the fluctuations of a laser with a given
pump statistic.

2 2

+ IQ b
4 2

r 1+4g I,r2

JV = R I+ 1+ Ib b

(43)

6'=v'Ie'~ . (53)

In this section we want to analyze in detail the proper-
ties of the intensity and phase of the radiated light. For
this purpose we change into a polar coordinate system by
defining

2 2+gISa
4 24g

z
(44)

From the equation of motion (47) for the radiation field 6
we can now derive Langevin equations for the variables I
and y

in which I is the intensity 8*@of the radiation field and
the noise functions 0, and Qb are defined by

q=F (54)

0, =2, ——
( V~ @+ 6 '

V„4t ), (45)
I= yI+ I+F—t .1+ /aI (55)

&o=&b+ (&~@—+@*&~).b b (46)

6 = —+@+— 8+ V~,
2 2 1+P/aI

We can now substitute the expressions (43) and (44) into
(40) and obtain an equation of motion for the electromag-
netic field alone, cx 1

4I 1+P/aI 1+ I
2(x

(56)

In Eq. (55) we have neglected the noise-induced drift
terms which are much smaller than any of the remaining
contributions. The diffusion coefficients for the noise
forces F and FI are found to be

T

in which the noise force 2& is given by

2
1

I I 2 1+ /aI (48)

The parameters a and P are the well-known gain and

DII ——

(1+13/aI )
(57)

Before we start our discussion of the above quantities g
and I, let us first analyze their relationship to the phase
and photon number of the radiation field. As it is well
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known, a Hermitian phase operator does not exist in a
strict quantum-mechanical sense. However, if the photon
number of the electromagnetic laser field is large, the
phase of the classical quantity 6 in Eq. (53) is an excellent

approximation of the measured phase quadrature of the
field. We can therefore directly identify the variable y
with the phase of the radiation field. The relationship be-
tween the quantity I and the photon statistics of the laser
requires a more careful analysis. This is due to the fact
that the intensity I corresponds to normally ordered
products of the operators of the field. It is easy to see
that the photon number ( n ) is directly given by

&=( ' &=(&) . (58)

For the photon number variance we find

((hn) ) =(a aa a) —(a a)
=(ata aa) —(a a) +(a a)
=(r'& —(r &'+(I &

=((ar)')+(s) . (59)

We are now in the position to discuss the phase and the
photon number of our laser model. The steady-state in-

tensity of the laser is found by setting the drift in Eq. (55)
equal to zero,

a a —y
P y

(60)

F s' F t"

(61)

Substituting Eq. (56) into Eq. (61) and using the expres-
sion (60) for the steady-state intensity, we find, after time
integration,

4Io 4IO
(62)

The integration constant I /4Io in Eq. (62) is determined

by the contribution of vacuum fluctuations. These con-
tributions are always present and have to be added to the
noise produced by spontaneous emission.

Equation (62) is the famous Schawlow-Townes result
for a laser and states that the phase diffuses linearly in
time. Note that this does not depend on the parameter p
which we used to describe the fluctuations of the pump.
Therefore the phase of the electromagnetic field is com-
pletely independent of the particular characteristic of the
pump rnechanisrn.

To determine the fluctuations in the quantity I we first
linearize Eq. (55) around its steady state value. Defining
b,I=I Io and making —again use of expression (60) for

In contrast, the phase of the electromagnetic field is not
locked to a particular value but can freely diffuse over the
whole angle of 2m. . The rate of phase diffusion is calculat-
ed with the help of Eq. (54)

—(p') = f dt' f—dt" (tp(t')j(t"))
dt dt o o

the steady-state intensity, we find

d a(EI)=—y EI+Ft .
dt a (63)

The Langevin Eq. (63) describes a very simple Markoff
process, known as the Ornstein-Uhlenbeck process, '
for which the steady-state variance is given by

(64)

Combining Eqs. (59), (64), and (57) we find our final ex-
pression for the photon number fluctuations

((hn) )= — no,
a

a —y 4
(65)

in which no =ID is the average number of photons inside
the cavity. As pointed out before the photon number
fluctuations crucially depend on the particular pump
mechanism. In the case of a Poisson statistic for the
atomic injection tiines (p =0), the variance of the photon
number is always larger than the mean number of pho-
tons. This is referred to as superpoissonian photon statis-
tic. However, for a pump-noise suppressed laser (p )0),
the variance can be smaller than no, which corresponds
to photon number squeezed light. The optimum of such
a noise reduction is achieved in the high-intensity limit

by a regular injection of the atoms (p =1). In such a lim-
it ((bn) ) =0.75no, which corresponds to 25% squeez-

ing of the photon number noise.
It is interesting to notice that the amount of squeezing

also depends on the relationship between the decay con-
stants for the atomic levels ~a ) and ~b ). In the above
analysis we assumed all the decay constants to be equal to
that I,= I b

——I . In the more general case we have to al-
low for different values of the decay constants r. , rb,
and I,b for the atomic operators N„Nb, and M, respec-
tively. The analysis for such a general case is completely
analogous to the calculation above. The final result for
the photon number fluctuation then acquires the form

a —y

I b

I„+I, 2
(66)

It is easy to see that Eq. (66) simplifies to Eq. (65) if
I,= I b. However, if I „ is much larger than I „Eq. (66)
becomes

no. (67)

We have analyzed from first principle the effect of
pump fluctuations in a laser through a Langevin operator

If we again investigate the optimum case of a regular
atomic injection (p =1), we see that it is now possible to
achieve up to 50%%uo squeezing of the photon number fluc-
tuations. The limit I b &&I, is especially applicable to
semiconductor lasers and our result is in complete agree-
ment with the analysis by Yamamoto, Machida, and Nil-
son.

V. SUMMARY
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approach. We have generalized the usual quantum noise
operators to incorporate the statistical properties of the
pump mechanism. This allows us to discuss a large
variety of pump fluctuations within a unified framework.
We find that while the phase diffusion of the laser is
unaffected by the pump noise, the intensity fluctuations
crucially depend on the fluctuations of the pump mecha-
nism. In the high-intensity limit it is possible to reduce
the photon number fluctuations below the standard limit
if the pump noise is smaller than that of a poisson distri-
bution (p &0). Depending on the relationship between
the atomic decay constants I, and I b, squeezing of the
photon number fluctuations of up to SOFo is possible.

Note added in proof. We are pleased to refer the reader
to the excellent earlier paper on this problem by Golubev
and Sokolov. " Unfortunately, this paper was not known
to us and not referred to in our earlier publications.
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APPENDIX A

In this Appendix we want to show that

(g 5(r r, )5(r' t„—}, R-' —=pR5(r -r—') .
j,k

jWk

The subscript S on the bracket in Eq. (Al) indicates that
we perform a statistical average over the injection times.
The parameter p characterizes the injection statistics and
fulfills the relation p 1.

In order to evaluate the average in Eq. (Al) we have to
specify the statistical properties of our injection model.
For this we define a function W(j, t ;k, t& ) such . that
W(j, t~; k, ti, )dtJ dry, is the joint probability that the jth
atom enters the cavity during [t,t +dtJ] and the kth
atom enters during [t„,ti, +dt's, ]. Then the statistical
average in Eq. (Al) can be written as

(x 6(t tt)6(t t )) tt' ——
j,k

W( I, r, ) =5(r, ) .

Furthermore, we note that

W(j, r, )=0 (r, &0)

(A3)

(A4)

because we started the atomic injection at t =0 by con-
vention.

We next want to find a factorization rule of the joint
probability distribution W(j, t, ; k, ti, ) into marginal distri-
bution for individual atoms. For this we first write

W(j, r, ;k, r„)=W(j,r, ~k, t„)W(k, r„) . (AS)

Here W(j, t, ~((k, t„) is the conditional probability, i.e.,
W(j, t

~ k, t& )dt gives the probability that the jth the
atom arrives during [t, , t, +dt ], provided the kth atom
arrived at tk.

If our injection process is stationary and has reached a
steady-state configuration the conditional probability
should only depend on the differences j —k and t- —tk.
We can therefore write

W(j, t
~
k, r„)= W(j —k+ 1,t, r„~1,0)—

(for j & k } . (A6)

Here and in the following discussion we adopt the con-
vention that j is larger than k. We next note that the
conditional probability W(l, t&~1, 0) is equal to the mar-
ginal distribution W(1, ti ). This is due to the fact that we
assumed the first atom to enter the cavity at t =0. We
can now use this identity and obtain from Eqs. (A6) and
(AS)

W(j, t, ; k, r„)= W(j k+ 1, r, r„)—W(k, r„)—
(for j&k) . (A7)

Furthermore, we denote the marginal probability dis-
tribution of W(j, t;k, ti, ) by W(j, t ). Thus W(j, t&)dtJ. is
the probability that the jth atom enters the cavity during
the time interval [t, t, +dr, ]. Finally, let us label the
atoms with positive, integer numbers such that the first
atom is labeled 1, the second atom is labeled 2, and so on.
To fix our time scale we assume that the first atom enters
the cavity at t =0. Then the probability distribution for
the first atom is given by

= g J dr, J dr& W(j, t, ;k, r&)5(r t )—
0 0

jWk

X5(r' r„}. —

The expression Eq. (A7) is the desired factorization of the
joint probability distribution into a product of marginal
distributions. We can now use this expression to simplify
Eq. (A2). We first write

g f drJ f dr„W(j, r, ;k, r& )5(r r, )5(r' r& )— —
k

j&k

(A8)

j)k
dt J dtI, W(j, t, ;k, t„)5(t t )5(t' tl, )+ g f—dt J —dt„W(k, t„;j,t, )5(t t„)5(t'—t ) . —

0 0
k 0 0
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We next use the fact that W(j, t ;k., tk)= W(k, tk,j', t ).and obtain with the help of Eq. (A7)

g f dt, f dtk W(j, t, ;k, t„)[5(t —t )5(t' —tk)+5(t' —t, )5(t t—„)]
&k

= g f dt, f dt„W(j —k+1, t, t„—}W(k,t„)[5(t t,—)5(t' —t„)+5(t' t,—)5(t t„—)] .
-)k 0 0

(A9)

Recall that W(j, t, )=0 for t, (0. Now we see that W(j —@+1, t, tk—) is zero unless t, tk—. &0, which is consistent
with the requirement that j)k. Therefore the integral over t effectively begins at t =tk. If we denote t —tk by s we
find

g f dtk f dt W(j .—k+1, t tl, )W—(k, tk)[5(t —t )5(t' tk—)+5(t' tJ)5—(t tk)]-
j&k

= g f dtk f ds W(j —k+1,s)W(k, tk)[5(t' tk)5(—t —
tk

—s)+5(t —
tl, )5(t' —tk —s)] .

j&k
(A10)

We note that we are only interested in times t and t' larger than zero. The integration over the 6 functions can then be
easily performed and we obtain from Eq. (A10)

g f ds W(j —k+ 1,s)[W(k, t')5(t t' —s)+—W(k, t)5(t' t ——s)]
j&k

W(j —k+ 1,t t')W—(k, t') for t t'&0-
W(j —k+ 1, t' t)W(k,—t) for t t'(0—

j&k

= g W(j —k+1,
l
t t'l ) W—(k, t ),

j&k
(A 1 1)

with

t, =min(t, t'} . (A12)

have related the quantity f (s) to more familiar statistical
quantities. We now evaluate and discuss f (s) for several
cases of particular interest.

The expression in Eq. (A12) can be simplified even fur-
ther

g W(k, t )W(j —k+1, lt —t'l)

W(k, t, ) W(j —k+1, l t t'l )—
k=1 j=k+1

= g g W(k, t, }W(l, lt t'l)—
k =11=2

1. Regular injection

In this case the time between consecutive atoms is fixed
so that there are no fluctuations in the number of atoms
which are injected during a fixed time interval. We note
that 1 jR is the time between consecutive atoms in which
R is the mean atomic injection rate. Therefore the jth
atom is injected at time (j —1)/R is we again assume
that the first atom is injected at t =0. The marginal
probability distribution W(j, s) is then given by

g W(k, t )+W(l, t, )
k=2 W(j s)=5 s- j —1

R
(A16)

Substituting Eq. (A16) into the definition off(s) we find

We next use Eq. (A3) and the definition of t ( and remark
that W( l, t ( ) is always zero. This is due to the fact that
we assumed t and t' to be larger than zero. We therefore
find the simple expression

00 I $
oo

f(s)=+5 s — =+5 s ——
oo= g 5 s ———5(s) .

I=o R
(A17)

with

z (((t —t, t(((t t t) f(t,' f—t l(t ((tt, =(a(4('j
j,k

jWk

The time scale we are interested in is much larger than
the time between two consecutive atoms. Therefore we
can change the summation in Eq. (A17) into an integra-
tion and obtain

f(s)= g W(l, s) .
l=2

(A15) I5 s ——=R d —5 s ——=R.
R 0 R R

(A18)

Physically, the quantity f (s)ds is the probability that any
atom, apart from the first one, is injected into the cavity
during the time interval fs, s+ds]. In Appendix B we

Substituting Eq. (A18) into (A17), we obtain

f(s)=R —5(s) . (A19)
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Therefore Eq. (A14) simplifies to

(X ()(t tt—)R(t ' t—
t)) t=[R —()(t, )][R —(ltlt —t'I)]

j, k
jWk

=R [R —5(t —t')] . (A20)

jWk

This is just Eq. (Al) in which the parameter p has the
value 1.

2. Poissonian injection

In this case the number of atoms, which have been in-
jected into the cavity at a given time, follows a Poisson
statistic. The marginal probability distribution W(j, s) is
then given by '

In the last step we again used the fact that t & is larger
than zero and therefore the first 6 function vanishes.
Subtracting the term R on both sides of Eq. (A20) yields
our final expression for the case of a regular injection

(A21)

amount of atomic bunching. In the case of a regular in-
jection we have complete antibunching so that f (s) goes
to zero as s approaches zero. On the other hand, a Pois-
son distribution has a strong bunching erat'ect so that the
injection probability f(s) remains constant when s ap-
proaches zero [c.f. Eq. (A24)]. In the general case it is
physically reasonable to make the ansatz

f(s)=R(1 —pe ') (s &0) . (A26)

The parameter p quantifies the amount of antibunching of
the atoms. For p =0 we have the Poissonian case (A24).
%ith increasing values of p the atoms become more and
more antibunched, which reaches its maximum in the
case of a regular injection (p =1). It is also clear from
Eq. (A26) that p cannot be larger than 1 because f (s) has
to be non-negative.

Substituting Eq. (A26) into Eq. (A14) yields

(g 5(t t )5(t—' t„) s=—R'(1 —pe ')(1 pe
—~I —'I)

j,k
j&k

W(j,s)=RP(j —l, s) (for j &1) . (A22)
R 2(1 pe

—RIt t )—'
(A27)

Here R is again the average injection rate of the atoms.
The function P(l, t) is the probability that at time t, 1

atoms have entered the cavity Thus .P(l, t) is the Poisson
distribution

P(1 )
(Rt)' '

R,
(1 —1)]

(A23)

The factor I —1 stems from our assumption that at t =0
already one atom has entered the cavity. Substituting
Eqs. (A22) and (A23) into the definition for the function
f(s) yields (g 5(t —t, )5(t' —t„),—R'= PR5(t —t') -.

J, k

(A28)

In the last step we have made use of our assumption that
the time t and t' are much larger than zero (in fact
t, t'&)1 /R ). This allows us to neglect transient effects
which arise from the initial condition of our pumping
mechanism. Furthermore, if we are interested in a time
scale that is much larger than 1/R, we may approximate
Re ' '' by the 5 function 5(t t'). We—then obtain
from Eq. (A27)

(Rs)f(s)= g R e '=R . (A24)
j&k

This is just the relation (Al) we set out to prove.
Hence we see that f(s) is independent of time. The final
expression in the case of a Poissonian injection is then
given by APPENDIX 8

i.e., p =0 in Eq. (Al).

3. General case

(A25) In this Appendix we want to establish a relationship
between the quantity f (s) in Appendix A and more fa-
miliar statistical quantities for a given injection mecha-
nism. Let again P(l, t) be the probability that at time t, 1

atoms have entered the cavity. Then it is easy to see that
P(l, t) and the marginal distribution W(1, t) are related by

As mentioned before, f (s)ds is the probability that any
atom, which is dift'erent from the first one, is injected into
the cavity during [s,s +ds]. It is intuitively clear that for
times t )&0 this probability should be time independent,
at least on a coarse-grained time scale (see also Appendix
8). This is necessary to guarantee a steady state for the
average number of injected atoms during a fixed time in-
terval. Therefore we expect that for large times f(s) ap-
proaches the constant, average injection rate R. Howev-
er, on a time scale of order 1/R, which is the average
time between consecutive atoms, f(s) specifies the

(81)

Equation (8 1) simply states that the change of probability
is equal to the "rate in" minus the "rate out. " Solving
this expression for W(1+1,t) and iterating the equation
yield

(82)

In the last step we made use of the fact that the sum over
all probabilities is equal to 1. We then find for f (s)

dW(1+1,t)= ——g P(j, t)= QP(j, t) . —
dtJ=O

'

dt's-I+1
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OO QC 00

f(s)= g W(l, s)= g g P(j,s)
ds

cavity at time s. Our function f(s) is just the time deriva-
tive of this statistical quantity. Note also that in our case

d P(j,s)
j=21=2

00

g jP(j +l,s) .
j=O

(83)

The quantity g" ojP(j + l, s) is the average number of
atoms, different from atom 1, which have entered the

d " . . dg jP(j + l, s)= g jP(j,s) (for s &0), (84)
ds 0 ds 0

so that the function f(s) can be easily computed from the
erst moment of the probability distribution. This inter-
pretation of f (s) supports our discussion of the general
case in Appendix A.
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