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We discuss the classical dynamics of a model SU(1,1) Hamiltonian system that may have some ap-
plication in many-boson systems. A ground-state phase transition is shown to exist in this model,
and the energy surface is shown to undergo a qualitative change at this transition.

I. INTRODUCTION

In this paper we study the phase-space flow of the clas-
sical dynamics for certain model Hamiltonian systems as-
sociated with the dynamical group SU(1,1). We shall
refer to these systems as SU(1,1) Hamiltonian systems in
the sense that the Hamiltonians may be composed of the
generators of SU(1,1) [or one of the locally isomorphic
forms: SO(2,1), Sp(2R), and SI2R)].' In the work
presented here we discuss, among other things, ground-
state phase transitions and the classical motion of such
systems in a mean-field approximation where the classical
phase-space picture arises from the projection of the dy-
namics onto the coherent states (CS) associated with
SU(1,1).2 In previous work,’ a path-integral form of the
propagator over the SU(1,1) CS as been developed for
SU(1,1) systems. In the continuous limit of the propaga-
tor the associated classical dynamics may be obtained
and the phase space of this motion has the form of the
Lobachevsky plane® (see also Ref. 2). It has also been
shown that SU(1,1) Hamiltonians, which are linear in the
SU(1,1) generators,* are coherence preserving under time
evolution for an arbitrary initial SU(1,1) CS. This turns
out to be an important class of systems which have appli-
cations in quantum optics since they model various para-
metric amplifiers>® associated with the production of
nonclassical states (i.e., squeezed and photon anti-
bunched) of the quantized electromagnetic field. Also
such linear systems have been studied in regard to associ-
ated time-dependent invariants,” as models of damped
harmonic oscillators,® and as systems whose path in-
tegrals can be calculated exactly.’

In this paper we study systems which are not coher-
ence preserving and are special cases of a more general
anharmonic oscillator. Such Hamiltonians have applica-
tions in quantum mechanics if, for instance, one is in-
terested in the time evolution of a wave packet that may
be squeezed.'® Again from quantum optics, some four-
photon systems!! can be realized as SU(1,1) Hamiltoni-
ans.>12  Also, previously a phase-integral quantization
rule has been developed in the context of the large-N ap-
proximation and has successively been applied to various
even-powered anharmonic oscillators.!® In this paper, we
study an SU(1,1) Hamiltonian which is at most quadratic
in the generators.

The work we undertake in this paper may be regarded
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as the noncompact analog of the work done in the dy-
namics and ground-state phase transitions for SU(2)
Hamiltonians'* associated with the Lipkin-Meshkov-
Glick'® (LMG) model from nuclear physics. As far as we
are aware, no such studies have been carried out for
SU(1,1) systems. Aside from the anharmonic oscillator
problem previously mentioned in connection with the
four-photon systems, other many-body problems are
relevant to SU(1,1). (For ordinary single-particle sys-
tems, see Ref. 1.) Other examples where SU(1,1) is an ex-
act dynamical group are a quasispin formulation for
many-boson systems in a spherical field (such as the nu-
clear many-surface-phonon state),'® coupled anharmonic
oscillators,!” superfluid helium,'® N interacting particles
with a quadratic pair potential,’ and spin waves in
localized-spin models.?® This does not exhaust the possi-
bilities, but rather points out that the models we consider
here may have a great deal of relevance if the systems are
extended to include various self-interactions and interac-
tions with external systems. For example, previously the
existence of ground-state phase transitions in the fully
quantized degenerate parametric amplifier has been dis-
cussed.?! This system fundamentally consists of two in-
teracting harmonic oscillators, one of which is taken to
be in an ordinary coherent state and the other in an
SU(1,1) CS. The compact analog of this system is the
Dicke model,?? where the electromagnetic field is quan-
tized. Phase transitions for that system have been dis-
cussed by Gilmore.?’

Finally, we mention one other area of concern for
which our studies may have some relevance. This is re-
lated to the breaking of dynamical “symmetry,” quantum
nonintegrability, and the connection between classical
and quantum chaos.?*?> “Symmetry” in this case actual-
ly means ‘“‘coherence preserving.” Elsewhere we shall
consider this type of phenomenon in connection with the
system studied in Ref. 21.

The plan of the paper is as follows. In Sec. II we dis-
cuss the SU(1,1) model system, the SU(1,1) CS, and the
associated classical phase space. The equations of motion
for the model system are derived. In Sec. III we solve
these equations numerically to obtain the energy surfaces.
Ground-state phase transitions and their relation to the
fixed points on the energy surfaces are discussed. The
qualitative change in the surface due to the phase transi-
tion is also discussed. In Sec. IV, we conclude the paper
with some brief remarks.
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II. THE MODEL

This section relies rather heavily on work presented
elsewhere.2”* Only the briefest review will be presented
here.

The Lie algebra of SU(1,1) consists of three generators
K, K . satisfying the commutation relations

(Ko, K.1=+K., [K_,K,]1=2K,, 2.1)

and the Casimir invariant

C=K{j—HK,K_+K_K,). (2.2)
We consider only the positive discrete representation
D'(k) whose basis states {Im,k )} diagonalize the opera-
tor K,, i.e., Kolm,k)=(m+k)|lm,k), m=0,1,2,...,
Clm,k)Y=k(k—1)|m,k), and k>0. The coherent
states for these representations are given as’

|&,k)=S(2)[0,k) , (2.3)
where
S(z)=exp(zK , —z*K _) (2.4)

and where z=—(6/2)e ‘4 and £= —tanh(6/2)e ~'®. 6
and ¢ are group parameters with ranges ( — o, o) and
[0,27], respectively.

Assuming the Hamiltonian of a system to be composed
of SU(1,1) generators, i.e., H=H(K;,K. ), then from the
continuum limit of the path-integral expression for the
propagator calculated over SU(1,1) CS,*> we obtain the
classical equations of motion for £ and £* as

E={EH)E =(E"H), 2.5)

where #=(&,k|H|& k) and {,} defines a generalized
Poisson bracket

—£12)2
(4,8)=" |' )’ |34 3B _ 94 3B (2.6)
2ik 3§ o&*  9E* 96
or, in terms of the parameters 6 and ¢,
1 04 0B dA OB
AB)=—— |5 -T2 :
(4,8 k,sinh® | 3¢ 36 36 3¢ @7
The equations of motion for 6 and ¢ are then
6=—(k sinh@)"l% , (2.8a)
é=(k sinherl% . (2.8b)
Actually, Eq. (2.8a) can be written as
d 1 0¥
fhadiy h _— =
4r <08 0 ) (2.9)

which implies that cosh@ is essentially a momentum-type
variable. In fact, as will become clear, it plays the role of
an action variable conjugate to the angle variable ¢.
However, it is convenient to define the momentum vari-
able as p=coshf—1 so that p >0. Setting ¢=gq, Egs.
(2.8) may be written as

1 9H

= — — —— 2.10a)

p k 3q ( a

g=13% (2.10b)
k dp

The model SU(1,1) Hamiltonian system we consider is
H=20K,+1y(K . K_+K_K_ )+IAMK% +K2)
(2.11)

which, in fact, is the SU(1,1) analog of the LMG model
for SU2)."* Actually, all the salient features of the dy-
namics show up for the model where ¥ =0 so we consider
only this case such that

H=20K,+1MK% +K2) . (2.12)

We shall briefly describe the effects of the added terms
later.

In calculating the classical dynamics, we make the
mean-field approximation that

H=(H(KyK.))

~H((Ky),(Ki)). (2.13)

Since

(&,k|Kyl&E k) =k coshf ,

(&,k|K.|&k)=—ksinhOe ™, .
then

H=2wk cosh@+ Ak*sinh?6 cos(24) , (2.15)
or in terms of ¢ and p,

H(q,p)=2wk(p+1)+Ak*(p*+2p)cos(2q) . (2.16)

Finally, from Egs. (2.10) we obtain the classical equations
of motion

¢ =2w+2Ak(p+1)cos(2q),
p=2Ak(p*+2p)sin(2q) .

(2.17a)
(2.17b)

The solutions are described in the next section.

III. ENERGY SURFACES AND GROUND-STATE
PHASE TRANSITIONS

A. Energy surfaces

We begin by locating the stationary or fixed points for
the system of Egs. (2.17). Only the case when A >0 is to
be considered.

The stationary points of the system are determined as
solutions of Eq. (2.17) when ¢ =0 and p=0, p=0,% i.e.,
for

20+2Ak(p+1)cos(2g)=0,
20k (p2+2p)sin(2¢g)=0 .

(3.1a)
(3.1b)



From Eq. (3.1b) we obtain p=0 or 2¢,=nm,

n=0,1,2,.... Consider the latter case first. When

q,=nm/2, from Eq. (3.1a) we obtain
o—Ak(p+1)cos(n7)=0 . (3.2)

For n even, there is no solution since we must have p > 0.
For n odd we obtain

ps=7io;—l or cosh9x=%

(3.3)
which has solutions if A <A, where A, =w /k, the critical
value of the coupling constant. Thus, if 0 <A <A, we ob-
tain a stationary point at (n7/2,A,/A—1) for n odd. We
have performed an analysis of these fixed points and have
found them to be hyperbolic, or saddle, points.

In Fig. 1 we display the energy surface for a case when
A<A,. Specifically, we set o=1, k=1 (the representa-
tion for the even-parity oscillator states) such that A, =4.
We then set A=1. The contours are spaced in energy by
the amount 0.1. The saddle points are marked with plus
signs and the phase space is shown only out to g =27.
Two types of orbits are apparent, namely periodic orbits
of the rotational type and orbits for which the motion is
unbounded. No librational orbits are found.

In a previous study,'* a phase-integral quantization
rule for SU(1,1) Hamiltonian systems was given in the
form

ﬁpdq=zk£n, n=0,1,2,.... (3.4)

Such a rule obviously can be applied only to the rotation-
al orbits of Fig. 1. Apparently for 0 <A <A, this Hamil-
tonian has both bound and unbound states.

On the other hand, for A>A_, the only possible solu-
tions are, for g in the range [0,27], p, =0 and

FIG. 1. Energy contours for A=1. The saddle points are
marked by + signs. The contour spacing is 0.1. Separatrices
are not shown but are implied by the arrows.
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These points are found along the line p =0 and are also
saddle points. The energy surface in this situation for
A=17 is shown in Fig. 2. It appears that no periodic or-
bits are to be found indicating that the energy surface un-
dergoes a qualitative change as A is raised above the criti-
cal value A,. In fact it is easy to see that as A approaches
A, from below, the saddle points of Fig. 1 migrate along
the lines ¢ =nm /2 toward the line p =0, striking that line
at A=A.. As A is raised above A, each of these saddle
points bifurcates into two saddle points located symme-
trically about 7 /2 and 37 /2.

In another sense, however, there is actually only one
critical point in phase space if the phase space is
parametrized as the SU(1,1) hyperboloid analogous to the
Bloch sphere of SU(2). This comes about by noting from
Egs. (2.14) that

(Ko)?— (K, )(K_)=k?*cosh’¢0—sinh?0)=k? .

The point 6=0 (or p =0) is actually the fixed point and
the hyperboloid is divided into four sections along the
lines given by Egs. (3.5).

B. Ground-state phase transition

We show here that the change in the energy surface as
one passes from A <A, to A> A, is associated with a first-
order transition in the ground-state energy.?’” Consider

FIG. 2. Energy contours for A=7. The contour spacing is
1.0. The dashed lines are the separatrices.
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the Hamiltonian H from Eq. (2.15) as an energy function-
al

E(6,¢)=2wk cosf+ Ak 2sinh?0 cos(2¢) . (3.6)
We then set
OF o )hk’sinh’6sin(2)=0 (3.7)

9

to obtain 2¢ =nm as before. Then with n even or odd, we
define

E . (0)=2wk coshf+Ak *sinh?0 . (3.8)
Now we set

aE+ .

——— =2wk sinhf+2Ak %sinh6 cosh6=0 . (3.9)

a0

For the E | case, the only solution is 6=0. For E_ we
obtain the additional solution

c
cosh@ T
provided A <A.. For A> A, this solution disappears, and
6=0 becomes a minimum at 2¢ =n, n even, and a max-
imum at 2¢=nm, n odd. However, for A <A_, the points
0==cosh™ 1()»0 /A) are relative maxima at 2¢=nmw, n
odd. Various E _ versus 6 curves are illustrated in Fig. 3.
As A—A. from below the curve becomes very flat

through 6=0 such that at A=A, the second derivative

(3.10)

’E _
R =2wk cosh@— 21k %(sinh?6+ cosh?6)

(3.11)
becomes zero at 6=0. This indicates that a phase transi-
tion occurs at the critical value at A=A_.. The order of
the transition is determined by the sign of the fourth-
order derivative.?® In fact the conditions under which
the minimum at =0 loses its stability as A is increased
may be discerned from the Taylor expansion
E_(0)=E_(0)+ lalazE* + 194a4E‘
- - 207 32 47 36t

(3.12)

FIG. 3. E_ versus 6 for various A around A, =4.

where the derivatives are evaluated at 6=0. [No third-

order term appears because of the symmetry
E(0)=E(—0).] The minimum is locally stable if
*E_ /36*>0, but stability  disappears when

3’E _ /36*=0, which holds at A=A,, as we have already
shown. If the fourth-order derivative is negative at 6=0,
then the equilibrium there becomes metastable, and we
thus have a first-order phase transition at A=A_. This is
indeed the case here since

3E _
a0,

=2wk cosh@— 81k %(sinh?0+ cosh?8) (3.13)

which at 6=0, A=A_.=4, ®=1, and k = is evaluated to
be —3.

We wish to point out that in considering this phase
transition we have actually used the mean-field Hamil-
tonian of Eq. (2.15). A more accurate determination of
the ground-state energy requires the exact expectation
values of K% and K2 which are

(K% )=(K2)*=(k*+1k)sinh’ge*? . (3.14)
Thus we have
E=(§k|H|&K)
=2wk cosh6+A(k?+Lk)sinh?@cos(2¢) . (3.15)

The ground-state critical properties are the same in this
case, but the more accurate quantum approximation to
the ground-state energy is determined by minimizing E of
Eq. (3.15). This method of determining the ground-state
energy is closely related to the scaling variational
method?® which has been given a group-theoretical for-
mulation and applied to a number of systems.’* Note
that if we designate the effective mean-field coupling con-
stant for Eq. (2.15) as gyr=Ak? and for Eq. (3.15) as
g, =k(k2+%k ), then

p 2K (3.16)
MF

which becomes unity as k — 0.
Finally we note the effect of the additional terms of Eq.
(2.11) when y70. The mean-field Hamiltonian is now

H =2wk cosh@+ k*sinh?0[y + A cos(2¢)] . (3.17)

Apparently the only effect this has is to shift the value of
p for the fixed point.

IV. CONCLUSIONS

In this paper we have studied the classical dynamics
and phase transition of a model SU(1,1) Hamiltonian
which may have some relevance to many-boson systems
such as a four-photon interaction of interest in quantum
optics. The energy surface was shown to undergo a quali-
tative change at the phase transition of the ground state,
where rotational motion disappears for A=A.. It is
worthwhile to contrast this behavior with the compact
analog of our Hamiltonian, the SU(2) LMG Hamiltonian,
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as discussed by Kan et al. (Ref. 4). In their case both lo-
cal minima and maxima as well as saddle points are
found simultaneously on the energy surface when the
coupling constant is less than the critical value. Both li-
brational as well as rotational orbits are present. Above

the critical value only rotational orbits are present. The
reason for the difference in the energy surfaces of the two
models is simply that in SU(2) the momentum variable is
cosO rather than coshf, which introduces more intrinsic
“periodicity” into the effective Hamiltonian.
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