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Classical dynamics and ground-state phase transitions of a model SU(1,1) Hamiltonian
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We discuss the classical dynamics of a model SU{1,1) Hamiltonian system that may have some ap-
plication in many-boson systems. A ground-state phase transition is shown to exist in this model,
and the energy surface is shown to undergo a qualitative change at this transition.

I. INTRODUCTION

In this paper we study the phase-space How of the clas-
sical dynamics for certain model Hamiltonian systems as-
sociated with the dynamical group SU(1, 1). We shall
refer to these systems as SU(1,1) Hamiltonian systems in
the sense that the Hamiltonians may be composed of the
generators of SU(1,1) [or one of the locally isomorphic
forms: SO(2, 1), Sp(2R), and Sl(2R)].' In the work
presented here we discuss, among other things, ground-
state phase transitions and the classical motion of such
systems in a mean-field approximation where the classical
phase-space picture arises from the projection of the dy-
namics onto the coherent states (CS) associated with
SU(1,1). In previous work, a path-integral form of the
propagator over the SU(1,1) CS as been developed for
SU(1,1) systems. In the continuous limit of the propaga-
tor the associated classical dynamics may be obtained
and the phase space of this motion has the form of the
Lobachevsky plane (see also Ref. 2). It has also been
shown that SU(1,1) Hamiltonians, which are linear in the
SU(1,1) generators, are coherence preserving under time
evolution for an arbitrary initial SU(1,1) CS. This turns
out to be an important class of systems which have appli-
cations in quantum optics since they model various para-
metric amplifiers ' associated with the production of
nonclassical states (i.e., squeezed and photon anti-
bunched) of the quantized electromagnetic field. Also
such linear systems have been studied in regard to associ-
ated time-dependent invariants, as models of damped
harmonic oscillators, and as systems whose path in-
tegrals can be calculated exactly.

In this paper we study systems which are not coher-
ence preserving and are special cases of a more general
anharmonic oscillator. Such Hamiltonians have applica-
tions in quantum mechanics if, for instance, one is in-
terested in the time evolution of a wave packet that may
be squeezed. ' Again from quantum optics, some four-
photon systems" can be realized as SU(1,1) Hamiltoni-
ans. ' Also, previously a phase-integral quantization
rule has been developed in the context of the large-X ap-
proximation and has successively been applied to various
even-powered anharmonic oscillators. ' In this paper, we
study an SU(1,1}Hamiltonian which is at most quadratic
in the generators.

The work we undertake in this paper may be regarded

as the noncompact analog of the work done in the dy-
namics and ground-state phase transitions for SU(2}
Hamiltonians' associated with the Lipkin-Meshkov-
Glick' (LMG) model from nuclear physics. As far as we
are aware, no such studies have been carried out for
SU(1,1) systems. Aside from the anharmonic oscillator
problem previously mentioned in connection with the
four-photon systems, other many-body problems are
relevant to SU(1, 1). (For ordinary single-particle sys-
tems, see Ref. 1.) Other examples where SU(1,1) is an ex-
act dynamical group are a quasispin formulation for
many-boson systems in a spherical field (such as the nu-
clear many-surface-phonon state), ' coupled anharmonic
oscillators, ' superAuid helium, ' X interacting particles
with a quadratic pair potential, ' and spin waves in
localized-spin models. This does not exhaust the possi-
bilities, but rather points out that the models we consider
here may have a great deal of relevance if the systems are
extended to include various self-interactions and interac-
tions with external systems. For example, previously the
existence of ground-state phase transitions in the fully
quantized degenerate parametric amplifier has been dis-
cussed. ' This system fundamentally consists of two in-
teracting harmonic oscillators, one of which is taken to
be in an ordinary coherent state and the other in an
SU(1,1) CS. The compact analog of this system is the
Dicke model, where the electromagnetic field is quan-
tized. Phase transitions for that system have been dis-
cussed by Gilmore.

Finally, we mention one other area of concern for
which our studies may have some relevance. This is re-
lated to the breaking of dynamical "symmetry, "quantum
nonintegrability, and the connection between classical
and quantum chaos. ' "Symmetry" in this case actual-
ly means "coherence preserving. " Elsewhere we shall
consider this type of phenomenon in connection with the
system studied in Ref. 2 I.

The plan of the paper is as follows. In Sec. II we dis-
cuss the SU(1,1) model systetn, the SU(1,1) CS, and the
associated classical phase space. The equations of motion
for the model system are derived. In Sec. III we solve
these equations numerically to obtain the energy surfaces.
Cxround-state phase transitions and their relation to the
fixed points on the energy surfaces are discussed. The
qualitative change in the surface due to the phase transi-
tion is also discussed. In Sec. IV, we conclude the paper
with some brief remarks.
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II. THE MODEL

This section relies rather heavily on work presented
elsewhere. Only the briefest review will be presented
here.

The Lie algebra of SU(1,1) consists of three generators
KO, K+ satisfying the commutation relations

[KO K+ ]=+K+ [K K+]:2KO

and the Casimir invariant

C=KO ,'(K—+—K +K K+ ),

(2.1)

(2.2)

lg, k) =S(z)IO, k),
where

(2.3)

We consider only the positive discrete representation
2) (k) whose basis states {~m, k ) ] diagonalize the opera-
tor Ko, i e. , Ko~m, k) =(m+k)im, k ), m =0, 1,2, . . . ,
Cim, k ) =k(k —1) m, k ), and k )0. The coherent
states for these representations are given as

& a
p k Bq

& a
k Bp

(2.10a)

(2.10b)

H=2coKo+ —,'A(K+ +K ) . (2.12)

We shall briefly describe the effects of the added terms
later.

In calculating the classical dynamics, we make the
mean-field approximation that

The model SU(1,1) Hamiltonian system we consider is

H=2coKO+ ,'y(K—~K +K K+ )+—,'A(K++K )

(2.1 1)

which, in fact, is the SU(1,1) analog of the LMG model
for SU(2). ' Actually, all the salient features of the dy-

namics show up for the model where y =0 so we consider
only this case such that

S(z) =exp(zK+ —z "K ) (2.4)
A'= (H(KD, K+ ) )

and where z = —(8/2)e '~ and g= —tanh(8/2)e '~. 8
and P are group parameters with ranges ( —oo, co } and
[0,2ir], respectively.

Assuming the Hamiltonian of a system to be composed
of SU(1,1) generators, i.e., H =H(Ko, K+ ), then from the
continuum limit of the path-integral expression for the
propagator calculated over SU(1, 1) CS, we obtain the
classical equations of motion for g and g" as

Since

=H((K ), (K )) .

( g, k iK0 i(, k ) =k coshe,

(g, k ~K+ g, k ) = —k sinhee+—'~,

then

(2.13)

(2.14)

0={k~](*={('~] (2.5)
%=2cok coshe+A, k sinh ecos(2$), (2.15)

whe~e &=(g,k)Hi(, k) and {,] defines a generalized
Poisson bracket

or in terms of q and p,

&(q,p)=2ruk(p+1)+Ak (p +2p)cos(2q) . (2.16)

a~ aa
2ik ag ap

aw aa
ag' ag

(2.6)
Finally, from Eqs. (2.10) we obtain the classical equations
of motion

or, in terms of the parameters 8 and P,

1 aA aB
]=k,. he ay ae

aA aB
ae ay

The equations of motion for 8 and P are then

q =2co+2Ak(p+1)cos(2q },
P = 2A k (p +2p )sin(2q ) .

(2.7) The solutions are described in the next section.

(2.17a}

(2.17b)

8= —(k sinhe) la
a

P=(k sinhe)
ao

Actually, Eq. (2.8a) can be written as

(2.8a)

(2.8b)

III. ENERGY SURFACES AND GROUND-STATE
PHASE TRANSITIONS

A. Energy surfaces

d 10&—coshO= ——
dr k ap

(2.9}

which implies that coshO is essentially a momentum-type
variable. In fact, as will become clear, it plays the role of
an action variable conjugate to the angle variable P.
However, it is convenient to define the momentum vari-
able as p=coshe —1 so that p 0. Setting P=q, Eqs.
(2.8) may be written as

2'+ 2A k (p + 1)cos(2q ) =0,
2Ak(p +2p)sin(2q)=0 .

(3.1a)

(3.1b)

We begin by locating the stationary or fixed points for
the system of Eqs. (2.17). Only the case when A, )0 is to
be considered.

The stationary points of the system are determined as
solutions of Eq. (2.17) when q =0 and P =0, p =0, i.e.,
for
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as discussed by Kan et al. (Ref. 4). In their case both lo-
cal minima and maxima as well as saddle points are
found simultaneously on the energy surface when the
coupling constant is less than the critical value. Both li-
brational as well as rotational orbits are present. Above

the critical value only rotational orbits are present. The
reason for the difference in the energy surfaces of the two
models is simply that in SU(2) the momentum variable is
cosO rather than cosh', which introduces more intrinsic
"periodicity" into the effective Hamiltonian.

'See the review article by B. G. Adams, J. Cizek, and J. Paldus,
in Advances in Quantum Chemistry, edited by Per-Olov
Lowden (Academic, New York, 1987), Vol. 19.

2See A. Perelomov, Generalized Coherent States and Their Ap-
plications (Springer-Verlag, Berlin, 1986).

C. C. Gerry and S. Silverman, J. Math. Phys. 23, 1995 (1982);
C. C. Gerry, Phys. Lett. 119B,381 (1982).

4C. C. Gerry, Phys. Rev. A 31, 2721 (1985).
5K. Wodkiewicz and J. H. Eberly, J. Opt. Soc. Am. B 2, 458

(1985).
C. C. Gerry, Phys. Rev. A 35, 2146 (1987).

7C. C. Gerry, Phys. Lett. 109A, 149 (1985).
C. C. Gerry, P. K. Ma, and E. R. Vrscay, Phys. Rev. A 39, 668

(1989).
C. C. Gerry, Phys. Rev. A 39, 971 (1989).

' C. C. Gerry and C. Johnson, Phys. Rev. A 40, 2781 (1989).
"P.Tombesi and A. Mecozzi, Phys. Rev. A 37, 4778 (1988}.
' C. C. Gerry and C. Johnson (unpublished).
' C. C. Gerry, J. B. Togeas, and S. Silverman, Phys. Rev. D 28,

1939 (1983).
' See, for example, R. Gilmore and D. H. Feng, Phys. Lett.

76B, 26 (1978); K. K. Kan, P. C. Lichtnev, M. Dworzecka,
and J. J. Griffin, Phys. Rev. C 21, 1098 (1980); H. G. Solari
and E. S. Hernandez, ibid. 28, 2472 (1983); C. E. Vignolo, D.
M. Jezek, and E. S. Hernandez, ibid. 38, 506 (1988), and refer-

ences therein.
' H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62,

188 (1965).
H. Ui, Ann. Phys. (NY) 49, 69 (1968).

' M. E. Kellman, J. Chem. Phys. 81, 389 (1984).
' A. I. Solomon, J ~ Math. Phys. 12, 390 (1969).
' P. J. Gambardella, J. Math. Phys. 16, 1172 (1975).

S. K. Bose, J. Phys. A 18, 903 (1985).
C. C. Gerry, Phys. Rev. A 37, 3619 (1988).

2 R. H. Dicke, Phys. Rev. 93, 99 (1954).
R. Gilmore, J. Math. Phys. 18, 17 (1977).

~4W. M. Zhang, C. C. Martens, D. H. Feng, and J. M. Yuan,
Phys. Rev. Lett. 61, 2167 (1988).
W. M. Zhang, D. H. Feng, J. M. Yuan, and S.-J. Wang, Phys.
Rev. A 40, 438 (1989).
See C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers (McGraw-Hill, New

York, 1978).
R. Gilmore, Catastrophe Theory for Scientists and Engineers

(Wiley, New York, 1981),Chap. 15.
R. Gilmore and D. H. Feng, Nucl. Phys. A301, 189 (1978).
See F. M. Fernandez and E. A. Castro, Phys. Rev. A 27, 663
(1983),and references therein.
C. C. Gerry and J. Laub, Phys. Rev. A 32, 3376 (1985).


