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Exact results on light scattered from atoms pumped by coherent
and chaotic fields of arbitrary bandwidth
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The dynamical behavior of an atom interacting with a coherent field and a chaotic field is studied.
Monte Carlo methods are used to integrate the equations describing the dipole moment, population
inversion, and two-time correlation functions. The chaotic field can have a finite correlation time.
Numerical results for a wide range of the parameters are given. The results depend sensitively on

the ratio of the Rabi frequency and the bandwidth of the chaotic field. It is shown how an intense
coherent field can suppress the efFects of incoherence. The intensity of fluorescence as a function of
detuning exhibits narrowing as the strength of the coherent field increases.

INTRODUCTION THEORY

Scattering of light by atoms under various pumping
conditions' has been extensively studied. The spectrum
of the emitted radiation is very sensitively dependent on
the pumping process. In particular, the stochastic fluc-
tuations of the pump fields affect the spectrum. Various
models of pump fluctuations have been treated in the
past: these include (a) the phase diffusion model, 2 ~ in
which only the phase of the field fluctuates and exact
analytical solutions are known: (b) the chaotic field mod-
el, in which the field's complex amplitude is a two-
dimensional Gaussian process, and for which exact solu-
tions have been obtained numerically by using matrix
continued fractions; (c) jump models6 —in which ampli-
tude, phase, or frequency is taken to be a discontinuous
Markov process. These also lead to exact solutions. The
dynamics of an atom excited by a phase fluctuating field
have been recently studied experimentally. " Most pre-
vious works deal with the interaction of a single field with
the atomic system. Clearly, many situations will involve
atomic interaction with a field which has both coherent
and incoherent components, i.e., the field interacting with
the atom has the form

—i' t+ik. rE=e[eo+e,(t)]e ' +c.c. ,

where co is the coherent part of the field envelope and co,
is its optical frequency. The fluctuating part of the field
is represented by et(t). Generally one would expect s&(t)
to be chaotic in character; i.e., s, (t) is a two-dimensional
Gaussian Markov process with correlation functions

(2)

The dynamics of the system depends critically on the
correlation time I ' of the stochastic component.

Bp l

Bt
[so+ 8, ( t) ]S++H. c. ,p

ih[S', p]——y(S+S p
—2S pS++pS+S ) . (3)

Here p is in a frame rotating with the frequency co, of the
field. The phase factor (e '"') has been absorbed in the
definition of d. 6 is the detuning parameter (coo—co, ).
The spontaneous emission from the excited state to the
ground state is represented by the last pair of parentheses
in Eq. (3). Let 0 be the Rabi frequency associated with
the coherent part of the field

In this paper we study the scattering of light from a
two-level system which is being pumped by both coherent
and chaotic fields. In view of the complexity of the sys-
tern we use Monte Carlo methods to evaluate the steady-
state behavior and the spectrum of the scattered
field. ' ' We discuss the spectrum in several interesting
regimes of parameter values involved in the problem.

(a) When the correlation time of the stochastic part of
the field is very short compared to the radiative lifetime
(2y), i.e., I'»y, we show how very interesting line-
narrowing effects arise as the Rabi frequency of the driv-
ing field becomes much larger than I . Note further that
as long as I is much larger than all other time scales in
the problem, the usual Mollow spectrum is obtained.

(b) When the correlation time is comparable to the ra-
diative lifetime, the spectral features are very difFerent
from what one might expect on the basis of Bloch equa-
tions.

(c) The effect of detuning the field; we study how the
asymmetries of the spectra depend on various parame-
ters.

The dynamics of the two-level atom with frequency coo

in the presence of the pumping field is given by the
density-matrix equation
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2d-e
o

and let P be the parameter defined by

(4a) 0 0 2

C = 0 0 0, g= 0
0 —1 0

(6b)

p= —(x (t)x'(t') ),=2
r

where x (t) is given by

dsx(t)= e, (t) .

(4b)

(4c)

Note that the Bloch equations for the g's are really
Langevin equations with stochastic modulation appear-
ing in multiplicative form. In what follows, such equa-
tions will be integrated using Monte Carlo methods to get
the dynamical behavior of the system. We also note that
if the correlation time I goes to zero, then stochastic
averaging over x (t) can be carried out with the result

The Bloch equations for the mean values of the dipole
moment operators S+ and S and the inversion operator
S' are given by

(s+ &

(S ) = Cog ix —(t)C+ g ix—'(t)C g+g, (5)

(s')
where

1 2=2(y+P) =
T] T2

(g)

where /3 is defined by (4b). Clearly, in such a case we
have the standard optical Bloch equations with trans-
verse and longitudinal relaxation constants defined by

Co=

—y+i 5
0

0 0 0

—
y —ih iQ
iQ —2r

(6a)

We next introduce the correlation matrix R(t+r, t)
defined by

(S+(t +r)s (t) )

R(t+r, t)= (S (t+r)s (t))
(S'(t +r)s (t) )

C+= 0 0 —2

1 0 0
The correlation matrix R obeys an equation that can be

obtained from (5) and the quantum regression theorem

dR =CoR(t+r, t) i[x(t+—r)C++x "(t+r)c ]R(t+r)t)+g(s (t)) .
d7. (10)

The set of equations (10) is in the form of Langevin equations because of the stochastic field x (t). The spectrum of the
scattered field is defined by

S(co)=Re f d ~[( (S+(t +r)s (t) ) ) —( (S+(t + r) ) ) ( (S (t) ) ) ]e

=Ref dre ' ((R, ) —(g, )(g~)), (12)

where the second angular bracket denotes the ensemble
average with respect to the fiuctuations of the field x (t).
Thus, in order to get the spectrum, the sets of equations
(5) and (10) are integrated numerically using Monte Carlo
techniques.

equal to 2I ~

The algorithm used to generate x (t) is detailed in Ref.
15 and is briefly described here. We first outline a
method for producing Gaussian 5-correlated (white) noise
g . This noise has the well-known properties

MONTE CARLO SIMULATIONS (g (t)) =0, (g„,(t)g*(t')) =P5(t t'), —(14)

We represent the complex, stochastic field x (t) by ex-
ponentially correlated (colored) Gaussian noise, with the
properties g =[ pht ln(a)]'~ exp(—2vrib), (15)

which completely determine a11 its statistical properties.
It is easily produced by the Box-Mueller algorithm:

and

(x(t)) =0

(x(t}x*(t'))= ' e
IR
2

(13a)

(13b)

where a and b are computer-generated, uniformly distri-
buted random numbers between 0 and 1.

Exponentially correlated colored noise as described in
Eq. (13}is obtained from the equation

where I is the inverse of the correlation time and ( I p/2)
is the variance of x (t). This noise has a Lorentzian spec-
tral profile with a full width at half maximum (FWHM)

x= —I x+I g„, (16)

in which g is still Gaussian white noise as defined be-
fore. It has been shown previously' that by integrating
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the above equation (16) we get

(17)

where h depends on g and is Gaussian with zero mean
and a second moment given by

Thus to generate the colored noise x (r), we first pro-
duce h by the formula

h = [—0.5Pr(1 —e ')ln(a)]' exp(2n. ib),

where, as before, a and b are computer-generated, uni-
formly distributed random numbers between 0 and 1.
The exponentially correlated noise is then obtained from
expression (17).

The three Langevin equations (5) were solved numeri-
cally using the colored noise generated above. An Euler
method was used for the numerical stochastic integration
with a time step of 0.001. Integration over 10000 steps
was carried out to reach a final dimensionless time of 10
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FIG 1. (a) The spectrum of (Iuorescence as a function of normalized frequency (~ ~, )2/~r for—P=20y r = 100y and for Rabl
frequency (Q ) of the coherent pump equal to (I) 40y, (II) 100y, (III) 200y, (IV) 400y, and (V) 1000y. The central Peak shows dramat-
ic narrowing For clarity, the orlgln on the y axis ls shifted for curves (I)-(IV) by 0-5. 04. 0-3 and 02 units respectively. (b) Side
bands of the fluorescence spectrum for Q/y of 200, 400, and 1000. Curves (III) and (IV) are shifted by 0.4 and 0.2 units for clarity.
(c) Half-width of the central component as a function of the Rabi frequency for @=20y and I = looy. The narrowing is very clearly
depicted here.
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units. The values of (S (t) ) were used as the initial con-
dition for the next set of three Langevin equations (10).
Once again a time step of 0.001 was chosen for the nu-

merical integration and 10000 steps was carried out to
obtain the elements of the correlation matrix R. A fast
Fourier transform of (R I(r) ) gave the power spectrum
S(co) as described in (12). An averaging of the power
spectrum over 1000 trajectories obtained with different
initial values of (S (t) ) was performed.
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FIG. 2. {a) Effect of detuning on spectrum for 13=~0
1"= 100y, and 0, =100y. Curves {I)—(IV) are for 5 of 50y, 20y,
10y, and 0, respectively. The spectra show a strong asymmetr
wi e eft sidebands becoming more pronounced. Curves are

symme ry,

offset by 0.6, 0.4, and 0.2 units on the y axis. (b} Effect of nega-
tive detuning on spectrum. P, I, and tl same as for (a). Curves

(I)—(IV) are for 5 of —50y, —20y, —10y, and 0. The asym-

metry is switched, with the right sidebands becoming more
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FIG. 4.4. (a) Spectra for 0) I . Curves {I)-(III) are for
@=20@,I =100y, tl = 500y, and 6 of 150@,50)', and 0. Curves

and (II) are offset by 0.2 and 0.1 units on the y axis. (b) Cen-
tral peaks of (a) on an expanded scale.
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coherent and a stochastic component interacts with a
two-level atom. The sensitive dependence of the results
on the ratio of the Rabi frequency and the bandwidth of
the chaotic field is shown. %e first consider the case
when the correlation time ( I/I ) of the stochastic ampli-
tude is short compared to y ', i.e., I »y. In Fig. 1(a}
we show how the spectrum of the scattered light changes
as the intensity of the coherent component is increased.
For values of 0, , low compared to I, but large compared
to (y+P) we recover Mollow's three-peak spectrum, i.e.,
we find peaks centered at co=ru, with a width (y+P) and
two sidebands at ru =co,+0 with widths 23 (y+P). This is

because in this limit the optical Bloch equations hold. As
fL becomes larger than I, the usual optical Bloch descrip-
tion cannot be used. This is because within the correla-
tion time of the stochastic field, several Rabi oscillations

due to the coherent component are possible. This leads
to extreme narrowing of the central component. ' In
fact, the central component narrows from a half-width of
(y+P) to y. [The sidebands are shown in Fig. 1(b).] We
suggest the following experiment for the verification of
this result. First irradiate a two-level atom with a wide-
band chaotic field and measure the spectrum of the scat-
tered radiation. Next, apply a coherent field of varying
intensity in addition to the wide-band chaotic field and
study the spectrum to compare with our predicted re-
sults. The experimental measurements should be similar
to the results shown in Fig. 1(c}.

A situation of considerable interest would be the de-
tuning of the electric field from the resonant frequency of
the two-level atom. In Fig. 2 is shown the eA'ect of detun-
ing the field. %'e choose 0 comparable to I )&y. The

15
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FIG. 5. Spectra for longer correlation time, I =y and P=20y. Curves {I)—{V) are for II/y of 0.2, 1, 2, 10, and 20. Curves
(I)—(I&) are offset by 0.6, 0.4, 0.3, and 0.2 units on the y axis. Inset shows half-width of the central component vs Rabi frequency for
r=r.
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FIG. 6. Effect of detuning on spectra for P=20y, I =y, and

A=20y. Curves (I)-(IV) are for 6 of 10y, 4y, 2y, and 0. Note
the increasing prominence of the left sidebands.

FIG. 7. Mean inversion as a function of the detuning for
P=20y and I =100y. Curves (I)—(III) are for II/y of 40, 100,
and 300. The dashed curve is for a pure, coherent field. Width

of the curve narrows with increase in Rabi frequency.

three-photon sideband becomes more and more pro-
nounced as the detuning increases. Figures 2(a) and 2(b)
also show the effect of reversing the sign of A. We note
that reversing the sign of the detuning switches the asym-
metry in the spectra. Figure 3 shows the spectrum in the
limit of much larger values of the detunings. Note the
considerable amplification of the three-photon sideband.
In Fig. 4 we give the spectra in the limit 0 & I, i.e., when
several Rabi oscillations are possible within the correla-
tion time of the chaotic field. Figure 4(b) shows the cen-
tral peaks in Fig. 4(a) on an expanded scale.

We next consider the case when the correlation time of
the stochastic field is comparable to the radiative lifetime.
In Fig. 5 we show the corresponding spectra for a range
of the values of the intensity of the coherent driving field.
Curve I is for low values of the coherent field. It
effectively gives the spectrum in the presence of the
chaotic field alone. The side peak is missing even though
the Rabi frequency of the chaotic field is equal to 2&10.
The side peaks start appearing as the coherent part of the
field increases. ' Once again, a narrowing of the central
component is observed. This suggests that this narrow-
ing with increase in the intensity of the coherent com-
ponent is a very general feature, This narrowing aspect is
depicted in the inset of Fig. 5 where the half-width of the
central component is shown as a function of the intensity
of the coherent component. The effect of detuning is
shown in Fig. 6. The left sideband again becomes more
prominent for positive detunings.

Finally in Fig. 7 we show how the average inversion
((S') ) depends on the detuning. ' ' Note that the in-
tensity I of the scattered light is proportional to
( —,'+ ( (S') ) ). Results are shown for the case of I equal
to 100y and fL of 40@, 100@,and 300@. As expected, an
increase in the Rabi frequency leads to an increase in the
mean value of the inversion at resonance, which tends to
zero asymptotically. Further, we note that as 0 in-
creases, the width of the average inversion versus (6/0)
curve narrows. This is a very interesting result. In the
limit where the usual Bloch equation treatment is valid
the width of the inversion versus (5/0) plot would be in-
dependent of the Rabi frequency. But for the model
presented in this paper, we find the width decreases with
increasing Rabi frequency. The limit of this narrowing is
the dashed curve, which is for the case of a pure coherent
field. Obviously, the incoherent component causes a
broadening of the inversion versus (b, /0 ) curve.
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