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Codimension-two bifnrcations in single-mode optical bistable systems
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The codimension-two bifurcation set of single-mode optical bistable systems is investigated. The
entire set is classified into three classes, a cusp bifurcation set, a degenerate Hopf bifurcation set,
and the intersection of a Hopf bifurcation and a saddle-node bifurcation. Based on the specification
of degenerate Hopf bifurcation, super- and subcritical Hopf bifurcations can be identified. It is

found that, in the subcritical Hopf bifurcation region, an attractor of time-dependent motion may
coexist with the stable stationary solution when the cavity is filled by a passive medium. Moreover,
the coexistence of three attractors is observed for certain parameter combinations.

I. INTRODUCTION

In the past several decades, a large number of publica-
tions have focused on the study of instabilities of lasers
and optical bistable systems. Many of them considered
the critical condition for the onset of various instabilities.
Codimension-one bifurcations, especially the Hopf-
bifurcation instability, have been extensively investigat-
ed. ' Recently, there appears a considerable interest in
the study of multicodimension bifurcations, since it
is realized that in the close vicinity of a multicodimension
bifurcation set there might appear a rich variety of
characteristic behaviors including complicated chaotic
motions. Nevertheless, a systematic study in mul-
ticodimension bifurcations in an optical bistable systems
is still lacking.

The aim of the present publication is to investigate the
conditions for codimension-two bifurcations of a single-
mode optical bistable system (SMOB). In the remainder
of this section, we will present our model. For the sake
of clarity, some known results closely related to this
problem will be briefly described. In Sec. II the possible
types and the conditions for the onset of codimension-
two bifurcations of our system will be studied in detail.
In Sec. III a detailed calculation to distinguish between
sub- and supercritical Hopf bifurcations is carried out
that, for the first time, reveals the coexistence of the
stable stationary solution and a time-dependent solution,
and the coexistence of three attractors in a SMOB sys-
tem.

The model used is an optical unidirectional cavity filled
with a medium, consisting of homogeneously broadened
two-level atoms, and driven by an external coherent field.
In the presentation we consider only the single-mode
case, and apply the plane-wave approximation. Taking
the mean-field limit, ' we reduce the Maxwell-Bloch
equations to

dx/dt = —k[(1+i8)x —y+2Cp],

dp /dt =xD —
( I+i b, )p,

dD/dt = —y[( x'p +xp')/2+D —o ],

8=(co, —too)/(kyi), b, =(co, —coo)/y, .

The normalized amplitude of the external field y is as-
sumed to be real and positive.

The stationary solution of (1.1) can be worked out ex-
plicitly. It reads

y = lx, I [ [1+2Co/(1+ & + lx, I')]

+[0—2Cho/(1+6 + Ix, l )] I'

D, =(1+a')o/(1+~'+ lx, I'),

p, =
( 1 —i 6 ) ox/( 1+5 +

I x, I ),

(1.2)

The standard way to study the bifurcation set of (1.1) is
to linearize (1.1) about the solution (1.2), and then to in-
vestigate the changes in the sign of the real part of the ei-
genvalues of the linearized equations. About (1.2) the
linearized version of Eqs. (1.1) is given by

where x,p are the complex output field and the atomic
polarization, respectively. D is the normalized real popu-
lation difference. cr is set to 1 for a passive medium and
to —1 for an active one. [In this paper we focus on opti-
cal bistability (OB), thus cr =1.] Equations (1.1) are
essentially five dimensional. The parameter C is the bi-
stability parameter. y and k are the longitudinal decay
rate and the cavity linewidth, respectively, scaled by the
transverse relaxation rate y~. The frequencies of the
external field, the cavity, and the atoms are denoted by
coo, cu„and co„respectively. The two detuning parame-
ters are defined as
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d 6x /dt —k(1+i8)

d 5x */dt —k(1 —i8) —2Ck 0

d 5p /dt = (L ) 5p —(1+id, ) (1.3)

d 5p */dt

d5D/dt rp—,' /2 —rp, /2 rx~ /2

—(1 ib—) x,

—rx, /2 —r

where

5x =x —x„5p=p —p„5D=D D, . —

Equation (1.3) gives rise to the characteristic equation

k +a, A, +a2A, +a3A. +a4X+a5=0,
with

a ) =2k+2+y,
a2=k (1+8 )+(2y+I+b, +yX )

+ 2k(y +2)+4CDk,

a3= y(1 +b, +X )+2k(2y+1+b, +yX )

+k (1+8 )(2+y)+4CDk(y+k+1)

(1.4)

—2CkyX /(I+6, +X ),
(1.5)

a4=2ky(1+6 +X )+k(1+8 )(2y+I+5 +yX )

+2CDk[2k(1 —8b )+2y(k+1)+yX ]
—2CkyX [b(b, +8k)+(k+1)]/(1+6, +X )

+4CD k

a~=k yI4C D[D —X /(I+6, +X )]

+(1+8 )(I+6, +X )+4CD(1 8b, )},, —

where we simply use X and D instead of ~x, ~
and D„re-

spectively. All the coefficients in (1.5) are expressed in
terms of the external control parameters C, y, k, b„8,
and X. (Here and in the following, we use X instead of y
as an external control parameter. )

There are two kinds of codimension-one bifurcations.
First, class A, a real eigenvalue of (1.4), which is the larg-
est compared with the real part of all the other eigenval-
ues, changes its sign from negative to positive. The
necessary condition for the bifurcation of class A (i.e.,
saddle-node bifurcation in our case) is

aq=O . (1.6)

f=(a,ai —a3}(a3a4—a2a, }—(aia4 —a&) =0. (1.7)

Second, class 8, a pair of complex conjugate eigenvalues,
which have the largest real part, cross the imaginary axis,
and their real parts become positive. Accordingly the
necessary condition for the bifurcation of class B, i.e.,
Hopf bifurcation, reads

It is obvious that neither (1.6) nor (1.7) is the sufficient
condition for the corresponding bifurcations. However,
if we start from a stable region, the necessary and
suScient condition for the bifurcation of class A is the
first transversal crossing of the hypersurface (1.6), while
for class B, it is the hypersurface (1.7}. By the first cross-
ing we mean that no other surface (1.6) or no other sur-
face (1.7), respectively, has been crossed before the given
surface is crossed. Henceforth, we call the subset of (1.6),
which can be first crossed by starting from a stable re-
gion, surface A, and the subset of (1.7) surface B. There-
fore, surface A is the instability boundary of saddle-node
bifurcation, and surface B is that of Hopf bifurcation (for
details, see Ref. 20}.

II. CODIMKNSION- TWO BIFURCATIONS

A. Type I (cusp-catastrophe bifurcation)

The best understood codimension-two bifurcation in
OB is the cusp-catastrophe bifurcation in which two con-
trol parameters and one order parameter are involved.
The critical parameter condition for type-I bifurcation
reads

a5=0, d(a5)/d(X )=0 . (2.1)

Of course, Eqs. (2.1) can be regarded as the cusp bifurca-
tion set only if it is on surface A. (Afterwards, whenever
we discuss codimension-two bifurcation, it is implied that
the set involved must be either on surface A or B, or on
the intersections of both. )

At this bifurcation set, the complete unfolding of the
order-parameter equation takes the form

dz /dt =go+ p,z +G
&
z (2.2)

where z is assumed to be the order parameter and po and

p& are small unfolding parameters. G, is a finite number.
The coeScients G &, po, p„and the order parameter z can
be explicitly calculated, according to the theory of the
slaving principle. ' ' Here, we do not intend to go fur-
ther.

B. Type II (degenerate Hopf bifurcation)

At the bifurcation set of class B, the unfolding of the
order-parameter equations can be written as

We will classify codimension-two bifurcations of
SMOB into the following four types.
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dr /dt =
@r +G&r +Gsr +

d&ldt =co+0(r ),
(2.3)

At an intersection of this kind, the frequency of the un-

stable mode is zero,

with
ai =(a,a„—a, )/(a, a2 —a3) =0, (2.10)

co =(a, a4 —a~)/(a, a2 —a3) (2.4)

f=0, 63 =0 (2.5)

is just the so-called codimension-two degenerate Hopf bi-
furcation set. Based on (2.5), sub- and supercritical Hopf
bifurcations of SMOB can be distinguished. The condi-
tion for supercritical bifurcation reads

and p being a small unfolding parameter. The subset of
surface 8 satisfying the conditions (we shall use G3 to
denote G3 at the critical point where JM =0)

and then the mode on surface 8 is softened about the
III A set. Thus, we wi11 call III A soft-mode intersection
of A and 8. The eigenvalue equation (1.4) has the
double-zero eigenvalue degeneracy

A, i=f2=0

and the standard linear matrix of the order-parameter
equations takes the form

0 1
(2.11)0 0

f=O, 63&0,
and that for subcritical is given by

f=O, G, )0.

(2.6)

(2.7)

The time-dependent problem about the bifurcation set is

essentially two dimensional with two unfolding parame-
ters involved.

2. Type IIIB

C. Type III (interaction of surfaces A and B)

Type-I and type-II bifurcations are the simplest
saddle-node bifurcation and the Hopf bifurcation with
higher-order degeneracy. The numbers of the order pa-
rameters do not differ from those of the corresponding
codimension-one bifurcations. Now we consider a sub-
stantially different situation.

Surfaces A and 8 may intersect each other. Moreover,
various sheets of one kind of surface may intersect each
other as well. For the intersection of 3 and B to occur
the conditions

a5=0, f=0 (2.8)

must be fulfilled simultaneously. Equations (2.8) can be
satisfied by two possible ways which correspond to two
classes of bifurcations of type III.

1. Type IIIA

Type III A is defined by

a~=0, a4=0.

In free-running laser systems (FRL), there have been a
variety of publications analytically and numerically deal-
ing with the problem of sub- and supercritical Hopf bifur-
cations. It has been found that, for the Lorenz equa-
tions, which can be deduced from a set of FRL equations
as its special case, ' the stationary solution can undergo
only subcritical Hopf bifurcation. However, consider-
ing complex Lorenz equations which are just a revised
version of the FRL equations, both sub- and supercriti-
cal bifurcations may be observed. Nevertheless, up to
date, with the SMOB system the classification of sub- and
supercritical bifurcations has not yet been carried out.
This is an important task of the present paper. We leave
the calculation of the parameter G3 and the consequent
classification of the super- and subcritical Hopf bifurca-
tions to Sec. III.

Equation (2.8) can be again satisfied in the following
manner:

a5=0, u =(a, a2 —a3)a3 —a,a4=0 .2

At the bifurcation point we have simultaneously

A3 —
Oy A ) 2

—+leo
1

with

(2.12)

co =a, a4/(a, a2 —a3)%0 (2.13)

Since curve 8 is defined by the first crossing of the bound-
ary (1.7) by the system starting from a stable region, then
this curve serves as the necessary and su%cient condition
for Hopf bifurcation. Thus co must be nonnegative at B
(for the detailed discussion see Refs. 20 and 34). Point
III 8 will be called hard-mode intersection. The standard
linear matrix of the order-parameter equations reads

0 —co 0
co 0 0
0 0 0

(2.14)

In the vicinity of the bifurcation point, Eqs. (1.1) can be
reduced to a set of three order-parameter equations with
two unfolding parameters.

In Fig. 1 we plot a bifurcation figure of SMOB in the
x-6 plane by fixing C =500, k =0.5, y =2, and 0= —14.
The dashed and solid curves correspond to Eqs. (1.6) and
(1.7), respectively. Note that only those parts of the solid
(dashed) curve which fall outside the dashed (solid) curve
are called 8 ( A ) curve in accordance with our definition.
It should be understood that the dashed (solid) part inside
the solid (dashed) curve is not the instability boundary of
class A (8). The areas surrounded by the dashed or solid
curves are unstable regions. At points I, II, and III B we
find codimension-two bifurcations of types I, II, and III,
respectively. The dotted circle, defined by u =0, crosses
all intersections of 3 and B. Hence, it is clear that all in-
tersections belong to type-IIIB bifurcation. We have
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must have two pairs of real common solutions +co, , +m2
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a&a2 —a&=f =0,
or equivalently,
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a&a& —a3 0

a&a4 —a&=0 .

(2.17a)

(2.17b)

—10
00

j

7.5
l

15.0
X

22 5 30.0
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It is interesting to point out that in case of SMOB, we

always have

FIG. 1. C=500, y=2, k=0.5, and 8= —14. The dashed
and the solid curves are defined by Eqs. (1.6) and (1.7), respec-
tively. However, only the dashed and the solid curves separat-
ing the stable region from the unstable region are defined as the
instability boundaries of classes A and B, respectively. The dot-
ted line, plotted according to u =0, crosses all the intersections
of A and B. Then III B bifurcation is verified at each intersec-
tion. At points I, II, and III B, codimension-two bifurcations of
types I, II, and III B take place, respectively.

varied C, k, y, and t9 in a wide region, and no bifurcation
of type III A has been found. It leads us to the sugges-
tion that in SMOB hard-mode intersection prevails.

Both curves A, B, and their intersections can be varied

by changing the remaining fixed parameters. By decreas-
ing any one of C, y, and k, circle B can be made to con-
tract and eventually disappear. Thus, only type I
codimension-two bifurcation can survive as k~0, or
y~O, and none of the bifurcations, including those of
codimension-one or two, remains for small enough C. In
Fig. 2 we fix C =75, k =0.5, @=2, and 0= —8. In com-
parison with Fig. 1, the reduction of the unstable regions
A and B is apparent. Note that in Fig. 2 the number of
the intersections of A and B is only two rather than four
(see Fig. 1). Surface A is not altered by increasing k,
while surface B is sensitive to the change of k. The latter
can be first enlarged and then pushed up as we increase k.
Therefore, circle B as well as all the codimension-two bi-
furcations other than type I will eventually disappear
from the scope of Fig. 1 as k ~ ~ .

[cf. (1.5)], and no codimension-two bifurcation of type IV
can be observed. Thus, the entire codimension-two bifur-
cation set of SMOB can be specified according to three
classes, types I, II, and III B.

The investigation and the classification of
codimension-two bifurcations of types I—III B are rather
instructive. According to the understanding of the type-I
bifurcation set, we are able to demonstrate the coex-
istence of multistationary states which are crucial to a
bistable system. It is known that under certain parameter
conditions ' complicated motions including chaos may
appear in the vicinity of the type-IIIB bifurcation set.
Thus it might be possible to predict chaotic motion in
SMOB analytically by identifying the III B codimension-
two bifurcation set and by analyzing the corresponding
order-parameter equations with much lower dimensions.
We will deal with this matter in a forthcoming paper. In
the remainder of this paper, we will give a detailed
analysis of type-II bifurcation.

III. SUB- AND SUPERCRITICAL BIFURCATIONS
AND NEW ATTRACTORS IN SMOB SYSTEMS

In the following we shall follow a method of combining
the elimination procedures ' ' and the normal form
theory, as we did in Refs. 24 and 33. The elimination
procedures, i.e., below from (3.1) to (3.16), have been suc-
cessfully used in various problems in laser-related systems

D. Type IV (intersection of two B sheets)

Surface B may contain various sheets. Di6'erent sheets
might intersect each other, leading to multicodimension
bifurcations. Since Eqs. (1.1) are five dimensional, one
can expect only intersections of two B sheets. At the bi-
furcation set of type IV, we have

2.0-
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—10-

rr

/

/
/

/
/

I
I
I
1
\
\

k] 2
—+ECOi) A.3 4=+1COP (2.15)

co —Q2co +a4=0,4 2

Q ico Q3co +Q5 =0
(2.16a)

(2.16b)

In order for Eqs. (2.15) to be fulfilled, the two algebraic
equations

—2.5—
0.0 2.5

I

5.0
X

I

7.5 10.0

FIG. 2. The same as in Fig. 1 with C and 6 replaced by
C=75, 0= —8. The unstable regions surrounded by A and B
are considerably reduced by decreasing C. The number of the
intersections of A and 8 is reduced from four to two.
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1,1 2 =+ISO (3.1)

The other three eigenvalues can be obtained from the
equation

A, +ail, +b2A, +bi =0,
where

(3.2}

to reduce the dimension of the systems, i.e., self-pulsing
in multirnode lasers, two-photon lasers, and lasers
with an injected signal. The calculation of G3 based on
a general two-dimensional order-parameter equation has
been previously undertaken for two-photon lasers, lead-
ing to an analytical criterion for the discrimination of the
Hopf bifurcation nature. The power and eSciency of
this kind of approach have already been demonstrated.

First of all, let us define the order parameters and the
coeScient G3. Then sub- and supercritical bifurcations
in SMOB will be distinguished by searching for the level
curve 63 =0.

At surface 8, Eq. (1.4} has two pure imaginary solu-
tions [see Eq. (2.4)]

sponding eigenvectors a;, by which we can form new
variables z, . The new and the old variables are related
through

5

5y, = g (a,, )z,
i=&

with

(3.4)

5y, =5x, 5y2 =5x', 5y, =5p,
5y4=5p', 5y, =5D .

Since it is assumed that A, , z are the eigenvalues first
crossing the real axis, then z, and z2 will be the order pa-
rarneters. All the remaining variables z3, z4, and z5 cor-
respond to the fast damped modes and can be eliminated
adiabatically. However, the adiabatical elimination can
be correctly performed only after we have defined all the
order parameters and the fast modes. For this purpose
let us calculate all the eigenvectors of the linear equations
(1.3). a;& can be explicitly given by solving

b2 =a2 —(aia4 —a&)/(aia2 —a&),

53 a, (a, a, —a, )l(a, a4 —a, )

They are

Ai=h, +h2, X4 VJA1+V2h2, A5 V2ll 1+V1h2

&2i

(L) a&;

&ai

O, 5;

=A, ; ~ Qi(
a4,
a5,.

(3 3) The results are

(3.5)

with

v, 2=( —1+3i )I2,
h, 2= I

—q/2+[(q/2)'+(p/3)']' 'I' ',
q

= —2a, /27 a 1 b2/3+—b3,

a„=exp(iP; ), a2; =exp( i1ti; )—,

a3, = [—k(1+i 8)—1,, ]exp(iit1, )/(2Ck ),
a4; = [—k(1 i 8) A, ]—exp( —

i/, ; )/—(2Ck ),
a~; = [D+[(1+i6)+k; ][k(1+i8)+A;]/(2C, k ) I

(3.6)

p= —
a i/3+b2 .

Inserting A,„.. . , A, 5 into Eqs. (1.3), we obtain the corre-

Xexp(ig, )/x„ i =1,2, . . . , 5 .

The phase angles 1}};are defined as

exp(i/; )=[{x,I2CDk+(1 id+A;)[k(—1 —i8)+, 1,, ]])/{x,"{2CDk+(1+i6)[k(1+i8)+A, , ] j )] . (3.7)

We fix the arbitrary factor by choosing a„.=exp(iP;) in
order to keep the symmetry that a new variable z corre-
sponding to a real eigenvalue is real and a pair of new
variables corresponding to the complex conjugate eigen-
values are complex conjugate.

In order to form the order-parameter equations, one
must also know the inverse of the matrix {a)satisfying

(p)(a)=I .

5

z, = gP;, 5y, i=1,2, . . . , 5.
j=1

(3.8)

There is no essential difficulty to calculate p;1 from a;~.
However, the explicit formulas might frequently be corn-
plicated since the matrix is five dimensional. Neverthe-
less, a compact explicit result of matrix (p} can be ob-
tained by calculating the left eigenvalue problem

Then the new variables can be expressed in terms of the
old ones as

" (P'1P'2P'3P'4P'5 }= (P'IP'2P, 'Ã4P, '5 }«»
which gives rise to

(3.9)
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P,'I =exp(ig;), P,'2=exp( —ig; ),
/3'3=( [

—2Ckp,*+x,'[k(1+i8)+A.;]j /[D, x,'+p, '( I+id+A, )], )P,'I,
I8'4=( t

—2Ckp, +x, [k(1—i8)+)I., ]) /[D, x, +p, (1 i 5—+A)])P,'2,

/3,'5=( [ 4C—kD, —2(1+id, +3, ),[k(1+i8)+A, ],) /[yD, x,*+yp,*(1+id+A,, )])p,'I,
( [2CkD, +(1 i b, +—A, , )[k(1 i 8—)+ A. , ] I [yD, x,'+yp, '(1+i b +)I.; )])
( [2CkD, +(1+i6+k; )[k(1+i8}+k;]I [yD, x, +yp, (1 i—A+X;)])

(3.10)

Matrix (P) can be obtained by multiplying (P') by nor-
malization constants

zj=BII(j)zl+B12(j }zlz2+, j =3,4, 5 (3.13)

(3.11)
where the ellipsis represents other terms. The derivatives
ofz, over t read

Now Eqs. (1.1) can be reduced by taking the transforma-
tion (3.4) and (3.8} to a rather concise form

dz, Idt = A,,z, +p;35x 5D +p, ~5x '5D

—yP 5(5x'5p+5x 5p')/2 .

Inserting (3.5) into the above equations, we finally arrive
at

5

dz, /d~=k, z, + p [pj3a„aSI,+pj4a3 aS/('
ypj5(a2;a3k +al, a4k )/2]z, z&

(3.12)

Equations (3.12) are equivalent to Eqs. (1.1). However,
the linear part of the former has a normal form, i.e., a
form with no coupling of different variables in the linear
part. The order parameters z, and z2 are therefore well
separated from the fast modes z3, z4, and z5 in the linear
regime. The elimination procedure ' can be directly
performed. Note that in the present case the fast modes
cannot be directly eliminated by setting dz, Idt =0,
i=3,4, 5, because the order parameters have Anite fre-
quencies. We assume

dz /dt =2icoB»(j)z1+, j=3,4, 5 (3.14)

where we have assumed that dz, 2/dt =+ical 2
'T.hen,

inserting (3.13) and (3.14) into (3.12) and comparing the
both sides of the latter for j=3,4, S, we have

B»(j)=I2„(j)/(—&j+2i~),

Inserting (3.15) into (3.12) for j=1 yields the explicit
order-parameter equation

dz, /dt =i cuz I +a» (1)z I +a I2(1)zlz2

+~ 112( 1 }zlz2 (3.16)

where a„(l) and aI2(l) are given in (3.15) by taking
j=l, and the third order coefficient a»2(1) can be
specified by inserting (3.12) into (3.13) as

B,2(j)= —
1212(j}IA. , j= 3,4, 5

(3.15)

II(J)=&,3alla51+~j4 21a51 y~jS lla41+ 21 51}/2

~I2(j }=&,3(a12a51+all 52)+i j4(a22a51+a21a52)

yPj 5(a12a41+ a I la42+ a22a31+ a21a32 }/2

112( ) 1 13[(alla53+a13a51)B12( )+(a12a53 13 52) 11( ) (alla54+al4asl )BIZ(4)+(al2a54+a14a52)BII(

+ (a I lass+ a I sa5 I }B12( S ) + ( a12ass+ a I sa52)B I I ( 5 ) ]

I 14[(a21a53+a23a51)B12(3)+(a22a53+a23a52)BII(3) (a21a54 a24a51)B12(4}+(a22a54 24 52) 11(

+ ( a21a 55 +a25a51 }B12 ( 5 }+ ( a22a 55+ a25a 52 }B11 ( 5 }]

yi 15 I [( I ia43 a13a41 }B12(3) + (aI2a43+a13a42 }BI I ( 3)+ (al la44+ al4a41 }B12(4)+(a12a44+al4a42 }B11 (4 }

(al la45 alSa41)B12( }+(a12 45+ aISa42)BI 1(5}]

+ [(a21a33+ 23 31) 12( ) + (a22a33+ a23a32)B 11(3 )

+(a21a34+ 24 31}B12( )+(a22a34+a24a32)BI I ( }+( 21a35+ 25 31)B12(5)

+ (a22a35+ a25a32)B I I (5 ) ] I (3.17)
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The calculation is straightforward. By explicitly writing
all the terms in a„z(1) we want to show that they can,
actua11y, be explicitly given direct1y in terms of the con-
trol parameters. In Eqs. (3.13) and (3.16), the other terms
are not explicitly given since they are irrelevant to the
discrimination of the nature of bifurcation, which is
determined by a quantity G3. (For the mathematical
detail we refer readers to Ref. 32 and the references listed
there. ) G& for a general system of the form (3.16) is given
b 32

63=coRe[a»2(1)]—Im[a&](1)a,2(1)] . (3.18)

So far, the coefficient G3 is given analytically in terms of
the control parameters C, k, y, 8, b„and X via Eqs. (1.5),
(3.6), (3.10), (3.15), and (3.17). The order-parameter equa-
tions (2.3) are realized up to the third order.

On the surface 8, f=0, the subset

63=0

is just the codimension-two degenerate Hopf bifurcation
set. As G3 &0, the surface B indicates supercritical Hopf
bifurcation, and then a small-amplitude oscillation can be
observed after the stationary solution is destabilized by
Hopf bifurcation. In the opposite case 63 & 0 Hopf bifur-
cation is subcritical as the surface B is crossed transver-
sally. Thus, the state may, moving far away from the ini-
tial steady state, approach other attractors, which may be
another branch of the stationary solution, or a new time-
dependent solution. In the former case, the state jumps
between the two branches of the stationary solution be-
fore the turning point is reached; in the latter case, a new
attractor of a time-dependent so1ution coexisting with the
stable stationary solution can be predicted. Both
discoveries are instructive in the SMOB systems.

In Ref. 12, Erneux and Mandel revealed two kinds of
instabilities in SMOB in the limit C~~. They found
that for a certain combination of parameters, the station-
ary solution is replaced by a periodic oscillation when the
upper branch is destabilized by Hopf bifurcation. How-
ever, the feature of the Hopf bifurcation in the lower
branch is rather different from that of the upper one.
The system jumps to the upper branch before the turning
point is reached whenever Hopf bifurcation takes place.
In Ref. 12 this anomalous jumping is specified as a new
kind of instability in SMOB. This kind of instability
must be a subcritical Hopf instability. When the lower
branch is destabilized by an infinitesimal change of the
contro1 parameters, the state is repelled far away from
the lower branch, and falls into the basin of the attractor
of the upper branch. However as we shall show immedi-
ately, the attractor eventually reached by the system
when subcritical Hopf bifurcation occurs is not necessari-
ly another branch of the stationary solution. It may be
some new attractor.

In Fig. 1, at a11 the points II, type-II bifurcation arises.
On the segments P Hopf bifurcation is supercritical,
while it is subcritical on B.

The most interesting discovery, thanks to the
classification of sub- and supercritical bifurcations, can be
found in Figs. 3 and 4. In Figs. 3, we consider a pararne-

ter combination C=500, k=0. 5, @=2, 8= —22, and
b =7.5 when only a single-valued stationary solution of
Eqs. (1.1) exists. By evaluating functions f and G3, it is
verified that at YL in Fig. 3(a) subcritical bifurcation
arises. Hence, it is expected that as Y& YL, when the
unique stationary solution is still stable, there must be a
new attractor coexisting with the stable steady solution.
The motion on the attractor must be time dependent
since no second stable stationary solution exists. In Fig.
3(a), we plot the maximal values of X as a function of the
external field. The curve passing I. and U, represents the
steady solution which is stable on the solid line while un-
stable on the dashed one. The two bistability loops are
apparent. Between YM and Yt there is a coexistence of a
stable stationary solution with an oscillation. Increasing
Y from below, the stationary solution loses its stability
immediately after Yl is exceeded. Meanwhile, no charac-
teristic change is observed for the motion on the other at-
tractor at Y= Yt . In Figs. 3(b) and 3(c), we take Y=516,
which is obviously on the segment YM YL, and plot the
evolution of the absolute value of the output as a function
of time. In Fig. 3(b), the initial values are given in the vi-
cinity of the steady state; the trajectory approaches the
steady state as t increases. On the contrary, in Fig. 3(c)
the initial values are given a distance away from the sta-
tionary solution; the motion soon turns to be a stable os-
cillation.

One more remarkable feature arising in Fig. 3(a) is the
coexistence of the two time-dependent motions. YU& is
the upper boundary of the Hopf unstable region. At YU&

we have Gi (0, then the Hopf bifurcation should be su-

percritical. Consequently, slightly below YU& one may
expect small-amplitude oscillation. We do find it indeed.
Between YU, and YU2, we again find a coexistence of
time-dependent motion and the stable stationary solution.
Between Yo and YU, , the stationary solution is replaced
by a smail-amplitude oscillation. Hence, a coexistence of
two attractors of time-dependent motions is identified.
After Y& Y0, the large-amplitude oscillation disappears
suddenly. Between YI and Y0, there is only a single at-
tractor of periodic motion. In Figs. 3(d) and 3(e), we take
Y=715. The phase figures are shown in the plane of
Re(x)-Im(x). In Fig. 3(d), the initial state is located in
the vicinity of the stationary solution, while in Fig. 3(e) it
is far from that. In the former case a small-amplitude
periodic trajectory (on the attractor MU&) is identified,
while in the latter we find a motion which apparently re-
sults from period-doubling bifurcation on the attractor
OU2.

In Fig. 4, we take parameter values as 0= —18, 6=6
with C, k, and y unchanged from Fig. 3. Then, the sta-
tionary solution is triple valued for certain value of Y [see
Fig. 4(a)]. The upper (lower) branch is destabilized by
super- (sub-) critical Hopf bifurcation at YU, ( Yt ) which
is shown in Fig. 4(a). Figure 4(a) is similar to Fig. 3(a).
Nevertheless, an interesting difference arises after chang-
ing the parameters 0 and h. Between Y02 and YL, a
coexistence of three at tractors, the stable stationary solu-
tion, a small-amplitude oscillation, and a large-amplitude
oscillation can be observed. Between Y~, and YU2, one
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fi d a coexistence of three attractors. On the seg-agasn n s a coe
'

Y, the coexistence of the stable stat yionarment YU, Uz, e c
- m litude os-f the upper branch, and two large-ampsolution o e u

of Y Y, wefindacillations occurs. On the segment o 0, U, , w

coexistence o reef th attractors of time-dependent
motions. In Figs. 4(b), 4(c), and 4(d), we fix Y=600
which is rig t onh Y Y . Starting far away from both
the upper an ed th lower branches initially, we occasiona-

y find Fi . 4(b), which denotes a motion on the attractor
0 U or sometimes obtain Fig. 4(c) which is apparently2 3&

on 0 U . If the initial state cs chosen in the g'~ ~ ~ ~

the re ion about
the upper branch we grasp a small-amp i plitude eriodic
motion w ic resu sh h its from the destabilization o the
upper branc via e suh th supercritical Hopf bifurcation (on
MU, ).

It is noticed that in Figs. 3(a) and 4(a), the curves loook
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irregular after Yo [Fig. 3(a)] or Yo2 [Fig. 4(a)]. The
motion on those parameter regions may be expected to be

motion in these regions. However, we do not intend to
go further into this matter in the present paper.

We would like to emphasize that apart from what we
ave shown in Figs. 3 and 4, there is still a variety of be-
aviors o t e motion after the stationary st t

'
d b'

ize y opf bifurcation. In Fig. 1, for instance, if we fix
6=6. 19 thee entire Hopf unstable region falls into the
lower branch of the stationary solution. (This
phenomenon is seldom observed. There ex' t 1 dxis s an is an
o e op unstable region while the segment of the
lower branch near the turning point remains stable. Even
in Fig. 1 this phenomenon can be found only for a ver
small interval of 6of b, .) For the gtven parameters, both

r a very

Hopf bifurcations on the lower branch are supercritical.
After thee stationary solution is destabilized by Hopf bi-
furcation, no jump to the upper branch occurs. Instead,
the stationary solution is replaced by a small-amplitude
periodic motion which can be seen in Fig. 5. [In Fi . 5
the rneaninng of the curves is the same as in Figs. 3(a) and
4(a).] If we fix b, ==3.Q3, the bifurcation 6gure is com-
pletely different. Then, on both the upper and lower

branches the Hopf bifurcations are subcritical. A 'um

pp e stationary solution does happen as the
lower branch is destabilized by the Hopf bifurcation be-
ore reaching the turning point; it is just the kind of bi-

furcation explored in Ref. 12. Meanwhile, as the u
is estabilized, a large-amplitude oscillation

bursts, replacing the unstable stationary solution of the
upper branch.

IV. CONCLUDiNG REMARKS

Let us end our presentation by offering the followin
remarks.

e o owing

~ii For the first time, we have detailed the conditions of
codimension-two bifurcations of SMOB m d 1 d b

e believe that codimension-two bifurcations are
the most important multicodimension bifurcations in
SMOB which really give physical effects. Based on the
understanding of type-III B bifurcation, one may expect
to analytically predict the onset of chaos and on th t f
yp - bifurcation, new attractors may be explored in a

systematic way.
(ii) In Sec. II. III, we have indeed found several kinds of

new attractors w
'

which have never been reported for
SMOB. A tim-e-dependent solution may be found in the
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parameter region where the stationary solution keeps its
stability. Moreover, the coexistence of three attractors is
a rather interesting discovery. In Figs. 3(a) and 4(a), we
demonstrate the existence of an attractor of large-

FIG. 5. The maximal values of X are plotted against Y after
the system eventually reaches its asymptotic state. 5=6.19.
All the other parameters are given in Fig. 1. Both bifurcations
at the two boundaries of the Hopf unstable region on the lower
branch are supercritical. A small-amplitude oscillation arises
immediately after the stationary solution is destabilized by Hopf
bifurcation.

amplitude oscillation. This new attractor can be ob-
served in a wide parameter region. It seems to us that the
complicated motion revealed for the SMOB system may
be related to the motion on this attractor.

(iii) The approach used in the present work can be
directly extended to laser systems with an active medium
by taking cr = —1 instead of o = 1. In the case of 0.= —1,
Y=O, and 0=6=0, we go back to the FRL system, or
equivalently, the standard Lorenz equations.

(iv) In Ref. 12 it was found that the Hopf bifurcation
instability in the lower branch will lead to the earlier
switching to the upper state. As these authors remark
their analysis cannot answer the question whether the bi-
furcation can lead to stable oscillation or not. Our
analysis, together with those in Refs. 17, 12, and 37,
shows that four outcomes of the low-branch instability
exist. Apart from the anomalous switching as studied in
Refs. 17 and 37, which is essentially a kind of global in-
stability and does not require the local instability, the in-
stability can also lead to a small-amplitude oscillation (su-
percritical case) as shown in Fig. 5, to a finite-amplitude
oscillation (in some cases of subcriticality), as shown in
Figs. 3(a) and 4(a), or to an earlier switching due to a
Hopf bifurcation instability (in other cases of subcriticali-
ty). Therefore a complete understanding of the low-
branch instability is reached.
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