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We present here a fully quantum-mechanical treatment of the laser using a three-level atom mod-

el. The phase-space method employed is identical to that in a previous publication of ours [Phys.
Rev. A 38, 4073 (1988)] and again results in a Fokker-Planck description of the laser without any
approximations. The third leve1 only provides extra deterministic terms and, if it is regarded as a
further reservoir to the lasing levels, then the resultant stochastic equations have much improved
stability. These equations are suitable for extensive theoretical analysis of both the laser and optica1
bistability, although in this paper we have concentrated on the adiabatically eliminated limit and
calculated the leading noise terms in various regimes. However, we do use the technique of direct
numerica1 simulation to solve exactly the full system of laser equations. The results display clearly
many of the known laser characteristics.

I. INTRODUCTION

In a previous paper, ' we introduced a phase-space
method for the laser involving two-level atoms, resulting
in a Fokker-Planck equation which described the system
without a truncation of higher-order derivatives. Howev-
er, a consequence of this method was a stochastic equa-
tion for an extra variable, the moments of which were
equal to those of the total number of atoms, but with an
additional source of noise variation. This noise had no
immediate physical interpretation and prevented the use
of standard techniques for the solution of the system.

The purpose of this present work, then, is to investi-
gate a more realistic Fokker-Planck equation for the
laser, which while maintaining the desirable properties of
our previous equation, now contains further deterministic
terms to stabilize the extra stochastic equation. This is
achieved by considering another model for the laser con-
sisting of an ensemble of three-level atoms which interact
via the upper two levels with a single mode inside a cavi-
ty. Using the same approach and method generalized
from the two-level model, a characteristic function equa-
tion and then Fokker-Planck equation may be derived for
the system. Under the reasonable assumption, first intro-
duced by Gordon, that the ground level may be treated
as an extra reservoir to the lasing levels, we obtain stable
stochastic equations which describe the operation of the
laser and optical bistability, under completely general
conditions.

The course of this paper is as follows. Sect. II intro-
duces the Hamiltonian model and master equation for the
three-level system, which is familiar from other research.
We now define extra raising and lowering operators to
describe the extra possible transitions to and from the
third level. The procedure is equivalent to that for the
two-level model, except that the matrices defined are
3X3 matrices and a new algebra has to be defined. The
master equation is then written in terms of these operator
matrices.

In Sec. III we introduce the three-level characteristic
function, in a similar fashion to that developed in Ref. 1.
The atomic part is again written as a linear combination
of the atomic operators, but we now require five variables
to obtain a closed set with the new master equation. Us-
ing the new operator algebra we derive a differential
equation for the characteristic equation.

Using techniques based on the positive P representa-
tion of Drummond and Gardiner in Sec. IV, we next
convert the characteristic function equation into a
Fokker-Planck equation involving classical variables in

phase space. This Fokker-Planck equation has positive
semidefinite diffusion and is obtained without the trunca-
tion of higher-order derivatives required in traditional
phase-space methods. A set of seven corresponding sto-
chastic differential equations may then be inferred. The
equation for the number of atoms in the lasing levels has
now been stabilized, but at the expense of an unexplained
variation in a variable with moments equal to those of the
total number of three-level atoms.

In Sec. V we consider the various models for laser
operation allowed by a three-level atomic system. The
first of these results in essentially a correction to the two-
level equations, but in addition we consider models in
which the extra level transitions are fundamental in pro-
ducing the population inversions. Following Gordon, we
then assume that there is effectively an infinite number of
atoms in the ground level, which acts as an additional
reservoir to the few atoms in the 1asing levels. This al-
lows us to consider again a six-equation system for the
laser and optical bistability, but now with considerably
improved stability properties.

We next introduce (Sec. VIj scaled variables, essentially
equivalent to those considered by Carmichael, Satchell,
and Sarkar, in order to more clearly reveal the physics in
the equations. The scaled equations demonstrate that it
is the size of the saturation photon number n, which
determines the size of the stochastic noise and hence
whether the semiclassical predictions are likely to be
correct.
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In Sec. VII, for the adiabatic elimination limit, a
simplified set of equations may be found for the cavity
variables. The Fokker-Planck equation is complicated,
but for large and small intensities the dominant noise
terms may be determined. For the laser configuration,
these are equivalent to those derived using the two-level

system, but a new Fokker-Planck equation which may
have an application in Jaynes-Cumming problems is also
presented.

Finally, in Secs. VIII and IX, we use the powerful tech-
nique of numerical simulations and apply it to our full

system of six equations in a laser configuration. The nu-
merical scheme employed is the deterministically stable
mixed implicit-explicit method of McNeil and Craig.
This work represents the first serious attempt to simulate
laser operation using the full set of phase-space equa-
tions. The results clearly display many of the known
laser characteristics such as threshold, critical slowing
down, and coherent light production above threshold.
Although some numerical spiking is present at threshold,
it does not appear to have the pathological consequences
discovered in our recent work on numerical simulations.
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FIG. 1. Diagram of the three-level atom laser model.
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ing the atomic and cavity damping. We now follow the
standard techniques to write the corresponding master
equation. In the interaction picture, using a reference
frame which eliminates the free-energy Harniltonian
terms in Ho, this is

II. THREE-LEVEL ATOM LASER MODEL
AND MASTER EQUATION

The model we shall consider is of an ensemble of XT
atoms coupled to a single mode inside a cavity. However,
the atoms now have three levels 0,1,2 and are described
by the oPerato s ao ao al a 1 az az which obey the stan-
dard anticommutation relations
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with Hz and H3 representing Harniltonian terms describ-

As is shown in Fig. 1, level 0 is taken as the ground level
and defined to correspond to zero energy. The upper two
levels are the lasing levels and are split by frequency co

about the excitation energy E. The cavity mode is de-
scribed by the operators a and a, with the frequency
tuned to the resonance frequency cu, the atomic energy
level difference.

In addition, the three-level atomic system is damped by
a reservoir which can be used to provide the energy for
level transitions. The cavity mode is also damped by a
finite-temperature reservoir to represent losses through
the cavity mirrors.

In the rotating-wave and electric dipole approxirna-
tions, the Hamiltonian for this system is

3
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(2.6)

where

The terms in (2.4) involving the parameters m and m"
are unconventional, and are included to allow the possi-
bility of a squeezed bath. However, in all numerical work
m and m ' will be set equal to zero.

The parameter ~ gives the rate of energy loss of the
cavity mode, principally through the mirrors. The atom-
ic damping rates define two mechanisms; the first co;,
where iWj, gives the rate of transition from level i to lev-
el j by either pumping or emission (see Fig. 2) and the
second cu„, allows for reservoir-induced random phase
shifts and collisional broadening.

For the two-level atom system it has proved convenient
to use the analogy with a spin- —, particle in a magnetic
field. This involves the identification of the Fermi opera-
tors with the Pauli matrices as
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0 1

0 0
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The standard technique is to substitute the Pauli matrices
into the two-level master equation and use their known
algebra. The extension to three levels is similar and re-
quires the definition of two new sets of raising and lower-
ing operators

FIG. 2. Diagram showing the master equation level transi-
tions.

[a iaolq=Xq [a]ao]q=X& [a2a0]p ct'p

(2.7)
[a2ao]

It is then possible to define three-dimensional matrices,
corresponding to the two-dimensional Pauli matrices,
which include terms for all three levels

1 0 0 0 0 0
I„' = 0 0 0, I„= 0 1 0

0 0 0 0 0 1

The following algebra may then be derived: (i)

(2.9)
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(2.8)
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For completeness, we also require the two diagonal ma-
trices

All other matrix products are zero. So substituting these
operators into (2.3), the terms in the master equation are
now written as

(a cr„ao„+), — (2.10)
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In writing (2.11) we have assumed only terms represent-
ing level transitions are to be included in the atomic
damping, that is, all terms proportional to co;; in (2.5) are
zero.

III. THE CHARACTERISTIC FUNCTION
AND EQUATION

Following the procedure in Ref. 1, we introduce the
characteristic function y as

X=Tr(Op),

where 0 =0"0"or 0 =Q "'"0"",

0 = exp(iP+a )exp(iPa),

OA P OAP
p=]

(3.1)

(3.2)

(3.3)
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given by

0"'"=b I'+bI +c cr (3.5)

The differential equation for the characteristic function is

I

The kernel 0"'" is defined to be a linear combination of
the operators representing the atoms, as in the two-level
situation. However, to include the effect of the third level
and obtain a closed set of variables, we now define

~=Tr O p
Bt Bt

(3.6)

This equation will contain all the terms from the two-
level model, but in addition there will be contributions re-
lated to the ground level. The method is identical to that
of the two-level atom model, however now using the third
level algebra and gives terms like

NT
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Combining all the various contributions to (3.6) we finally obtain
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IV. TRANSFORMATION TO THE FOKKER-PLANCK EQUATION

To be consistent with Ref. 1 we first make the change of variables

b ~1+b b1 ~1+b1 (4.1)

We then use a generalized P distribution to convert the characteristic function equation into an equation involving clas-
sical variables in phase space. This is achieved by the particular choice of a positive-P function as

y(y)= f . f dx exp[i(p+, p, c+, ,'c,c,b', bI ) x—]p(x), (4.2)

where x=(a+,a, v+, D, v, B,B, ) and y=(p+, p, c+,c,c,b', b', ) . As explicitly indicated, variables are not complex
conjugates of the corresponding variables with the superscript +, but instead define the P function in an extended 14-
dimensional phase-space. As was shown in Ref. 4 this positive P function explicitly has positive semidefinite diffusion.
Now under the assumption that the surface terms vanish as the phase-space integration sphere tends towards infinity,
the following Fokker-Planck equation is derived:
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a a a a' a' '0 c3 +—P(x)= a' a+ + a + + 2n+
2

m+ +2 m + 2(tp12+t021) v+ + v +2
~

D
aa pa+ c}aBa+ Ba aa+ ()v g~+ BD

]—(F12—tp21) 8 + —,
' (F010+cp20) v+ v + D + — 8 + (c001

—
A@02) 81

BB a~ q + aD aB aB, BD

+ —,'(~1o—~20)
a

aB,
c3 a

BB BB
D — 8 + (coo, + to02) BB] aB

+g 2 (av +a v) — aD — a D — v — v + + —,'(8 +D)a , a a , a a , a' a2

dD Bv Bv t)a Ba Bv Ba Bv Ba

BB BD
V+ V

8
Ba pa+

P(x) . (4.3)

The first thing to notice is that the second-order noise terms are independent of the terms involving transitions to and
from the ground level. This means that by introducing a ground level in addition to the lasing levels, we are not further
complicating the quantum noise, but just affecting the deterministic properties of the laser. The corresponding stochas-
tic differential equations are

a = —~a+gv+ I

a + = —~a++gv++ I

where ( I, (t)I (t') ) =d; 5(t —t'), and the diffusion matrix d is
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In our previous paper, ' the variable B which had all mo-
ments equal to the moments of the number of lasing
atoms (fixed), was unstable because of the eff'ect of the
quantum noise. However, in (4.4), this variable now has
stabilizing deterministic terms. These terms are all pro-
portional to transition rates to and from the ground level,
indicating that the ground level is fundamental to the sta-
bility of the laser operation for this model. Of course,
there is a price in that the number of lasing atoms is no
longer a constant but fluctuates around some average
number of atoms. Nevertheless, in many respects this is
a more realistic description of the number of lasing atoms
in a true laser.

If we now de6ne the variable B2 =B+B,, then it will
have the stochastic equation

B =B+B,=I (4.6)

The moments of B2 will all be equal to those of XT—the
total number of atoms in the three-level model —which is
fixed. However, the equation for B2 has been made un-
stable by a noise term proportional to the coupling con-
stant g, which has no apparent physical interpretation.
This can only be eliminated by adding a fourth level, in
which case B2 is stabilized at the expense of an instability
in B3, the variable with moments equaling that of the to-
tal number of four-leve1 atoms. By adding further levels
this instability may be shifted further from the lasing lev-
els, but the instability cannot be eliminated. It seems
most likely that this instability is simply an artifact of the
way our formalism treats interactions between atoms and
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light fields. In the next section we introduce an assump-
tion on the character of the ground level which allows us
to remove this instability and obtain useful results.

B=N, v= ",D=gaD
y+a '

N
(5.5)

Q 2g aa
2y y(y+a)

V. MODELS FOR THE LASER

A. Laser model i

In the traditional two-level laser model we require
(from Fig. 2)

co)p —2y, cop) —0 . (5.1)

(Strictly speaking, co&, cannot be zero —rather, we con-
sider the case when it is small compared to other terms. )

Thus the bath pumps so that only transitions from level 1

to level 2 are allowed. Incorporating the third level, we
stabilize the B equation by allowing transitions connect-
ing the ground level and both the upper lasing levels, i.e.,

The introduction of a affects and reduces the steady-state
inversion, so we therefore require a to be small. The total
model we wish to consider, then, is where the inversion is
determined by the discrepancy between ~&z and co&& and
the connection with the ground level acts as a slow mech-
anism to ensure that the total number of lasing atoms
fluctuates around the average N.

B. Laser model 2

The ground level allows greater freedom in the method
of pumping the upper lasing level. Perhaps a more physi-
cal method of creating an inversion is to follow the model
described by Loudon and set

Npp a =co&p, mpz=Xa =cop& (5.2) pp =XQ Q)p& =0 Q)pp= a =
m&p, co&&

=y =co&& (5.6)

The parameter X relates the upward transition rates to
those of the downward transitions. At this stage we have
assumed equal transition rates between each of the upper
levels and the ground level, as this is all that is required
for stability reasons. The stochastic differential equations
(4.4) then become

a = —~a+g v+ I

v= —(y+a )v+gaD+1 „,
D = —(2y+a)D+2yB —2g(a+v+av+)+ I &,
B= —aB+2XaB, +I z,
B& =QB 2XQB]

(5.3}

a = —Ka+gv+ I

v= —(y+a)v+gaD+ I

D = —(2y+a)D +2y8 —2g (a+ v+av+ )+ I n,
8= a(B N)+I ~ . — —

(5.4)

In the limit of a ~0 these equations are identical to those
obtained using our two-level laser model. Performing a
semiclassical analysis

Here and in what follows, we will not explicitly write out
the equations for a+ and v+ —they may be simply found
by treating them as pseudo-complex-conjugate equations
to those for a and v. Now to remove the instability we
employ the same approximation as Gordon by consider-
ing nearly all the atoms to be in the ground state and that
NT, the total number of atoms, is very large. Thus the
ground level acts as extra bath to the lasing levels and
since in the initial condition 8, =NT and 8&/8, is very
small, we can drop the equation for B, and treat B, as
the constant NT. This, of course, requires X to be very
small. So defining N =2XB, =2XNT to be the average
number of atoms in the lasing levels, we obtain

where a pumping mechanism is used to excite ground-
level atoms into the upper lasing level, but not into the
lower lasing level. The stochastic differential equations
are then

a = —za+gv+ I

v= (y+a)v+—gaD+I „,
D = —(2y+ a)D +XaB, —2g(a+v+ av+ )+ I z,
B = —aB+XaB, +I z,
B,=QB -XQB, ~

(5.7)

a = —~a+g v+ I

v= —(y+a)v+gaD+I „,
(5.8)

D = —
( 2y +a }D +aN —2g ( a+ v+ av+ ) + I n,

8= —a(B —N)+I q .

A semiclassical analysis gives

B=N, v= ",D=gaD
y+a

N
(5.9)

2y 4g aa+
a a(y+a}

We therefore require the ratio y/a to be sma11 in order to
maintain a significant population inversion. The parame-
ter a can now be set to be quite large, so that the variable
8 representing the number of lasing atoms is stabilized
more quickly about the average number of lasing atoms.
Furthermore, the stability properties of the equation for
the inversion D are now improved as the inversion driv-
ing term from model 1 of 2yB, which fluctuated around
N, is now replaced with a term simply proportional to N.

We again consider the ground level to be a reservoir con-
taining an effectively infinite number of atoms and thus
drop the B, equation, setting B, =NT. If we now define
N =XNT as the average number of lasing atoms, we ob-
tain the system
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C. Laser model 3

The final model that we will consider is one where the
inversion is created by both of the mechanisms in models
1 and 2, i.e.,

~12 27 ~02 Xa 01 0 21 10 ~20 a

(5.10)

Following the same procedure as above, we drop the B,
equation and define N =XNT, to give the system

a = —Ka+gv+ I"

v= —(y+a)v+gaD+ I, ,
(5. 1 1}

D = —(2y+a)D+aX+2yB —2g(a+v+av+ )+ I D,
8= —a(8 N)+I—a .

The semiclassical inversion is then

VI. SCALING THE LASER EQUATIONS

We would expect the macroscopic atomic variables to
be proportional to the number of lasing atoms N and to
explicitly show this we make the scaling

v, v+, D,B~vN, v+N, DN, BN . (6.1)

whereas Xp= —1 is suitable for either analyzing optical
bistability or the Jaynes-Cumming model. After assum-
ing the ground level acts as an extra bath we obtain the
system

a =e —Ka+gv+ I

v= —(y+a )v+gaD+I, ,
(5.16)

D = —(2y+a )D+Xo(aX+2yB) —2g(a+v+av+ )+I D,

8= a(B——X)+I a .

D=
2 +4g aa

(2y+a)(y+a)

(5.12)
In addition, it is reasonable to expect the coupling con-
stant g to scale with the number of lasing atoms as (this is
the standard assumption made by Haken' )

This model now allows y and a to become arbitrarily
large without reducing the steady-state inversion. A
large value of a could then improve the stability, but
there will still be Auctuations due to the inversion driving
term 2yB, a term which is not present in model 2.

g g~N 1 /2 (6.2)

Now selecting model 2 from Sec. V as the most physically
reasonable three-level atom laser or optical bistability
model, then we scale the cavity variables as

D. Optical bistability model

aN 1/2 —+N 1 /2a~, a +
s s

(6.3)

To analyze optical bistability for a three-level system
we include the standard cavity driving term in the Hamil-
tonian model

where s =g/a, is the ratio of the scaled coupling con-
stant to the pumping rate. Finally, we also scale the time
in terms of the atomic pumping rate, to give the scaled
time unit

04=i%(a ee ae e )
—. (5.13)

(6.4)

a —E Ka+gv+ I ~ . (5.14)

This then changes the stochastic equation for the cavity
variable to The scaling transformations (6.1)—(6.4) may then be per-

formed either from the Fokker-Planck equation or the
stochastic equations and results in the scaled system

%'e now require there to be a negative inversion to get bi-
stability, that is, we organize the atomic transitions so
that the majority of the non-ground-level atoms are in the
lower lasing level. The most general way to write down
the transitions is then

a=re(Z —a+Cv)+I

v= —(1+y')v+aD+I „,
D = —(1+2y')D+Xo —2(a 7+av+)+I D,

(6.5)

6012 CO21
—2Xp p, C012+ Q)21 —2f

(5.15)
c002 ct)01 XpXa cop1 +6002 Xa c020 a ct) 1p

The choice X0= 1 corresponds to a laser configuration,
I

8 = —(8 —1}+I'e,
where the diffusion matrix satisfying (I (r)I (~ ) }
=d„5(r r') is given b—y

2Y)n

0
s
N —,'(8+D )

2qm *

—,'(8 +D )

0

—,'(8+D )

0

0

—,'(8+8 ) —v

0 0

0

0 0

0 0

(6.6)
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g =a /a gives the ratio of cavity damping to atomic
pumping, y'=y/a gives the ratio of lasing level transi-
tions to atomic pumping, C =gs/a =s /i) is the coopera-
tivity parameter, and n, =

—,'(a/g) =X/4s is the satura-
tion photon number.

In this scaling, since d;~ ~ 1/n„ it clearly shows that
the semiclassical predictions will be valid in situations
with large saturation photon numbers, because of either a
large number of atoms (the traditional laser scaling), or a
small value of the parameter s.

Finally, in optical bistability situations, the nonzero
scaled cavity driving field is given by

(6.7)

where e is as defined in (5.13). If C is finite, small s im-
plies a good cavity, since this necessarily implies that g,
the ratio of cavity damping to atomic pumping, is small.

where

CaXOH
a=YJ Z —a+ 1+y' +F

C. +X,H
'

a+=g Z' —a+
1+X'

with the stochastic terms

1+2y'+ 1+y'
The cavity field equations are then

+F

(7.5)

VII. SOLUTION BY ADIABATIC ELIMINATION
OF THE ATOMS

We now consider an approximate solution of the sys-
tem of equations (6.5) which is valid in the adiabatic elim-
ination limit g &&1, that is, where the ratio of the cavity
damping to the atomic pumping rate is small. This is the
usual regime for laser operation and following the stan-
dard analysis we assume that in the time scale of interest

2 +
F =r +-, r 1—,+aHr-1+y' 1+y' D
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(7.6}

v=O, D=0, 8=0 . (7.1) 1+y'

a =1+r,—, (7.2}

The atomic variables then assume the stationary values We now work out the leading noise terms for the a, a +

cavity system. This requires the first order approxima-
tion for the atomic variables from Eqs. (7.2)—(7.4)

D=X II—,(a+I' +aI )+III z,1+y' V V

I, ' 2- —— a HI—
V— +, 1 ——,+1+y' 1+y' 1+y' 1+y'

(7.3)

2a HI

(1+y')'
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I

aXOH8 =1, D =LoH, v=
1+y' (7.7)

which is justified for large saturation photon numbers
where the diffusion terms are small. Hence we calculate

(F F )=(I I )+, ((I I )+(I I,)) 1—,+a+II(I 1~)+aII(I' I'n) . (7.8)

Now using the diff'usion coefficients in (6.6) and replacing the atomic variables using (7.7), we finally obtain

(F F ~ ) =—2r)n+, (1+XoII) 1—s s 2aa +H
N 1+y' 1+y'

2Xoaa +H

1+y' (7.9)

In a similar fashion the other noise terms can be evalu-
ated as

(FF) s2 2 +2
2i}m *— [2XOII +2II(1+XOII)](1+y')

s2
2'gm

N

2- 2

[2XOII +211(1+XOII)](1+y')

(7.10}

(7.11)

These expressions are completely general, requiring only
that g and 1/n, be small and hence lead to a Fokker-
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Planck description of the cavity field for the laser and op-
tical bistability without any elimination of higher-order
derivative terms. The Fokker-Planck equation obtained,
is, of course, difficult to solve exactly, although a linear-
ized solution may be found using standard techniques"
for optical bistability. However, by considering more
carefully the expressions (7.9)—(7.11) for large and small
intensity situations, we are able to isolate the dominant
noise terms and thus simplify the corresponding Fokker-
Planck equation.

as

A. Small intensity solution (with y' =0)

Where the cavity intensity is small we may expand H

4(ya ++32+ a + (7.12)

(7.13)

2

( F F }=—
I 2' m

—s a [2Xo +2( 1+Xo ) ] I . (7.14)

For a laser configuration we set Xp=1 and to zeroth or-
der in the intensity the leading noise terms are

$2 $2(F F + ) = (2rin+—2s ), (F F ) =—2gm . (7.15)a+ N a a

to obtain

(FF )
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4aa +
1
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These are exactly equivalent to our previous high-
intensity solutions, the only difference being that the pa-
rameter s is now related to the pumping from the ground
level to the upper lasing level, rather than the pumping
rate from the lower to upper lasing level, as was the case
in Ref. 1.

VIII. SIMULATION OF THE LASER EQUATIONS

If we set Xp=1 and Z=0 in the system of equations
(6.5} and (6.6), then we are in the standard laser
configuration which may be solved exactly using numeri-
cal simulation techniques. The first step is to write the
noise terms I „ in (6.5) as a linear combination of in-

dependent white noises, with coefficients satisfying the
correlation requirements of the diffusion matrix (6.6). As
explained in Ref. 1, for a zero temperature reservoir (i.e.,
where n, m, m ' =0) this requires 12 noise terms

I =, (B+D)(g,+i( )4N'"

The leading noise terms in both the laser and optical bi-
stability configurations to zeroth order in the inverse in-
tensity are now found to be

s'
(F F + )=—(2gn+ —'s ),

N 2

(7.18)
2

(F F ) =—2rtm —
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These terms are exactly equivalent to those obtained for
the two-level laser model in our previous paper. With the
choice m, m*=0 the simplified Fokker-Planck equation
(FPE) obtained from (7.15) has a potential solution
describing the usual laser operation. '

If we now set Xp = 1 then the spontaneous-emission
term which dominated in (7.15) vanishes and to first or-
der in intensity we obtain
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We now have a simplified FPE describing optical bistabil-
ity, without the third-order terms present in Ref. 1. In
general, this Fokker-Planck equation has no potential
solution, but in the particular case Z =0 (i.e., zero driv-
ing field) where we consider Jaynes-Cummings-type prob-
lems, a potential solution is found and stationary photon
statistics may be derived.

8. Large intensity solution (with y' =0)

In situations where the intensity is large, we may make
the alternate expansion

dx= A(x)dt+B(x).dW(t), (8.2)

where dW;=g;dt, A(x) is the vector of deterministic
parts from (6.5}, and B(x) is the noise matrix defined by
(8.1).

The system (8.2) is integrated using the mixed
implicit-explicit method of McNeil and Craig, which re-
sults in the difference equations

We now write the system of stochastic equations in the
general form
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n n+] n

=(1—O,J "„ht )[ A(x" )b t +B(x") hW"),
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is the Jacobian matrix of A evaluated at each mesh
point. For each time step t", hW" is evaluated as
Z(n)(bt)', where Z(n) is a vector of random numbers
from the distribution N(0, 1). The choice 8,= —,

' is called
"time centered" and has the best properties in terms of
local accuracy and stability (see Refs. 6 and 7).

The simulations are then conducted by integrating in-
dividual trajectories from the same initial condition x(0},
over a specified time interval 0 to t,„,using the numeri-
cal algorithm (8.3). In the limit of a large number of tri-
als, the ensemble average over the trajectories at each
time step represents the time development of a phase-
space variable.

Standard laser operation, as discussed in Sec. VII, is in
the adiabatic elimination limit where g &(1. The equa-
tion for the cavity variable cx is then

Re[(a +(t)a(t) ),„,],Cg

( [a+(t)]'[a(t)]'),„,
g (0)[t]=1+Re

[(a+(t}a(t)),„,]'

( [n +(t)]'[n(t)]'),„,=1+Re
[(n +(t)n(t) ),„,]'

(8.9)

(8.10)

IX. SIMULATION RESULTS

A. The 10000-atom laser

The first simulation we performed using the scheme of
Sec. VIII was of a laser with an average number of 10000
atoms in the upper lasing levels. The parameter y' was
set to be 0.01; this allows for a low level of lasing level
transitions through mechanisms such as spontaneous
emission and spurious pumping (i.e., atoms in the lower
lasing level getting additional energy from some extra
source to go to the upper level}. Thus threshold for this
system is at

C=h =1.0302 . (9.1)
where h =(1+2y')(1+y').

The usual semiclassical theory gives the stable station-
ary solutions

0.'=0, C (h,
(8.6)aa+= —,'(C —h), C) h .

Threshold is thus defined for C =h, where in order to ob-
tain a reasonable inversion [from (5.9)] we have y'~0 so
that C~l. Our procedure, therefore, is to fix g=0. 1

and then vary C in the range 0.2 to 2.0 to discover wheth-
er the simulations display the same characteristic laser
behavior. The parameter s is no longer free, but is deter-
mined by the choice of C and g as

Representative results for I(t) and g (0)[t], in situations
both above and below threshold, are shown in Figs. 3 —6.

s=(Cg)'i (8.7)
t- 2

We begin with the laser fully pumped and the cavity in
the vacuum state. That is, we have an initial condition of
N atoms in the upper lasing level and no atoms in the
lower lasing level. In terms of the scaled variables this
becomes

a(0) =a (0)=0,
v(0) =v (0)=0,
D(0)=B(0)=1 .

(8.8)

0-
I

0 50 1PO 150

To test the operation of the simulated laser we initially
investigated two physical quantities of interest, the cavity
intensity I(t) and the second-order correlation function
(with no introduced time delay in the average) g (0)[t].
These are defined as

Scaled time r

FIG. 3. Cavity intensity vs time, using full simulation param-
eters: C=0.8, X =10000, dt =0.05, g=0. 1, y'=0. 01, 1050 tri-
als.
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FIG. 4. Second-order correlation function vs time, using fu11

simulation parameters: C =0.8, N =10000, dt =0.05, g=0. 1,
y'=0. 01, 1050 trials.

hx=
2g(C —h)

(9.2)

The results above threshold are entirely as expected
and clearly show the three regions of laser operation as
defined by Haken. ' The first of these is the spontaneous-
emission stage; this is characterized by very small fluctua-
tions in the cavity intensity above the vacuum with g (0)
remaining around 2, the value for an incoherent light
source. Region 2 is the stimulated emission stage, where
the intensity of the spontaneous emission is amplified
dramatically by induced emission. During this increase
g (0) has no fixed value and may fluctuate wildly. Final-
ly, in region 3 we obtain saturation, the cavity intensity
reaching a very stable stationary value. The second-order
correlation function at the same time quickly settles to a
value of 1, thus indicating the normal laser operation of a
coherent intense light.

Below threshold, Figs. 3 and 4, the laser simulations all
display the same time behavior. This essentially involves
tending towards some stationary limit, the value of which
is determined by the level of spontaneous-emission fluc-
tuations.

If we choose the cooperativity parameter C to be close
to threshold, then the laser simulations clearly display
the phenomenon of critical slowing down. This is
reflected in the time for the laser to reach saturation just
above threshold (see Fig. 7 for C = 1.1). Using a
simplified deterministic analysis, the time constant for the
threshold from region 1 to region 2 is given by
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FIG. 5. Cavity intensity vs time, using full simulation param-
eters: C=1.8, N =10000, dt =0.05, q=0. 1, y'=0. 01, 1100 tri-
als.

FIG. 6. Second-order correlation function vs time, using full
simulation parameters: C =1.8, N =10000, dt =0.05, g=0. 1,
y' =0.01, 1100 trials.



41 THREE-LEVEL ATOM LASER MODEL WITH RESULTS AND. . . 2741

Therefore as C~h, this time constant gets very large,
and we get critical slowing down.

To provide a summary of the 10000 atom laser, the
stationary limits for the simulations are now plotted
versus the cooperativity parameter (Figs. 8 and 9), to-
gether with the predictions for the semiclassical steady
states. These results would seem to confirm the station-
ary behavior of the laser simulation both above and
below threshold. The only slight discrepancy is very
close to threshold where it is diScult to exactly obtain
the stationary limit, but this is also the region where the
potential solution is furthest away from the deterministic
solution.

It is important to say, that in conducting this simula-
tion, numerical spikes were experienced when simulating
laser operation for a choice of C above threshold. How-
ever, these spikes only occurred during region 2, i.e., dur-

ing the region of rapid intensity amplification. Thus if C
is chosen below threshold, or if the initial cavity intensity
corresponds to being in the saturation region, then the
time development is without any spiking behavior.

If we analyze a single trajectory which experiences a
spike, then the spike may be seen to correspond to an ex-
plosion of the trajectory into ten-dimensional phase space
(the explosion is not into the full 12 dimensions —this is

due to the last two dimensions describing the number of
lasing atoms, which is constrained to vary around the
average number). These spike trajectories are thus of the
characteristic loop structure discussed in our previous pa-
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per for a two-dimensional system. Extending this work
in dimension, we can think of the laser equations becom-
ing first-order unstable during the amplification process.
Single trajectories may then be driven by the noise into
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FIG. 7. Cavity intensity vs time, using full simulation param-
eters: C=1.1, N =10000, dt =0.05, q=0. 1, y'=0. 01, 1050 tri-
als.

FIG. 8. Summary graphs —stationary intensity vs coopera-
tivity parameter. , semiclassical curve. X, point obtained

by simulations. Parameters: N = 10000, dt =0.05, g =0.1,
y' =0.01.
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One disturbing conclusion reached in Ref. 7 was that if
there existed a finite probability of a spike in the station-
ary limit, then this signaled that the stationary time de-
velopment could be suspect. In these simulations, howev-
er, despite the appearance of spikes, there seems no doubt
that these simulations are indicating a time development
for the laser which is in accordance with our physical ex-
pectations. At the very least, since the spikes are limited
to a small part of the time development, outside this re-
gion we can be reasonably confident that the simulations
are truly representing the nature of the exact laser equa-
tions.
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B. The adiabatically eliminated laser

As a test of the results for our 10000 atom laser we
now proceed to simulate the set of adiabatically eliminat-
ed laser equations (8.5). The noise correlations are com-
plicated in general, but provided we stay reasonably close
to threshold we may then consider the small intensity ap-
proximation for the noise (with n, m, m "=0)

FIG. 9. Summary graph —stationary second-order correla-
tion function vs cooperativity. , potential solution curve.
X, point obtained by simulations. Parameters: N =10000,
dt =0.05, g=0. 1, y'=0. 01.

(9.3)

The simulations are generally conducted in a reduced
four-dimensional phase space and two independent noise
terms are required to represent (9.3). However, if the
variables a and a are chosen to be complex conjugate in

nonphysical portions of the extended phase space. The
trajectory then embarks on a deterministically driven
looped path in ten-dimensional phase space, causing the
spike in the ensemble average, but must eventually return
to the physical portion of phase space. For large values
of the phase-space variables we would expect that the
traditional Jaynes-Cummings terms dominate over the
dissipative terms. This means that there are large oscilla-
tions in the trajectory, although the effect of the Jaynes-
Cumming terms must be to keep the trajectory bounded.

In an infinite ensemble, the effect of these spike trajec-
tories is averaged out over phase space and hence does
not directly affect the time development of the system.
However, in practical ensembles the spikes can mask the
true behavior and since our numerical routines become
inaccurate on the loop, we therefore remove trajectories
from our averaging process if they reach a predetermined
phase-space cutoff surface. The spikes which are present
in Figs. 5 —7 are the beginnings of spike trajectories
which are then removed after exceeding the cutoff. Obvi-
ously, the negative spikes which appear in Fig. 6 are not
physically allowable and so do not directly represent a
physical situation. They are more likely to simply result
from the use of finite ensemble sizes, as in an infinite en-
semble there would always be a corresponding positive
spike to cancel out the negative spike at any time point.
However, this does not mean that the spikes have no
physical relevance —indeed, the fact that the spikes all
occur at the transition through threshold would suggest
this.
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FIG. 10. Cavity intensity vs time, by two methods:
adiabatic simulation, 4000 trials; ———full simulation, 1050
trials. Parameters: C = 1, N = 10000, dt =0.05, g =0.1,
y' =0.01.
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FIG. 11. Second-order correlation fu
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n function vs time, by two
trials; ———,fullmetho s:h d:, adiabatic simulation, 6000 r'

C =1 N =10000,simulation, 1050 trials Parameters: C =
dt =0.05, q=0. 1, y'=0. 01.
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FIG. 12. Cavity intensity vs time, byb two methods:
trials; ———,full simulation, 1050adiabatic simulation; 6000 tria s; ———, '
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C =1.6 N =10000, dt =0.trials. Parameters:

y'=0. 01.

FIG 13. Second-order correlation ufunction vs time, by two
metos:h d:, adiabatic simulation, 6 ri

=1.6, N =10000,simulations, 1050 trials. Parameters: C =
dt =0.05, q=0. 1, y'=0. 01.
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C. The few-atom laser

Since the stochastic laser equations have been reached
without a scaling in the number of lasing atoms, then in
principle they could be used to simulate a one-atom laser.
The theoretical calculations in Sec. VII (and in our previ-
ous work') would suggest that this is possible provided
that the parameter s is reduced in order to keep the quan-
tum noise at a low level. As s is determined by C and g,
this means that above threshold we require the cavity to
be of extremely high quality, that is, we must have g ver
small. However, by reducing g significantly, it can be
seen from (9.2) that the time constant y increases dramat-
ically.

Thus, if we consider a one-atom laser with g=0.0001,
then no laser operation is observed, or at least the sirnula-
tion has not yet developed beyond the spontaneous-
emission stage. That the simulation fails here, represents
the fact that using a single lasing atom to produce laser
light, although perfectly feasible from the equations,
would require such a good cavity to catch and amplify
the emissions, that a buildup to the coherent saturated
laser output would be impossibly slow.

It may be possible to develop some kind of multiple
time scale method to deal with this situation. The adia-
batic elimination limit would seem to be appropriate at
first glance, but in fact it requires n, to be large, which is
not necessarily the case in a one-atom laser.

However, a laser based on a small number of lasing
atoms may still be constructed. If we set N =100 and
g=0.01, then for C=1.8 the following time develop-
ments resulted (see Figs. 14 and 15). A saturated
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FIG. 15. Second-order correlation function vs time, 100
atoms, by two methods:, adiabatic simulation, 2000 tri-
als; ———,full simulation, 1000 trials. Parameters: C =1.8,
N = 100, dt =0.05, g =0.01, y' =0.01.

D. T~o-time laser characteristics

coherent laser output is now obtained, although the
buildup is only achieved over a long time development.
The time to reach amplification is about ten times that in
our previous 10000-atom simulation, a ratio consistent
with (9.2) and the relative cavity quality factors.

In Fig. 15 we see huge Auctuations in the initial com-
putation of g (0)[t] which arise from very irregular be-
havior of the solutions in this region. These would
presumably disappear with a sufficient number of trials.
It is obvious that the simulation cannot be trusted in this
region.
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All the simulations conducted thus far have involved
the calculation of averages at single time steps in order to
obtain information about the photon statistics, i.e., the
intensity I(t). However, it is perfectly possible to take
ensemble averages where the variables are at two
different time steps and hence reveal the nature of the
laser spectrum.

The quantity that is normally calculated is the first-
order correlation function g"'(r, t), defined by

g" (r,it)= ( (at +r)a(t) ) = (a+(t + )ar(t) ), (9.4)

Scaled time r

FIG. 14. Cavity intensity vs time, 100 atoms, by two
methods:, adiabatic simulation, 2000 trials; ———,full
simulation, 1000 trials. Parameters: C = 1.8, N = 100,
dt =0.05, g=0.01, y'=0. 01.

S(co, t)= J~
™

dre ' 'g'"(r, t) . (9.5)

If we now use our laser equations [both the full equations

or equivalently, its transform in Fourier space, called the
laser spectrum
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R (t +r) =R (t) =R( ~ ) =[-,'(C —h)]'" . (9.15)

Hence we may integrate (9.13) and using the Gaussian
nature of the noise obtain

( a+(t +r)a(t) ) =
—,'( C —h ) exp

Tc
(9.16)

The correlation time is defined as ~, =N(C —h)/2Q and
results in the theoretical laser spectrum

(9.17)

We would expect this model to become more accurate as
we go further above threshold, where the phase fluctua-
tions increasingly dominate. We thus make the choice of
parameters C =1.4, N =10000, g=0. 1, y'=0. 01 which
results in a correlation time r, =96 223.47.

This very large value reflects the fact that with the very
small noises we are using, the a vector takes a very long
time to diffuse around the circular phase-space distribu-
tion and thus the laser linewidth is very narrow. Con-
ducting simulations then becomes more difficult as we
need to extend ~ over a very large time interval in order
to obtain the full correlation behavior. However, by cal-
culating correlations at every 1000th step instead of every
step, it is possible to obtain a reasonable picture of the
phase diffusion. In Fig. 18 we show the simulation result
for the correlation function obtained using the adiabatic-
eliminated equations. The results confirm exactly the
phase-diffusion process over the first 2 —3 correlation
times. The discrepancy that occurs for times longer than
this is almost certainly not physical but it simply was not
possible to run the simulation long enough to reduce the
fluctuations at very long correlation times.

X. CONCLUSION

Although the use of three-level atoms in a laser model
is not new (i.e., the laser models of Louisell and Gordon),
in recent times the favored approach has been to use a
two-level atom model to derive phase-space equations for
the laser (following Haken). In our previous paper, we

presented a new phase-space method for the two-level
system involving a generalized P representation, but al-
though an exact Fokker-Planck equation was obtained,
there was an unexplained instability in the resultant sto-
chastic equations.

The equation for the phase P, (9.13), thus exhibits the

perfect phase diffusion characteristic of a laser operating
above threshold.

To calculate the first-order correlation function

t,a+(t + r)a(t) )

=(R(t+r)R(t)exp{ —t'[P(t+r) —P(t)]{), (9.14)

we assume that for large N, the amplitude fluctuations
are small and thus

To attempt to remove this instability, in this paper we

considered again a three-level atom laser model. If the
reasonable assumption was made that the ground level

acts as an extra reservoir to the atoms in the lasing levels,
then a stable system of stochastic differential equations
was obtained in an extended phase space [see (6.5)].
These equations are exact, in the sense that there is no
truncation of higher-order derivatives and thus have

great potential in the solution of laser, optical bistability,
and Jaynes-Cummings problems, for both small and large
numbers of excited atoms.

The major method of analytic solution considered here
has been in the adiabatic elimination limit, where leading
noise terms have been calculated and resulted in

simplified Fokker-Planck equations in certain regimes.
For optical bistability, using methods described by
Drummond and Walls, " linearized results may be ob-
tained for the full adiabatically eliminated equations. A
confirmation of their results is thus feasible and, in addi-
tion, a linearized theory of one-atom optical bistability is
possible.

A second method of analytic solution, which is valid
outside the range of adiabatic elimination, is to employ
the method of linearization in frequency space as
developed by Reid. ' The method was developed by Reid
using a truncated Fokker-Planck equation, so that we
would now have an extra dimension in the problem with
our equations. However, due to the simplicity of the ex-
tra equation, the stability criteria to be satisfied are iden-
tical to that stated in Ref. 17. These will only be satisfied
for optical bistability, but results may now be established
in both the good and bad cavity limit.

All of these analytic methods have limitations in appli-
cation and to solve fully nonlinear problems, we are thus
required to look at numerical methods of solution. In
this paper we have concentrated on the technique of
direct simulation of the stochastic (Langevin) equations.
For a laser configuration, we have performed simulations
of the full set of laser equations (in the adiabatic elimina-
tion regime) and compared this with simulations of the
simplest adiabatically eliminated equations. Although
some numerical problems are experienced at threshold,
the results showed all the features of laser operation and
agreed entirely with our physical expectations. Future
simulations are planned, in which the full system of equa-
tions are used to analyze the region where the parameter

g is increased from the adiabatic elimination limit and
thus observe the breakdown in standard laser operation.

Of course, numerical simulation techniques may be
used for the equations in an optical bistability
configuration, although we do not treat them in this
present paper. Simulations have already been performed
by Carmichael, Satchell, and Sarkar at the critical point,
using stochastic equations obtained from a truncated
Fokker-Planck equation. It would therefore be interest-
ing to check whether their results may be replicated using
our new equations.

In addition, since the system of equations (6.5} is in
principle valid for a single excited atom, then we could
simulate bistability on this small scale. Results here
could be checked against the numerical calculations of
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Savage and Carmichael, ' which showed that single atom
bistability was possible for large saturation photon nurn-

bers.
Finally, it would be a simple matter to extend these

simulations to include an analysis of the Jaynes-
Cummings problem, where we study the interaction be-
tween an undriven light mode and an ensemble of passive
atoms.
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