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Pressure-induced extra resonances in nonlinear spectroscopy
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We present three examples of pressure-induced extra resonances that can be observed in non-

linear spectroscopy: fluorescence of a "three-level atom" driven by two laser fields, two-photon ion-

ization of a "three-level atom" (plus continuum) driven by two laser fields, and excitation of a
"four-level atom" driven by four laser fields. We show that all these extra resonances can be inter-

preted in terms of quantum pathways, each pathway involving a collisionally aided excitation. We

also demonstrate that the two first extra resonances can be obtained with incoherent fields, while

relatively coherent fields are required in the last example.

INTRODUCTION

The field of extra resonances triggered by collisional re-
laxation has for a long time mainly concentrated on the
resonances occurring in four-wave mixing generation. '

However, similar resonances have also been predicted in
nonlinear spectroscopy, the main differences being
that in this case, the signal originates from atomic state
populations rather than from a coherent collective emis-
sion.

The aim of this paper is to present other examples of
pressure-induced extra resonances (PIER) occurring in
nonlinear spectroscopy. We examine PIER which arise
in (a) the fiuorescence of a "three-level" atom driven by
two laser fields, (b) the two-photon ionization of a
"three-level" atom driven by two laser fields, and (c) the
excitation of a "four-level" atom driven by four laser
fields.

Apart from their intrinsic interest, we show that each
of these examples allows one to specify the role of the re-
laxation process in the generation of extra resonances. In
particular, we show that the extra resonances can be un-
derstood in terms of quantum-mechanical interference
between two pathways, each of these pathways involving
a collisionally aided excitation. In addition, the influence
of the phase of the applied fields will be stressed. We
show that some extra resonances can be obtained with
number states for the applied fields while, in other cases,
relatively coherent fields are required.

ing 62=co&
—coo. The amplitudes of these two fields, and

their associated resonance Rabi frequencies, are denoted
by E, and E2, and 0, and Qz (0,= d,bE, /—R,
Qz= d, b.E2/—A', where d, t, and d, b are dipole-moment
matrix elements).

The radiative lifetimes of the excited states b and b' are
I b

' and I &
', respectively. Apart from radiative relaxa-

tion, the atoms undergo collisional relaxation. We as-
sume that the active atoms are perturbed by a buffer gas
and that the collisions are dephasing in nature, inducing
a decay of the atomic state coherences, but not of the
atomic state population. The relaxation rate of the atom-
ic state coherence i-j due to collisions is denoted by y; .
We assume that the conditions of the impact approxima-
tion are satisfied and, in particular, that ~h, ~

and ~hz~ are
small compared to ~, ', where ~, is the typical duration
of a collision. On the other hand, we assume that ~b, , ~

and ~b, 2~ are large compared to the widths of the a band-
a b' tran-sitions, but that ~6, —b, 2~ remains small com-
pared to ~b, , and ~h2~. To simplify matters somewhat,
we shall also assume that ~Q, /b, , and ~Q, z/b, z~ are very
small compared to unity. With this assumption, the
density-matrix equations can be solved using a perturba-
tive approach.

I. NOTATION AND ASSUMPTIONS

Let us first consider a three-level atom with a ground
state a and two excited states b and b' (see Fig. I). This
atom interacts with two electromagnetic fields of frequen-
cies co, and co2. The first field is nearly resonant with the
a-b transition and we denote by 5& =co, —coo the frequen-
cy detuning from resonance. The second field is nearly
resonant with the a-b' transition and we define its detun- FIG. 1. Three-level atom driven by two laser fields.
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The calculations are carried out using either a semi-
classical approach (classical fields and quantum-
mechanical atoms) or a (fully quantized) dressed-atom
picture. In the first case, the atomic density-matrix ele-
ments evolve as

d 1—„p„= „[a,p]„r„—p„+(r„p,„+r,,p„, )5,.5,.dt " iA

where

Hamiltonian are

~1(N, , N~)) = — (a,N, +1,N~+1)
01

1~ 2 2~ ~ 1 ~ 2

+ib, N„N +1),

~2(N, ,N, )) = — ~a, N, +1,N, +1)Az

262

+ ib', N, + 1,N2 ),

(6a)

(6b)

1;i=—,'(I;+I' )+y; (2) ~3(N), N2)) =~a, N, +1,N2+1)+ ~b, N), N2+1)
01

1

is the sum of the radiative and collisional relaxation rates
and

H =Ho+ V (3a)

is the Hamiltonian for the system without relaxation.
The quantity Ho is the free-atom Hamiltonian and V is
the electric dipole interaction between the atom and the
field

V= —d ET. (3b)

(4b)

d is the atomic dipole operator and ET is the sum of the
incident fields.

To second order in the incident fields, we find that the
populations and the coherence of the excited states are

0 +
(2) 1 )+ ~ba ~b

(4a)Pbb 4~2
1 b

Iz2 7 b'a Y b'a
Pb'b' 4~gz

2 b'

I+, ib', N, +1,N2),
26~

(6c)

where ~i, N, , N2 ) describes an atom in state ~i ) with N,
photons of frequency co, and N2 photons of frequency co&.

The quantities 0, and Qz are evaluated at N, and Nz,
where N, and Nz are the mean number of photons in
these two modes of the field. (0& and Qz should be re-

i&I i 62
placed by Q, e and Qze to describe propagation
effects. Since the paper is devoted to single atom effects,
we omit the phase factors). Within the approximations
made in this paper, the stages ~1(N»Nq)), ~2(N&, N2)),
and ~3(N„N2 ) ) are very close in energy, the separation
between ~1(N, , N2)) and ~3(N, , N2)) being —fib, , and
the separation between ~2(N„N2)) and ~3(N„N2)) be-

ing —fib, z. In the dressed-atom approach, collisions in-

duce transitions between the dressed states. The steady-
state values p» and pzz of the populations of the levels

~1(N„N2) ) and ~2(N„N2)) and of the coherence p» be-
tween

~ l(N„N~ ) ) and ~2(N, , Nz ) ) are'
12 Xba +Xba Pbb'

Pbb' & + ebb'
4~ ~

(2) —(2)+
Pb'b Pbb'

where

5=6, ,
—

A2 .

—S(CO)
—Cu2)t I (0I —0~)

S

(4c)

(4d)

1 Xb +Vb
P11 4~2

2 Xb'a ~b'a
Pzz 4~~2

2 b'

1~2 7 b + Vb' Fbb
P1z

45)Q2 I gg
i5—

(7a)

(7b)

(7c)

In these expressions, 01 and 02 correspond to the phase of
the fields E, and Ez. If these fields propagate in the k1
and kz directions, we have 0, =k, .r+q, and
Oz=kz. r+yz, where y, and yz are some additional
phases associated with fields 1 and 2, respectively. The
quantities pbb and Pb b appear as the sum of a collision-
free term and a collisionally aided term. The collision-
free term has been shown to be connected with Rayleigh
scattering at the laser frequency while the collisionally
aided terms leads to Auorescence at the resonance fre-
quency. A similar separation exists for pbb, the col-
lisionally aided term being proportional to the factor
(y&, +y&, —

y&&), which has been originally introduced
by Bloembergen, Loten and Lynch.

Another approach uses a dressed-atom basis. In the
perturbative limit the eigenstates of the dressed-atom

One recognizes in (7c) the collisional factor
(y&, +yf, , —

y&&), which is associated with the creation
of a coherence between dressed states through collisional
excitation. The values of p» and pzz result from an equi-
librium between the collisional excitation of the level and
decay by spontaneous emission.

Actually, the results presented above are only valid for
stationary atoms. For a Doppler broadened medium, the
detuning 5 appearing in Eqs. (4c) and (7c), as well as else-
where in this paper, should be replaced by
[5—(k, —k2) v], where v is the atomic velocity. For the
time being, we assume that ~(k, —kz) v~ ((r„&. for all
atoms in the sample, justifying our neglect of the residual
Doppler shift (k, —kz) v. The modifications of the re-
sults that would occur if ~(k, —k~).v~ & I ». is discussed
in the Conclusion.
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II. FLUORESCENCE OF A THREE-LEVEL ATOM

A. PIER resonance in atomic states populations

I bb~ 15

where ybb is the collisional factor of PIER 4

7 bb' ~ba +~b'a Xbb'

Equation (8) is valid in the limit that

The aim of this section is to show how the fluorescence
originating from level b is modified by the field E2 acting
on the a-b' transition. Consequently, we seek a term in
the population of level b which depends on both E, and

E2. Furthermore, we are interested only in the PIER res-
onance occurring around 5=0. This term should origi-
nate from p'bb. given in (4c).

Solving the density-matrix equation to fourth order, we
find that the term of interest is equal to

+1+2 . (3 bb') 1 bb'
l (8)

16k,b, 21 b (
I bb + t'5

i0

9-

pT

31-

30

29'.

0
I,„

111-

110-

i09-

I

-5

(a)

(b)

Q)02 «1.
a, (r„„,—t5)

(10)

IIz' (}'bb )'5

8+ Q'I I 2, +$2
I bb'

I bb+5

This pressure-induced contribution to the fluorescence
from state b can have either a positive or negative sign (of
course, the total fluorescence from level b is positive).
The ratio of the relative magnitude of the PIER given by
(11) and of the background given by (4a} is

(I) &2

Pbb 2
(2) a,r„,

Although it is assumed that
~ Qz/b, z~ && 1, the ratio (12) is

not necessarily very small compared to unity" since Qz
can be larger than I bb. Furthermore, when hz varies,
the background remains constant while pbb' exhibits a
narrow resonance around Az —5,=0. Thus the PIER
should be observable on the fluorescence from the excited
state. To have an image of how such resonance should
appear, we have plotted in Fig. 2 the variation of the
fluorescence IF emitted from level b versus the frequency
co2 for several values of the buffer-gas pressure. The fre-
quency co& of the first source is assumed to remain con-
stant and IF is calculated from the sum pbb'+ pbb'.

B. Interpretation in the uncoupled states basis

We first interpret this resonance in terms of interfer-
ence between transition amplitudes. A transition ampli-

Let us split ybb. into its real and imaginary parts

1 bb (Ybb')+t ( 'Vbb')

We also assume that the imaginary part of I bb (which
corresponds to a shift of the line} is included in 5. We
thus take I bb real and obtain for pbb'

FIG. 2. Variation of the fluorescence IF emitted from the lev-

el b vs the frequency ~, for various buffer-gas pressures. The
curves have been obtained by assuming that y», yb„yb „and
y» are real and by taking ybb =yb, =yb, . We have 0& &&02
and ~Qz/hz~= 10 '. We take I &=I b and Qz/I b =20. The
curve a is obtained in absence of buffer gas (y» =0). The curve
6 is obtained for a pressure of buffer gas such that y» = I b and
the curve c for a higher pressure (y» =5I b). The same arbi-
trary unit is used on the vertical axis of the three curves. The
abscissa corresponds to 5'=(~2 —

~&
—~o+~0)/I &. One can

note that in the range of pressure considered here the signal and
the background increases with pressure. For higher pressure,
the signal saturates while the background still increases.

tude will be represented by a diagram which, at this
stage, should be considered a qualitative method for un-
derstanding the physics rather than a complete method
for calculating the signal. If we consider the excitation of
level b, two possible paths can be considered. The first
possibility [Fig. 3(a)] is a direct collisionally aided excita-
tion with absorption of one photon co, . The population of
level b resulting from this process is proportional to the
intensity of the field having frequency co&, i.e., to 0&. In
fact, it is this process that leads to the collision-induced
component of formula (4a) [or to formula (7a)]. A second
possibility is a collisionally aided excitation of level b fol-
lowed by a two-photon transition from b' to b [Fig. 3(b)].
This process alone would lead to a population of the level
b proportional to the square of the intensity of the field
having frequency co2 multiplied by the intensity of the
field having frequency co], i.e., proportional to Qz 0]. To
get the population pbb, ho~ever, one must also consider
the possibility of an interference between these two path-
ways. Indeed, the quantum states of the fields and of the
internal degrees of freedom of the atom are the same in
the initial (~a, Nt, Xz)) and final (~b, X, —1,N2)) states
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&li
collision

I I 5&

jE
jIE

colbsion
&%4 II

sk

0) Q~
cosO+ sinO

25,

X ~a, N, +1,Nz+1)

+ (cos8)
~ b, N), N2+ 1 )

2(N„N~)) =—

+(sin8)~b', N, +1,N ),
Qq 0)

cosO — sinO
25~ 2h,

(15a)

{a)

(in the second pathway the absorption of a photon co2 is
followed by an emission of a photon co& with the net re-
sult that N2 is not changed). The transition amplitude
for the second pathway should exhibit a resonance when
the two-photon transition from b' to b becomes resonant,
i.e., when 5=0 [see Fig. 3(b)]. This resonance should also
appear in the interference term. In some sense, the in-
terference between the two pathways of Fig. 3 has an
effect similar to that of an heterodyne detection since the
effect associated with the pathway of Fig. 3(b) appears at
a lower order of perturbation because of the interference
with the pathway of Fig. 3(a).

The origin of the PIER resonance at 5=0 can also be
interpreted by a complementary argument. To have in-
terference effect between the two pathways of Fig. 3, we
should also consider the external degrees of freedom since
the atom is not isolated but undergoes a collision.
Indeed, energy is exchanged between the active atom and
its collision partner. In the pathway shown in Fig. 3(a),
the energy received by the atom is EI„—Ace&. In the
pathway shown in Fig. 3(b), the energy received is

EI...—Aco2. In order to have the same change of kinetic
energy of the colliding atoms for each pathway, we must
have

Eb flCO i
—Eb i6CO2 (13)

1.e.,

5=0.
Thus the interference between the two pathways of Fig. 3
only occurs around 6=0.

C. Interpretation in the dressed-state basis

We can also interpret this resonance using the
dressed-state basis. More precisely, when the two-photon
coupling between ~b, N, ,N2+1) and ~b', N, +1,N2) be-
comes important, the states ~l(N„N2)) and ~2(N, ,Nz))
should be written

FIG. 3. Collisionally aided excitation of level b. (a) Direct
pathway and (b) pathway with intermediate excitation of level
b'. The pressure-induced extra resonance on the population of
level b comes from the interference between these two path-
ways.

with

X ~a, N&+ l, N2+1)
—(sin8) ~b, N„N2+1)

+ (cos8)ib', N, +1,N2 ), (15b)

Q)Qq
tan28=

1

(16)

lg) =la, N)+1, N2+ I)+ e '
~b, N„N, +1)

2

Qq+ e ' ib', N +1,N ).2
2

(17)

From (15a) and (17), we deduce the transition amplitude
to find the system in the state ~1(N„Nz)) after a col-
lision,

(1(N, ,N2)~g) = (cos8)(e ' —1)
1

+ (sin8)(e ' —1) .
252

The transition probability is thus

fL
i(1(N, , Nz)~g)~ = 2(cos 8)(1—cos4)

1

0,0~+ (cos8)(sin8)
4A, h2

X[(1—e ' )(1—e' )+c.c. ]

Q~+ (sin 8)(1—cos4') .
2b'

(19)

When we average the various phase factors over all possi-
ble collisions, we find

Let us now assume that initially, the system is in the state
~3(N„N2)). We calculate the probability of finding the
system in the state

~
1(N &, N )2) after a collision, our

demonstration being very similar to the one originally
done for the PIER resonances in four-wave mixing. We
call 4 and 4' the phase factors due to a collision of rela-
tive velocity v and impact parameter b on the transitions
a-b and a-b', respectively. The state ~P) of the system
after a collision is
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(1—e '~) =y„,
((1— ' )(1— '

) ) =y, +yo*, —y

(1—e '~') =y, .

(20a)

(20b)

(20c)

Thus the mean collisionally aided excitation of level

l l(N„Nz ) ) in steady state is

0)
A)= (cos 9)(yb, +yb, )

4h,

Q, A2+ (cos8)(sin8)(ybb +ybb )
4h]A2

A2+ (sin 0)(yb, +yb, , ) .
4a2'

(21) FIG. 4. Three-level atom plus continuum driven by two laser
fields.

In the secular approximation l5l » I bb, the steady-state
population of state l 1(N, , N2 ) ), denoted by p», is equal
to A, /I b To .compare this result with Eq. (11), we note
that the validity condition for Eq. (11) [Eq. (10)] is
equivalent to 8 « 1 when l5l » I bb. In the limit 8 « 1,
we obtain

—A'b
k =Ek, —R(co, +co&) . (24)

The coupling between ll(N, ,N2)), l2(N„N-. )) and

l
k (N„N2 ) ) is produced by the electric dipole interaction

having matrix elements

+1 (3 bo + Yb ) +1+2 (ybb'+ybb')+
4Q I b ]6+ Q'$ Pb

(22) (k(Ni, N2)l Vl 1(N„N2) ) = — =A' (25a)

The second term of (22) coincides with the result of for-
mula (ll) for l5l » I bb, . This shows that, in this ap-
proach, the PIER resonance results from the contamina-
tion of the dressed state

l l(N„N2 ) ) by a small amount
of the state lb'). The contamination is maximum when
the two uncoupled states lb', N, +1,Nz) and

lb, N„Nz+1) have the same energy, i.e., when the reso-
nance condition for the two-photon transition is
fulfilled. '

Finally, we note that the phase of the fields does not
appear in the formula (11), which give p'bb'. This is an in-

dication that the observation of this effect does not re-
quire coherent fields. This indication is supported by the
physical discussion given above, which is done in terms of
number states for the field.

I

(k(N), N2)l Vl2(N„N2)) = — =A' (25b)

Recall that states ll(N„Nz)) and l2(N„F2)) are popu-
lated only in the presence of collisions.

The state l3(N, , Nz)) is also coupled to lk(N, , Nz))
through its small components depending on the atomic
states b and b' [see formula (6c)]

(k(N„N, )lVl3(N, , N, )) = — +A)Q2 020)
1& 2 4 g ~g

This term corresponds to the direct coupling between the
dressed state l3(N„Nz) ) (adiabatically connected to the
atomic ground state) and the continuum. In the absence
of collisions, the photoionization results from this two-

III. TWO-PHOTON IONIZATION

lk(N, ,N, ))=lk, N, ,N, ) . (23)

We still consider the three-level atom a, b, b', but now
consider the possibility that a second photon is absorbed
to a state k in the continuum. More precisely, we study
the case where an absorption of a photon ~2 from state b
or an absorption of a photon co, from state b' leads to
ionization of the atom (Fig. 4).

In the dressed-state basis, we have to add to the states
given by formulas (6) the states lk (N, ,N2) ) correspond-
ing to the continuum (see Fig. 5)

1(N, , N, )

2{N,, N2)

3(N1, NR)

k{N, , N, )

With respect to l3(N„Nz)), the state lk(N„Nz)) has
an energy FIG. 5. Energy levels in the dressed-state picture.
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photon coupling. The states of the continuum that are
reached by this direct photoionization mechanism are
those that have the same energy as ~3(N„N2)), i.e.,
those for which

klu~k/El

Ek, =i)i'(coi+coi) . (27)

On the other hand, in presence of collisional damping,
two other photoionization processes are possible. First,
we can have a collisionally aided excitation of
~1(N„Nz)) followed by an absorption of a photon A'roz

[Fig. 6(a)]. The states of the continuum that are reached
by this process have energies

cotlision
~~l I I

1k

collision

Ep ~b
—Aco2 (28)

a

Ep "b~ =%co (29)

If we compare the states of the continuum that can be
reached by the different processes, we find, by comparing
formulas (27) and (28) on one hand and formulas (27) and
(29) on the other hand,

The second process [Fig. 6(b)] is a collisionally aided exci-
tation of ~2(N„Ni ) ) followed by an absorption of a pho-
ton %co& ~ The states of the continuum that are reached by
this process have energies

(a) (b)

FIG. 6. Collisionally aided two-photon ionization. The path-
way (a) involves the intermediate excitation of level b and the
pathway (b) the intermediate excitation of level b'. Note that
one photon of each mode is absorbed in each process. The
pressure-induced extra resonance in two-photon ionization
comes from the interference between the pathways (a) and (b).

E~k =fico, —Acoo=fih, ,

Ekk « =Aco2 %coo=AA p

(30a)

(30b)

Ek k =A(b, , b2)=fi5— (31)

Thus it can be deduced from the assumptions of our mod-
el that the states of the continuum reached by direct pho-
toionization and by collisionally aided photoionization
are well separated in energy and can be (at least theoreti-
cally) distinguished by measuring the kinetic energy of
the ejected electron. On the other hand,

is a small quantity and the two collisionally aided photo-
ionization processes have to be handled together. In the
following, we consider only the electrons that originate
from the collisionally aided processes.

Let us consider a time interval t which is large com-
pared to the time necessary to reach the steady-state
values for p», p, z, and pic [formula (7)]. We assume that
the states of the field are number states. The number of
photoelectrons of energy Ek generated is equal to

Qz sin [(6) bk)t/2] QI sin [(bz—hk)t/2]+
4 [(b, )

—6k )/2] 4 [(b,~
—b, k )/2]

i

0 0
(32)

If we call p(Ek) the density of states in the continuum,
the total number of photoelectrons obtained through a
collisionally aided process is

N(coll) (E )

0 0'
2 1

4 4p)]+ p22 t

J EkP(Ek )Pkk (33)

Q)Q2+
4

I

p)2 dt e ~ +c.c.
0

(34)

We assume that the continuum is sufficiently Hat so that
we can replace p(Ek) by p(E) with

E =Eb+ fico) -Eb +fit@2. The integ—ration of formula (33)
with pkk given by formula (32) then leads to

The two first terms of formula (34) (proportional to p»
and p22) correspond to the photoionization processes de-
scribed by the diagrams of Figs. 6(a) and 6(b), respective-
ly. The last term of formula (34) describes the interfer-
ence between these two diagrams. Here again, we see
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~1 2 Xb'a + V b'a+ (35)

On the other hand, when
I 5 I

t ((1, there is an interfer-
ence between the two pathways and we find

N (coll )( fi
—0 )

that an interference occurs around 6=0, i.e., in a situa-
tion where the energy exchanged with the collision
partner is the same for the two pathways of Fig. 6.

More precisely, when
I
5 I

t » 1 the interference term
contributes negligibly and we obtain, using formulas (7)
and (34),

N'""' 2m. — &1&v 3'b +'Vb
p(E) I,

IV. TWO-PHOTON ABSORPTION
OF A FOUR-LEVEL ATOM

The last example that we will consider is a four-level
atom (Fig. 7) driven by four laser fields. The new fields

E3 and E4 (having frequencies co3 and co4, respectively)
drive the b-c and b'-c transitions, respectively. ' The de-
tunings from resonance are denoted by 53 and A4,

A63 =Aco3 —Ace,b,
A54 —Ac04 AN b

(37a)

(37b)

Even if the interference process appears more intelligible
in Fig. 6 than in Fig. 3, we think that the process de-
scribed in Sec. II is more suited to an experimental inves-
tigation.

„p(E)
+1~2 ~b +~b
166, ~b

We assume that the single-photon detunings
and the two-photon detunings I

&l+ &3 I

Igz+b, 4I are much smaller than r, '. For the sake of
simplicity, we also assume that

+1 2 Pb' +lb'+
1652 ~b

~1~1~2~2 Y bb'+ +C.C.
163,h' ~bb

(36)

Here again, the initial state Ia, Nl+1, Nz+1) and the
final state k, N l, N2 ) of the excitation processes shown in
Fig. 6 correspond to pure number states for the field.
The pressure-induced extra resonance predicted in two-
photon ionization does not require coherent fields.

We should also note that the effect calculated here
would probably not be easy to observe. It is essentially a
"gedanken" experiment suited to show the influence of
the interference between collisionally aided diagrams.

C01+ C03 —602+ 604 . (38)

The detunings from the two-photon resonance are thus
the same for the two possible excitation paths
(bi+63=hz+64). We calculate the population p'„' to
fourth order in the field amplitudes. We denote by 03
and 04 the Rabi frequencies for the b-c and b'-c transi-
tions (03= db, E,—/A', 04= db, ,E4/fi). —Besides the
terms proportional to 0103, which correspond to the ex-
citation through level b, and those proportional to
Qz 04, which correspond to the excitation through b',
there are terms depending on Q, 0&0304 which corre-
spond to an interference between these two pathways. It
is those terms, denoted by p'„', that we consider now. Us-
ing perturbation theory, we find

01020304 j(g +g —g —g )

16I,
1 1 1

r,.—ia, r,.—i(a, +a, ) r„,—;g,
1 1 1

r,*,.+is; r;.+i(a', +a,') r,*„+is,

~bb' 1 1+ "r»-5 r.-' r, .+',
1 1I, lk I +lk

+ c.c. (39)

Regrouping the terms, this expression can be written

O, O'0 0, '

16r,

1 1 1

1,—ib, r, , —jg' 1 „i(h,+6,—)

1 1 1 1

r,*,.+to; r,*,+is, r;.+i(a,'+a,')

ybb (r,b +r,' + l (~ —~' )]+ (r„,—m)(r„. —ia, )(r;,.+is,')(r„,—ia,')(r,*,+is, )
+C.C. (40)

Using the relation (b, 3
—b4) = —(6l —b, z) = —5, we finally obtain
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0 0'0 0'e ' ' ' 4 2I
I 2 3 4 cQ

16r,(r,.—is, )(r„*,, +is,') (r,.)'+(~, +a, )'

~cb'
Q a

Xcb

[I l(6 +6 )][I „, lk ] [I +i(6 +5 )][I +1k ]

~ bb'
Q r+ ',

c ~bb'

(r„,—is,')(r,*,+is, ) rbb i~— +C.C. (41)

where y,'b and y,'b are defined by expressions similar to
formula (9) and

~c+ Ybb'
~ +~bb' I .—i5

C

7 bb' 7 b +~ b' ~ bb' ' (4&)
(43)

Let us now discuss Eq. (41). In the absence of collisions,
all the y; are equal to zero and the only term that
remains is the two-photon term centered at 6, +63=0. '

This term represents the interference between the two
pathways for two-photon excitation via fields co&+co3 or
co2+co4. Once collisions occur, there are several new res-
onant features centered at 64=0, 53=0, and 5=0. Let
us first note that the second term of formula (41) is relat-
ed to a collisionally aided excitation of the coherence be-
tween levels c and b' (see Fig. 8) identical to the one used
in the four-wave mixing generation of Ref. 15. In other
words, the two pathways that interfere are associated
with a collisionally aided two-photon absorption [Fig.
8(a)] and a collisionally aided single-photon absorption
followed by the absorption of a photon co4 [Fig. 8(b)].
Similarly, the third term of formula (41) is related to an
interference between the two pathways shown in Fig. 9.

Finally, we find that the resonance centered at 5=0
(which is analogous to the PIER 4 resonance') arises
from the last term of formula (41). In particular, if we as-
sume that the fields are detuned from the single-photon
and two-photon resonances (

~
b, ~ ~

))I,b, ~ A4~ ))I,b,
b, , »I „, ~b, ,' »I b„h, +A,

~

»I „) we find that
Eq. (41) reduces to

where

63b4 A4
Q Q Q4

ca (+ ++ )p
Vbb' Ycb g+'g Ycb

(44)

The background term A grows linearly with the pressure.
The term exhibiting a resonance at 5=0 has a numerator
which grows quadratically with the pressure, while the
width of the resonance increases linearly with pressure.

The resonance at 5=0 is also obtained if we consider
the situation where the two single-photon transitions
from b to c and from b' to c are nearly resonant, but that
~b, , ~

and ~bz~ are very large. In this case, the resonance
at 5=0 is very similar to the one described in Sec. III for
the two-photon ionization. However, there are some
different features. In particular, there is a phase depen-
dence in formulas (41) and (43) that was not present in
formula (36). Let us first note that p'„' is a function of the
point r unless one assumes that
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FIG. 7. Four-level atom driven by four applied laser fields.

(a)
FIG. 8. Collisionally aided excitation of level c. The path-

way (a) corresponds to a collisionally aided two-photon excita-
tion, while the pathway (b) is associated to a collisionally aided
two-step process with intermediate excitation of level O'. The
interference between these pathways leads to a pressure-induced
extra resonance centered at 64=0.
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final state is lc, N~, Nz —1,N3, N4 —1). Since the final

state is not the same for the two pathways, there is no
possible interference between these pathways. ' On the
other hand, if the nondiagonal matrix elements for the
density matrix of the fields are not zero (as it is the case
for quasiclassical fields), ' then the number of photons is
not fixed in the initial state and the interference can be re-
stored. For example, let us assume that the initial state is

c, (iV I )cz(N z )c 3(N3 )c4(N4 )
I I I I

1V I, N 2, .V 3, S4

x la, N', , Nz, N3, N4) . (45)

(a) (b)

FIG. 9. Collisionally aided excitation of level c. The interfer-
ence between the two pathways leads to a pressure-induced ex-

tra resonance centered at 53=0.

The probability of finding the system in the final state
l ff ) =

l c,N, , Nz, N„N4 ) is proportional to

l(nfl Ulp, ) l

—ic, (N, +1)cz(Nz)c3(N3+1)

Xc4(N4)[(N, +1)(N, +1)]'~

k)+k3=k2+k4 .

+c, (N
~ )cz(Nz+ 1)c3(N, )c4(N4+ 1)

X[(Nz+1)(N4+1)l ]' (46)

If this condition (similar to the phase-matching condition
of four-wave mixing generation) is fulfilled, p'„' is in-

dependent of r, but still remains a function of the phases
«~)+ V 3 V» V 4]of the field through a factor e ' ' ' '. This means

that the resonance centered at 5=0 vanishes unless the
fields are relatively coherent.

This feature can be understood if we try to describe the
resonance at 5=0 as an interference between quantum
pathways similar to the one of Fig. 6. Let us first assume
that all the fields are in number states and that the initial
state of the system is la, N„Nz, N3, N4). The two path-
ways that should be considered now are associated with
the absorption of one photon aI, and one photon aI3 [Fig.
10(a)] or with the absorption of one photon aIz and one
photon co4 [Fig. 10(b)]. In the first case, the final state is

lc, N~
—1,Nz, N3 —1,N4), while in the second case, the

colli sion
II

11

To obtain the probability to find the atom in state c, we
have to sum formula (46) over N„Nz, N3, and N4. We
see that the interference term is equal to zero unless we
have c;(N, ) and c, (N, +1) sim. ultaneously diFerent from
zero for the four fields.

In other words, to obtain a resonance on the popula-
tion of the c level, we have to start with a coherence

( A, N&+1, Nz, N3+1, N4lpl A, N„Nz+1, N3, N4+1),
where

l A, N, , Nz, N3, N4 ) is the dressed state adiabatical-
ly connected to the uncoupled state la, N, , Nz, N3, N4).
Then collisions act on this coherence to create

(B,N~, Nz, N3+1, N4lplB', N~, N»N3, N4+ I ),
where lB,N „Nz, N3, N4 ) and

l

B',N ~, Nz, N3, N4 ) are
the dressed states connected to b, N„Nz, N3, N4) and

l
b ', N &, Nz, N3, N4 ), respectively. Finally, the action of

the fields 3 and 4 leads to a population
(C Ãf Ãz Ã3 N4lplC Nf Ãz N3 N4 ). In this approach,
which is essentially similar to the one already developed
in Ref. 4, the resonance at 5=0 arises from the collision-
ally aided excitation of the coherence between the dressed
states 8 and 8'.

collision CONCLUSION

a

(a) (b)

G

FIG. 10. Collisionally aided excitation of level c. The path-
way {a) corresponds to a collisionally aided two-step excitation
with intermediate excitation of level b. The pathway {b) is asso-
ciated to a similar process with intermediate excitation of level
b'. The interference between these pathways leads to a
pressure-induced extra resonance centered at 5=0.

In conclusion, we have presented three different exam-
ples of pressure-induced extra resonances that can be ob-
served in nonlinear spectroscopy. We have shown that
all these resonances can be qualitatively interpreted in
terms of interference between quantum pathways, each
pathway involving a collisionally aided excitation. Final-
ly, we have shown that the resonances can be obtained in
some cases with incoherent fields while, in other cases,
coherent fields are required.

Implicit in our approach has been the neglect of any
effects arising from the atoms' velocity. As long as the
single-photon and two-photon detunings

l
b,

&
l, l

b, z l, l
b, 3l,
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~b,~~, ~b, , +b, 3~ are all much greater than the Doppler
widths associated with their corresponding transitions,
one is at liberty to neglect the Doppler shifts associated
with these terms. On the other hand, ~5~ is a small quan-
tity compared with ~h, ~

or ~Az~, consequently, one should
include any effects of residual Doppler shifts in all terms
containing 5. The results are then modified by replacing
5 by 5 —(k& —kz) v and averaging over a Maxwellian dis-
tribution of velocities having most probable speed u. If
Ku ((I b& (K=k, —k2), none of the results are changed.
If Ku ))1&», the results are modified as follows: (a) In
Eq. (11), the first term no longer contributes and the
second term becomes a Gaussian of width Ku; (b) in Eq.
(34), the PIER contribution no longer varies as t for 5-0;
(c) in Eq. (43), the PIER contribution is again proportion-
al to a Gaussian having width Ku. The ratio Ku/I'bb is

determined in a large part by the energy separation of
levels b and b'. To observe PIER, it is thus best to have
two nearby energy levels.
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