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We present a theory of time-resolved emission spectroscopy in the femtosecond region. It is

shown that a femtosecond time-resolved emission spectrum consists of the contributions from the

population and coherence of the system. Theoretical expressions for describing femtosecond time-

resolved emission molecular spectra based on the use of the adiabatic approximation are derived.
Detailed numerical calculations have been carried out to show the effect of the time evolution of the

population and coherence on the time-resolved emission spectra.

I. INTRODUCTION

Ultrafast emission spectroscopy of fluorescent mole-
cules in solution has recently been used to probe the
mechanism and dynamics of solvation and investigate
how dynamic solvation affects chemical processes such as
electron transfer, proton transfer, etc. ' The basic ex-
periment was first carried out by Ware et al. Typically,
a fluorescent probe molecule is electronically excited, and
the fluorescence spectrum is monitored as a function of
time. Relaxation of the solvent polarization about the
newly created excited-state dipole leads to a red shift of
the fluorescence spectrum. The microscopic solvation re-
laxation is conventionally probed by monitoring the spec-
tral shift as a function of time. In this paper we shall re-
port the theoretical treatment of ultrafast tine-resolved
fluorescence spectroscopy. In this regard, it is important
to note that when an ultrashort laser pulse is used to
pump a molecule system, in general more than one state
is coherently pumped, and the resulting time-resolved
emission spectra will in general consist of the contribu-
tion from the evolution of both population and coher-
ence. In other words, the band-shape functions associat-
ed with both population and coherence are required in
order to deconvolute an observed ultrafast time-resolved
spectrum.

Time-domain measurement using optical techniques
has been promoted to the femtosecond regime. Certain
nonlinear-optical processes have to be employed in order
to take full advantage of ultrafast optical response, even
though often what we study is essentially a linear decay
process. In the pump-probe technique to obtain temporal
emission profile, an up-conversion process is used in
detection. ' Many molecular properties and chemical re-
actions are opened for study by ultrafast time-scale mea-
surements. Examples are transition-state spectroscopy,
orientational relaxation, " thermalization, ' charge sepa-
ration, ' isomerization, ' hydration and aqueous dissocia-
tion, ' and exciton-excimer relaxation. ' At such a short
time scale, nonclassical evolution begins to surface; the
excited state does not act like a classical oscillator any
more, and the effect of coherence is significant. We con-
sider a molecular system in which an upper state is

strongly coupled to local modes as well as heat bath
modes, and find how the emission spectrum and its tem-
poral behavior are affected.

The present paper is organized as follows. In Sec. II
the general theoretical treatment of ultrafast time-
resolved emission spectroscopy based on the quantum
theory of radiation is presented. In Sec. III we apply the
theoretical results of Sec. II to molecular systems. In Sec.
IV we show how to calculate the molecular-spectroscopic
band-shape functions associated with the population and
coherence of a dynamical system. Numerical calcula-
tions are presented in Sec. V to demonstrate the contribu-
tions from the dynamics of the population and coherence
to time-resolved emission spectra.

II. GENERAL THEORY

dt
[H p) —R p =— iL p —R p—, (2.1)

where R denotes the damping operator due to the cou-
pling between the system and heat bath, and L represents
the Liouville operator corresponding to the Hamiltonian
H of the total system. H can be written as a summation
of H„ the Hamiltonian of the molecular system, H„, the
Hamiltonian of the radiation field, and V, the interaction
between the molecular system and radiation field,

H =H, +H, + V=Hp+ V

It follows that

(2.2)

= —iLpp —iL 'p —R p, (2.3)

where L ' corresponds to V.
If we let

p=exp( iL ot)8, —

where L p Lp iR, we obtain

(2.4)

We consider the evolution of the density matrix p of
the total system which consists of the molecular system
and radiation field, '
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do itL 0~, —itL 0

dt

which can be integrated as

(2.5)
Notice that for a molecular system, V can be expressed
17, 18

(2.8)
t Jh

o(t)=o; i—f dre 'L 'e 'o(~}

=o', +b&(t), (2.6)

where o'; denotes 0' at t = t, . For time-resolved emission,
we calculate

dP„
dt

(H„)=Tr[C(t)ho(t)(X Y)],
where X=dX/dt, and C(t)=exp( itL—o).

It follows that

(2.9)

where X= A/c, A being the vector potential and c, the
light velocity, and Y=eP/m, e and m representing the
charge and mass of the electron. Here P = gk Pk and Pi,
denotes the momentum of the kth electron. Using Eq.
(2.8) Eq. (2.7) can be written as

(H„)= g G(t)"„ba(t)„(XY) „ (2.10)

. pl=—TrIe 'ho(t)[P', 8„]) . (2.7) and

ha(t)„= ——' g f 'dr[V(t r}„„.a—(t r)„——a(t r}„„V(—t —~}„]
n'

f —dr[X(t r)Y(t —r), o—(t —r)]„
0

(2.11)

where, for example, V(t —r)„„.=exp[i(t r)(co„„—iR„„)—]V„„and R„„represents the dephasing constant. Substitut-
ing Eq. (2.11) into Eq. (2.9) yields

l(H„)=—f d~Tr[o(t —r)[X(t) Y(t),X(t r) Y—(t —r)]],
fi 0

which can be rewritten as

t —t

(H„)=—f d r j ( X( t)X( t r) )o:Tr[o '—"(t r)Y( t )Y(—t —r) ]

(2.12)

—(X(t —r)X(t) ),:Tr[o "(t r)Y(t —r)Y—(t)]I, (2.13)

where, for example, (X(t)X(t —r})o denotes the vacuum average of X(t)X(t r) for th—e radiation field. o "'(t)
represents the density matrix of the molecular system.

Notice that
' 1/2

X= g (a, +a,')e„,
Vco„

(2.14)

where (8„,8 „)denote the boson operators, e, represents the unit polarization vector, co„ is the optical frequency, and V
is the volume of the system. Substituting Eq. (2.14) into Eq. (2.13) we obtain

1 —t,
(H„)= g f dw Tr(o "'(t —r)I [e„.Y(t)][e„.Y(t —w)]e '+[e„.Y(t —7)][e„.Y(t)]e "I ) .

1'

(2.15}

Notice that

V, f d 'f dn.
4m c 0

(2.16)

Here a factor of 2 has been introduced for polarizations. Using Eq. (2.16), the time-resolved emission spectrum mea-
sured in terms of the number of emitted quanta per unit time P(co, t) is given by

t —t,
P(co, t)= f d~Tr(a'*'(t —r)[[e Y(t)][e.Y(t —r)]e " +[e Y(t —r)][e Y(t)]e" ]),

eric

which can be written as

(2.17)
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~mn
P(co, t)=

~ g [G "(bt)p()']„(e Y )(e Y „) 5(co —co ~ )+5(co+co .„)+—P
Ac (co+co „)(co—co .)

(2.18)

In obtaining Eq. (2.18), the Markov approximation has been used. In Eq. (2.18), 5(waco) denotes the 5 function and P
means that the principal value should be taken. A better approximation will be to replace the 5 function by the
Lorentzian due to the damping P. For a randomly oriented molecular system, Eq. (2.18) becomes

~mn
P(co, t) =

3 g [0 "(bt)p o']„(Y Y „) 5(co —co )+5(co+co „)+—P
3Ac 7T co+co~ „co co~ ~ )

(2.19)

3fic
(2.20)

Equations (2.17)—(2.19) are central results of this paper.
In the remaining portion of this paper, we shall show the
application of these results. It should be noted that
P(co, t) consists of two parts; while [0 "(ht)p~o"]„de-
scribes the dynamical behavior of the molecular system,
the remaining part of P (co, t) describes the emission spec-
troscopic behavior of the molecular system. The Einstein
A coefficient (i.e., the spontaneous-emission rate con-
stant) can be obtained from Eq. (2.19) by setting
[6 ' (b, t)p o ']„=5„ l p 0')„„where (p o ')„„denotes the
equilibrium distribution; in this case we have

where p„~ denotes the transition moment. Here the re-
lation Y„=ice„p„~has been used. In Appendix A
we show how to calculate [0 "(b,t)p 0"]„

III. TIME-RESOLVED EMISSION SPECTROSCOPY
OF ELECTRONIC TRANSITIONS

We shall now analyze the expression for P(co, t) given
in the preceding section in the Born-Oppenheimer adia-
batic approximation. The adiabatic approximation is
applicable to low electronic states of molecules. For this
purpose, we let (PU) denote the vibronic states in the ex-
cited electronic state manifold, while (aw) denote the
vibronic states in the ground-electronic-state manifold.
In this case, Eq. (2.19) can be written as

P(co, t)= g p '(bt)p, p, (Yp, Y p, ) 5(co cop„—)+5(co+co p, )+iP
3Ac (co+co~~ pU )(co copU ~~ )

(3.1)

where p "(bt)=C"'(bt)po". From Eq. (3.1) we can see that P(co, t) consists of the incoherent contribution P(co, t)„
and the coherent contribution P(co, t)„ i.e.,

P(co, t) =P(co, t)„+P(co,t), ,

where

(3.2)

P(co, t)„= g p"(bt)p, p„~Y p„~ 5(co cop„)—
3A'c

(3.3)

or

4~3
P(co, t)„= g p '(At)p, p, ~p p, ~

5(co cop„)= —gp"(bt)p„p, Fp, p, (co)3' (3.4)

and

UWU ~PU' PU(co, t),=,g g' g pi'(bt)p, p, (Yp„. .Y p, ) 5(co cop„)+5—(co+co p„)+—P
3Ac vr (co+ co p, )(co—cop, )

= g g p"( b, t)p„p„Fp, p, (co),
U U

(3.5)

where Fp, p„, (co) and Fp„p„.(co) represent the band-shape functions
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4 3

Fp, p„(co)=, g lp p, l'5(co —
cop„, )

3Ac
(3.6)

and

2' 1 COpU '
pU

Fp„p, (co)= i g (Yp, „Y p„) 5(co co—p„)+5(co+co „p,)+—P
3Ac ir (co+ co~~ p„co copU

(3.7)

From the expression of P (co, t)„we can see that it consists of the dynamics of the population p"(At)p„p, and the as-
sociated band-shape function Fp„p„(co). Similarly, P(co, t), can be separated into the coherence p"(ht)p„p, an. d the as-
sociated band-shape function Fp„p„(co). For the case in which the Condon approximation applies (i.e., the electronic
transition is an allowed transition), the band-shape functions Fp„p„(co) and Fp„p„(co)become

4 3

Fp.,p. ( )=, ip.pl'& I &e..lep. &I'5( —
p„...)

3Ac
(3.8)

and

p, p, .{ )=, Ip pI'X p„~p„&ep„ie &&e Iep„&
3Ac

X 5(co —cop„~ )+5(co+co p„)+—P
77 co+ co p co cop

(3.9)

where e...e,„and e&„represent the nuclear wave functions.
It should be noted that when the dephasing is much faster than the relaxation, in the time scale of molecular relaxa-

tion p"(bt)p„p„. vanishes and we have P(co, t)=P(co, t)„.

IV. BAND-SHAPE FUNCTIONS

In Sec. III we have shown that the time-resolved emission spectra P(co, t) can be separated into the product of the
population or coherence and the associated band-shape functions. In this section we shall show how to obtain the
band-shape functions Fp, p„(co) and Fp„p„(co). For this purpose, we shall consider only the case where one degree of
freedom is nonstationary and other degrees of freedom are in thermal equilibrium. In other words, only one optical
mode is coherently pumped and the other modes maintain or reach equilibrium in the time scale under consideration.
In this case,

4 3

, Ip. I'g' g I&x,, lx...&l'g'P, „ I&x „ Ix..&I'5(,....— ),
U W

(4.l)

where (Xp„,X „)and (Xp„,X ) represent the wave functions of the optically pumped mode and the remaining oth-

er modes and Pp„denotes the Boltzmann factor. For the case of harmonic oscillators, Fp„p„(co) can be written as'

2 3

Fp, , p, (co)=, Ip.pl'f «exp[it(co —
cop )]it'„(t) ff'G;(t},

37TRC 0
I

where

(4.2)

and

it.', (t)= g I&Xp, IX &I'expjit[(iuo+ —,')coo —(uo+-,')coo]}
Wp

(4.3)

G, (t)= g QPp„ I&Xp„ IX &I epx[it[( i+u—,')co,' —(u, + —,')co;]j .
U W

t

For the case of a harmonic oscillator, G, (t) has been evaluated'

fico, k, (t}
G, (t)=2',P,'sinh exp2kT [g, (t)]'~'

where

p2p i2d 2

k, (t)=
P '; coth(A, ;/2)+P;coth(p';/2)

(4.4)

(4.5)

(4.6)
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I

h, (t) = sinhA, ,sinhp,
'

p ,'coth +p, coth
P~

P,' tanh +P, tanh (4.7)

p,
'= i—tea,

'
and A, ; =itch, +fits, /kT. Similarly K, (t) is given by

K„(t)=Ko (t)AK„, (t), (4.8)

where

pOd 0
K (t) =exp — (1—e ')

Oo
(4.9)

and

"o
Up!

EK„(t)=
0 (nz!) (vo —no)!

P2d 2
po 0 po/2 —

p, o/2 ~

2
'(e —e (4.10)

Here it is assumed that the oscillator is displaced but not distorted. The case of displaced and distorted oscillator is
shown in Appendix B. It should be noted Ko (t) given by Eq. (4.8) is equal to Go (t) at T =0.

0 0

Substituting Eqs. (4.5) and (4.8) into Eq. (4.2) and using the short-time approximation (i.e., the strong-coupling case),
Fp„p„(to ) becomes

2 3

Fp„p, (tv)=
3 i@~pl EK„(t')

3m6c

1/2
(COp~ Cvz CO)

4D
(4.11)

where

CO
2

(4.12)

(4.13)

and

t (cv Cop~+co~ )t*=, to'=tv (1—
p ) .

2D 1
(4.14)

Due to the term bK, (t*), Fp„p, (co) takes the modified Gaussian form. Notice at v0=0, hK, (t ') =1; in other words,

only for this case would Fp, p, (cv) take the Gaussian form.
Next we consider Fp„p, (ro), which can be rewritten as

Fp„, p, ( )= lp, pl g g'Pp, top, top, &ep, le..)&e..lep )
3mkc

X J dt Iexp[it(tv —cop„„)]+exp[ it(co+a —p„)]l .

Fp, p„(tv) consists of two terms, i.e. ,

(4.15)

Fp, p, (m) =Fp, p, (tv)&+Fp„, p, (to)z,

where

(4.16)

2 i~(co —h,uo ~o )
2

Fp„,p, (~))=, Ip pl J d« ' ' b.v co I„—,( —0),
37Tf1C 0 at9'

(4.17)

a
Fp.,p, (tv)q=

3 lp pl dt e " +hvotoo I„(8),
3n.kc 3 o ()g2 ao

(4.18)

and

I,„(0)=g g' P &pep„,le.„)& e..lep, )e (4.19)
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Here 9=it and vo =up+6, vo. Equations (4. 15)—(4.19) indicate that, to evaluate F&„&„(co), it is necessary to evaluate
I„(8). Notice that I„„(8)can be expressed as

I,„(8)=e e rC, (8) g' G, (8),
p p

I

where

K, (8)= g (X, ~X ) (X iXtl„)exp[8[(up+ —,
'

)(up —(wp+ —,')cup) j j
lVp

(4.20)

(4.21)

and

G,.(8)= g QPtt, i(Xt(, X )i'expI9[(v, + —,()cu, —(w, + —,')toI]) .
V tU

t

(4.22)

G;(8) is exactly the same as G;(t) given by Eq. (4.3) by replacing t =i 8 W. e now calculate E, (8) which can be ac-
p p

complished in the same way as that for K, (t). We obtain, for the displaced oscillator case,
p

K (8)=Kp p (9)bK (8) (4.23)

where

Ppd 0 —cope
Kp o (9)=exp — (1—e '

) (4.24)

and

Vp (u (u& ()1/2bE, (8)=
=o no'(uo no)!(Vo no)'

( vp n p )(op6
e

p d v&+ vo
—2no

— (1—e ')
v'2 (4.25)

for vp ) vo. Similarly for the displaced oscillator case, G, (8) is given by

P2d 2

G (8) =expl

%co, AN] 'RN;
coth —csch cosh co;8— (4.26)

In this case, we have

I„„(9)=exp (1—e ' )+tot( 8—g' flCO, AN;
coth —csch cosh co, t9—

2kT ' 2kT

Up (U !U ()I/20' 0' (vo —no)cooe Podp

„=p no!(Uo np)!(vp—lip)! v'2

I
Up+ Up 2np

p) (4.27)

In particular, at low temperatures, Eq. (4.27) reduces to
2 2P;d; N 0

I„,(8)=exp —g (1 —e ' )+cot( 9
t

Vp

p p p
Uo.Uo (U —n )CO 6)

„=p no!(vp p)ln(vp np)!

p d vo+vo+2no
— (1—e )

V2
(4.28)

V. DISCUSSION

In this section we shall show some numerical results of time-resolved emission spectra. For this purpose, we consider
the case in which only the two lowest vibrational levels of a particular mode are coherently pumped and the tempera-
ture effect is neglected. In this case, we have

and

P (tu t)n =Pi(bt )tel ttoFtN t(p(CV ) +P (bt )(l( p(Fp( tl((tv )

P (tv, t), =P"(bt)tto t(,Ftto tt((tu)+P" (b t )t3( poF p( ttp(tu),

(5.1)

(5.2)
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where, for the displaced oscillator case,

2 3

F~ po(co)= 3 ~p p~ f dt exp it(co —cop„) —QS(1—e ')
3~Ac

g Stc(7(' exp Qj g S co. co 2 + S~ co, (5.3)

and

2'
Fpt, pt(co)=, Ip pl f dt[(1 —2So)+So(e '+e ')]exp it(co cop

—
) Q—S,(1—e' ')

3Am.c' (5.4)

3

Fpo po(co+ci)o)+So
CO COO

Fp] p] (co ) = ( 1 2So )F~ po(co ) +So
CO+ COO

where S, =
—,'P;d, , the Huang-Rhys constant (or the coupling constant). F

p& p& (co) can be expressed as
T 3

Fpo, po(co coo) . (5.5)

Notice that, from Appendix A, we obtain

P"(At)po po=(Po )po po+(Po )pl, pl(1

and

(5.6}

(s) ~(S)
P (ht)@ p, =(Po }p, p, e (5.7)

where R p, denotes the relaxation rate constant of the /31 level. Here for simplicity we have assumed that R po is negligi-

ble in the time scale under consideration.
Next we consider the coherence contribution. Notice that in this case we obtain the real parts of Fpop&(co) and

Fpi, po(co)

Fpo p~ (co)=Fpt po(co) = /3odo co (co coo) 2' 2 1/2

X exp —
cop +coo —g S,co; —c0

I

2+S;co,

—exp —
cop

—g S;co, —co 2 g S;co;

Podo co (co+Qjo)+ — 2n~z "' 2' I/2

X exp —
cop

—co —g S;co; 2 g S;co;

—exp —
cop

—coo —co —g S, co, 2 g S,co, (5.8)

and

p"(5t)po@=(po"}po@exp[ bt(icopo p, +Rpo p, )], — (5.9)

where R» denotes the dephasing constant and co» = —coo. We use the form R&, » =R» /2+R & in numerical cal-
culation where R h is the rate for pure dephasing. It follows that
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&odo
P(co, t), =p"(0)&»exp( b—tR&» )

2co ( co coo )

/p. p[2 27r 2 1/2

1

X exp —
catt +coo—gS;co, —co

1 E

—exp —
cop

—co —g S;co; 2 +S;co;
t

coscookt

Pod o
+p'"(0)tn»exp( b, tRtto—

p, )
2co (co+coo)

[)M, t1[2 2n.
3~Re'

2' 1/2

X exp —
cot1

—co —g S, co, 2 X Sico~(

—exp —
co&

—coo —g S;co, —co
2 2 g S;co2 coscook t (5.10)

v2
~(S) I

(Po )P., t3.
'=

&2
VP. ,

o~ o, P (5.1 1)

where V&„o and V'o&, denotes the interaction matrix
element involved in the pumping laser. Using the Con-
don approximation and Eq. (5.11) we obtain

(pi 1), , i (X» iX o ) i2

(5.12)

and

(pt1) (Xt3, ~X o )
(5.13)

Here the contributions from the principal values of
Fpo»(co) and F&1 +(co) have been neglected.

In the previous papers, we have shown that if the
pumping laser pulse has a constant amplitude with dura-
tion T, then

early stage by comparing the two figures. Coherence is
also shown in the oscillatory behavior of emission in Fig.
3. Note that 1 KK ' in time scale corresponds to 33 fs.
Figures 4 and 5 show a similar pattern of evolution for
the upper state initially populated at v =1 and 2. A large
dephasing constant (Figs. 2 and 5) quickly damps the
coherent part of the emission intensity and, therefore, al-
lows us to see the evolution of the incoherent contribu-
tion. Analytical expressions in Eqs. (5.3), (5.5), and (5.8)

give similar results with slightly different Stokes's shift
determined by the total Huang-Rhys factor S instead of
So.

The net dephasing effect, as caused by both relaxation
and pure dephasing, can come from strong anharmonici-
ty and intermode coupling, as well as strong vibronic
coupling in the excited state. ' Nonlinear coupling
among different vibrational modes is especially strong
when the molecule is vertically pumped from the lower

For the displaced oscillator we obtain

(Po")t11p1 &od, o =So
(Po') po, po

and

(5 14) S OOO

(~(g))P o Poli

(Po")yn, go

&odo

v'2 (5.15)

Equations (5.1)—(5.15) have been employed for numeri-
cal calculations. For this purpose, we introduce an aver-
age frequency in g, S,co, and g; S,co, so that
g; S, co, =ST and g, S, co, =ST where S = g, S, .
Equations (5.3), (5.5), and (5.8) provide a convenient ap-
proxirnation for band-shape functions that include sol-
vent effects in transient emission spectra. However, for
testing purposes, we carry out the single-mode case, using
Eq. (3.9), and neglect all both modes. Results are shown
in Figs. 1 and 2. The coherence effect is obvious in the

$8 19 20
Wa v e n umph e r (uni ts of KK)

FIG. 1. Time-resolved fluorescence spectra from upper state
initially populated at U =0 and 1. m& =20 KK, ~O=R» =0.2
KK, R»=0, SO=2. Time in units of KK '. Intensity in arbi-
trary units.
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2 00.0

0=20

tion dephasing takes place before or along with emission.
The present work can be applied to probe the solvation

dynamics using the time-resolved emission. In this case it
is more convenient to separate p" into two subsystems,
one due to the solute molecule p,"and the other due to
the solvent cage molecules p 'b' which affect the electronic
energy levels of the solute molecule (i.e., the solvent
effect). In this way we can see that the observed spectral
shift as a function of time will describe the dynamics of
the local solvent molecules. Notice that, in this case, the
coherence of p,"can be expressed as

78 19 20 21
&ave num&er (units of KK)

FIG. 2. Same as Fig. 1, except R» = 5 KK.

p,
'"—(t) „= —[iso „+i Ace „(t)]p~'I(t)

dt

—R, (t) „p,"I(t) „, (5.16)

state and is located in a highly anharmonic range of vi-
brational coordinates of the excited state. By this reason-
ing, a planar chromophore having a nonplanar excited
state would have a strong coupling and hence fast relaxa-

where ~ „denotes the energy gap of the solute molecule,
while he@ „(t) denotes the changes of the energy gap in-

duced by the interaction 8 ' between the solute molecule
and the solvent cage molecules. It is given by

Ace „(t)=—+pi'(t) H' + g g'"y m ™my,m'5

1 (,)
(H' ~

XPb (tn)r', ny' Hny', ny' X X

(5.17)

where p~&"(t) is determined by

)L() () R () (5.18)

1 00.0

Here Rb denotes the damping operator describing the dy-
namics of the solvent cage molecules due to their cou-
pling with the heat bath.

From Eq. (5.17), we can see that the energy-level shift
of the solute molecule changes with time due to the dy-
namics of the solvent cage molecules. Some preliminary
results on the solvent effect on time-resolved emission
spectra have been reported.

In concluding the paper, we have shown that coher-
ence is significant at short time scale, especially when

coupling between electronic motion and nuclear motion
is large, as is shown in our model calculation. With our
calculation scheme, not only the dynamics of polarization
of fluorescence but also the steady-state emission spectra
can be treated.

&&. 7KK 1 00.0

20KK

0
20 20

Time
30 50 0

28 39 20 2i
4'ave number ( n;ts of KK)

FIG. 3. Time dependence of fluorescence from upper state
initially populated at v =0 and 1 for two frequencies: 19.7 and
20 KK. For parameters, see caption of Fig. l.

FIG. 4. Time-resolved Auorescence spectra from upper state
initially populated at v =1 and 2. ct)13 =20 KK cc)p=Rpi =0.2
KK, R h =0, SO=2
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l 00.0 for m ~n and n ~m, respectively, and —R "" =R „"„"and
Rmm Rmm

nn mm'

Solving Eqs. (A5) and (A6) for G "(p) and
G "(p)„„,we obtain

and

g(s)(p)mm— p +R„"„"

p (p +R„"„"+R )
(A7)

78 39 20 22
))rave, ~umber (unrts of tt,'K)

FIG. 5. Same as Fig. 4, except Rph 5 K.K.
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APPENDIX A

and

R mm

+ exp[ t (R „"—„"+R ) ]
nn mm

(A9)

R mm

g")(t)„„= [1—exp[ t (R„"„"+—Rmm )] ) .
nn mm

(A 10)

+g(s)(t)nn y(s)) (A 1)

Here [g "(t)p 0"] denotes the population of the m lev-
el at time t, while (p 0') and (p 0")„„represent the ini-
tial populations. We shall assume that the m level is
higher than the n level. Notice that

In this appendix we are concerned with the calculation
of [0'"(t)po"]„. To demonstrate the theoretical ap-
proach, we consider a two-level (say, rn and n) system.
We first consider the diagonal case, i.e.,

[g ( )(t)P( )] —g( )(t) (p
( ))

Similarly, we obtain

R mm

g (s)( t)nn
R nn+R mm

nn mm

Rnn
+ exp[ t (R„"„"+R —

)], (A 1 1)
R mm+R mm

nn mm

Rnn
G"'(t)"" = [1—exp[ t (R„"„"+—R )]J,

nn mm

(A12)

and

and

0 "'(t)=exp[ it (L, iR }—]—

d ~(s)
lL (s) R (s)

dt

(A2}

(A3)

[g()(t}p()]g()(t)(p())
where

G "(t)„" =exp[ t (iso„+R„" )], —

(A13)

(A14}

(p +R m m
)g ( s )

(p )
m m +R n n G ( s )(p )

m m (A5)

Carrying out the Laplace transformation of Eq. (A2)
yields

0 "(p)=f dte "G "(t)= „„.(A4)
0 p+i (L, iR )—

We now calculate G "(p) and G' (p)"" . From Eq.
(A4) we find

where R„"„denotes the dephasing constant.
It should be noted that to obtain [G "'(t)po"]„and

[g "(t)p 0"]„„,one can also solve the generalized master
equations given by Eq. (A3).

APPENDIX B

Here we consider the calculation of K, (t) defined by
0

K„(t)=y ((xp„~x ) [

Wp

X exp[ —
)((,()((L)0+ —,

'
) —A,o( U0+ —,

'
)], (B1)

(p +R n n
)G ( s )

(p )
m m +R m m g ( s )

(p )
m m (A6)

where R and R„"„"denote the relaxation rate constants
where p0= —itco0 and A,0=itco0. Using the Mehler for-
mula, ' we can rewrite Eq. (Bl) as
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p oexp[ —
A,o(uo+ —,

'
) ] po, —,2 po, —,2 po(t)=, f f dQ dQ X&, (Q)X&, (Q)exp — (Q'+Q ') tanh +(Q' —Q ') coth

(Zn. sinhpo)' 0 0 4 2 2

(B2)

where po=(coo/Pi)' . Using the contour integral representation for the Hermite polynomial and performing the in-
tegrations with respect to Q and Q, we obtain

pop oexp[ —A.o(uo+ —,
' )] VO' 1

[ [Posinh(/to/2 ) +P o cosh()uo/2) ][Pocosh(luo/2) +P o sinh( po/2) ]]
'

f dz, dz2, PoPo do po(z2 —z, )

[Po +Pocoth(juo/2)] Po+P o coth(Po/2)

2

Po(z2+z] ) ZPo Podo(z]+z2)
2 &2 &2 2Po+P o tanh(/2o/2) P o +Pocoth(go/2)

(B3)

where Qo =Qo+do, i.e., do denotes the normal coordinate displacement. Carrying out the contour integrals in Eq. (B3)
yields

K„(t)=K, (t)bK„(t), (B4)

where

and

pp2
r2d 2

[P o +Pocoth(Po/2) ]
Ko (t)=

[ [Posinh(po/2) +P o cosh(po/2) ][Pocosh(po/2)+ P o sinh(po/2) ] )

pop oexp

(B5)

0 a2
b,K„(t)=exp( —

A.ouo) g
o (no!) (uo no)—

Here H„(x) denotes the Hermite polynomial,
0

—po+ po'
a]—

[Po+P o tanh(/2o/2)][Po+P o coth(Po/2)]

Up
—

np
a&

np
ag

H„
+4a,

(B6)

(B7)

and

Zp+2
~2

ap-
[Pocosh(ILto/2 ) +P o sinh(go/2 )[Posinh(po/2 ) +P o cosh(po/2 ) ]

Zoo'do
ag =

[Po +Pocoth(/to/2) ]

(B8)

(B9)
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