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Quantum theory of spontaneous emission in a one-dimensional optical cavity
with two-side output coupling
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A quantum theory of spontaneous emission from an initially excited two-level atom in a one-
dimensional optical cavity with output coupling from both sides is developed. Orthonormal mode
functions with a continuous spectrum are employed, which are derived by imposing a periodic
boundary condition on the whole space with a period much larger than the cavity length. The delay
differential equation of the atomic state of Cook and Milonni [Phys. Rev. A 35, 5081 (1987)] is re-
derived in a strict manner, where the reAectivity of the cavity mirrors is included naturally in the
mode functions. An approximate solution at a single-resonant-mode limit shows the results of "vac-
uum" Rabi oscillation in an underdarnped cavity and enhanced spontaneous emission rate in an
overdamped cavity. For the latter case, it is found that in the optical range the spontaneous emis-
sion rate is enhanced by a factor F (finesse of the cavity).

I. INTRODUCTION

It has been shown both theoretically and experimental-
ly that spontaneous atomic emission in a cavity differs
from the process in free space, due to the difference in the
distribution of the modes. Enhanced spontaneous emis-
sion in a resonant cavity was first pointed out by Purcell, '

while inhibited spontaneous emission in a small cavity
was shown by Kleppner. Experimentally, such effects
have already been observed in microwave cavities ' and
also in optical cavities.

It is of significant interest to develop a fully quantum-
mechanical theory to account for these effects. Since the
difference between the spontaneous emission in a cavity
and that in free space arises from the change of the distri-
bution of the field modes and depends on the Q (quality of
the cavity) value' or the loss of the cavity, strict treat-
ments of the field modes and the cavity loss are indispens-
able for such a theory.

So far, quantum theories of spontaneous emission in
the cavity have been developed by a number of au-
thors. ' Sanchez-Mondragon, Narozhny, and Eberly
studied this problem by considering the interaction of an
atom with a lossless single-mode cavity. They found, in
an initially vacuum field, spectral line narrowing at large
detuning and "vacuum Rabi splitting" at small detuning.
Sachdev further developed the theory by including cavity
damping with the reservoir method also in the single-
mode context. At the low-temperature limit, he ob-
tained an enhanced spontaneous emission rate in an over-
damped cavity in agreement with the prediction of Pur-
cell, ' while in an underdamped cavity he obtained
damped Rabi oscillation. Cook and Milonni considered
the interaction of an atom with a multimode Fabry-Perot
cavity in zero temperature and derived a delay-
differential equation of the atomic state, where the damp-
ing of the cavity was introduced by two imperfect mir-
rors. ' Their delay-differential equation was the first to
treat a multimode cavity. In the single-mode limit they

obtained the same results as those of Ref. 9. However, in
their analysis, longitudinal normal-mode functions for a
cavity with perfect mirrors were used, and the mirror
reflectivity was introduced phenomenologically.

In this paper, we further develop the theory by using
mode functions with a continuous spectrum" ' instead
of the longitudinal normal-mode functions with a discrete
spectrum. A one-dimensional cavity with dielectric
medium inside and dielectric-vacuum coupling surfaces
at the two ends is considered, and the continuous modes
are derived by imposing a periodic boundary condition
on the whole space with a period much larger than the
cavity length. We analyze the interaction of an initially
excited two-level atom with this cavity in the absence of
any photons initially, and re-derive the Cook-Milonni
delay-differential equation in a strict way. Here, the
reflectivity at the coupling surfaces is naturally included
in the mode functions, and the cavity modes are derived
as resonant modes which give peaks in the continuous
spectrum.

In Sec. II we derive the orthonormal mode functions of
the cavity with the continuous spectrum. We then in Sec.
III apply these mode functions to the analysis of the in-
teraction of the atom with the cavity. The delay-
differential equation, in agreement with that of Cook and
Milonni, ' will be obtained. It will also be shown that, in
the optical range, the spontaneous emission rate in an
overdamped single-mode cavity is F (finesse of the cavity)
times, rather than Q times, faster than in a one-
dimensional "free" space. A brief discussion about the
approximations used in the present analysis is given in
Sec. IV. Conclusions appear in Sec. V.

II. MODE FUNCTIONS AND FIELD QUANTIZATION

The cavity model used in this paper is illustrated in
Fig. 1, where the z axis is taken along the longitudinal
direction of the cavity. The cavity is filled with non-
dispersive dielectric medium with the dielectric constant
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where the prime indicates di6'erentiation with respect to z
and

FIG. 1. The cavity model. The dielectric constants inside
and outside the cavity are e& and E'o respectively. The
dielectric-vacuum coupling surfaces are at z = —I and I. The
emitting atom A is at z =Z„.

e„and outside the cavity is a vacuum with the dielectric
constant E'p. The dielectric-vacuum surfaces are at z = —I
and 1. For mathematical convenience, we consider a
periodic structure and a periodic boundary condition
with one period from z = —I to z =L+I, where the
boundary z =L + I will be set at an infinite distance later.
The polarizations of the electric field and the magnetic
field are assumed to be in the directions of the x axis and

y axis, respectively. For such a one-dimensional cavity,
we derive in this section normalized orthogonal (ortho-
normal) mode functions from the Maxwell equation with
the boundary conditions at z = —I, I, and L + I, and then
quantize the field with them.

A. Derivation of the mode function
and the mode density

The general solution of (2.4) for one period
(
—1 & z & L +1) can be written as

Uzo(z)= AIe ' +B e ' (1 &z &L+1),
ik )z —ik )z

U, ,(z)=C, e " +D, e "
(
—1&z &1),

(2.8a)

(2.8b)

where the subscripts 0 and 1 refer to the spatial regions
I &z &L+I and —I (z (I, respectively, and

p coi Ico& kj1 ct)i Ici (2.9)

U, (l ) = U ()(1),

U,'i (1)= U,'() (1),

U, (
—1)= U, ()(L +1),

U,', (
—1)= U,'() (L +1),

(2.10)

The last two equations are obtained by combining the
continuous boundary condition at z = —I and the period-
ic boundary condition. With (2.8), these equations are

Applying the continuous boundary conditions at two
ends of the cavity z =+I and the periodic boundary con-
dition from z = —I to z =L+I to the electric and mag-
netic fields (2.S) and (2.6), we have

az

In our one-dimensional cavity, the wave equation for
the vector potential A (z, t) of the field obeys

2 2

I3
A (z, t)= — A (z, t),1

(2.1)
2 ai

Ik I —ik I ik I —ik ICe "+De "=A e ' +BeI J J J

(2.1 1)

where c is the light velocity with the values of
c, =()ue))'~ inside the cavity and co=(geo)'~ outside
the cavity. The above equation can be separated into two
eigenequations:

A(z, t)= g U, (z)Q, (t),
J

(2.2)

'2

Q (t)= co Q (t), —d
J J j (2.3)

d
dz

2

Uj(z) kj Uj(z) (2.4)

E(z, t)= ——A (z, t)= —g U (z)P (t),a
J J

J

H(z, t)= — A (z, t)= —g U'(z)Q (t),1 8 1

pBz '
p J

(2.5)

(2.6)

where co is a constant independent of the variables z and
t, and k =co Ic. The solution of (2.3) gives an oscillation
with frequency co, , and (2.4} will give the mode function
of the jth mode. With (2.2), the electric field E(z, t) and
the magnetic field H(z, t) are expressed as

2k, kQ1+ sin k &I+ (2.12)

or in the form of frequency co, , with (2.9)
'2

I
sin co

c
1

L
2CO

Cp1—
c,

Cp1+
C)

I L
S1I1 COj +

Ci 2Cp
(2.12')

Now, we consider the density of the modes determined
by (2. 12'). Sketching the curves of the two sides of Eq.
(2. 12'} as the functions of cubi, one can find the solutions
of (2. 12') at the intersections of the two curves. With

ik ((L+i) —ik 0(L+i).
ikio i io

Here if the field of the jth mode exists, the constants Aj,
Bj Cj and D wil 1 not al 1 be zero, and the fol lowing
equation must be satisfied:

1 — sin k, l—
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this method, we find that there are two modes in each an-
gular frequency interval Ace,

ljc, +L /(2co)

or

tan(k, l )=—C)
tan

Cp
(b mode) . (2.14b)

p(to )= (L infinite) .
L
cp

(2.13)

This is equal to the mode density in a one-dimensional
vacuum free space, and the modes given by such a mode
density constitute a continuous spectrum.

Equation (2.12) can be further separated into the fol-
lowing two equations:

ca JoL
tan(k I)= — tan

c
1

2
(a mode), (2.14a)

so that the number of the modes in a unit angular fre-
quency is

2 2I L
p(co~ ) = = + (L finite) .

Ado ETC ) Kcp

When L ~~, we can write the above mode density as

L
p'(to, ) =p (oi, ) = —,

' p(oi, ) =
2&cp

(2.15)

We also find that as L ~~ the a mode and b mode in
one pair approach infinitely close to each other, so we can
regard them as being degenerate.

Then we derive the mode functions of (2.8) from (2.11)
and (2.14). The mode functions U'(z) of the a mode and

UJ (z) of the b mode are obtained as follows:

To facilitate the calculation, we use the form of k . We
refer to the mode determined by (2.14a) as an a mode and
by (2.14b) as a b mode. Solving (2.14) with a sketch, as
that for (2. 12'), we find that the a mode and the b mode
always appear in pairs along the frequency axis. There-
fore, the mode densities p'(co, ) of a modes and p (co~ ) of b

modes are

sin(k, ,z) (
—I &z & I) Cp

U'(z)=aj X (k I) [k ( I)]+ cos(kJil)sin[k&o(z —I)] (I &z &L+I)

cos(k/iz) ( —I &z & I ) Cp
U, (z) —p X (k I) [k ( I)] sin(k, l)sin[k o(z —I)] (1&z &L+I) .

(2.16a)

(2.16b)

The undetermined parameters ai and P& will be deter-
mined by the normalization of UJ(z).

Hf =— eE z, t +p,H z, t z

L, +I=—f e g U, (z)Pi(t) dz
J

+—f —g U,'(z)QJ(t) dz .
J

(2.17)

The integrals included in (2.17) can be calculated from
the following orthonormal relations which can be readily
proved with the wave equations of U,.(z) and UJ(z) and
the periodic boundary conditions (see Appendix A)

f e(z) U, (z) U, (z)dz =5;, , (2.18)

f —U (z)U,'(z)dz =co,'5,J . (2.19)—I p

B. Quantization and the orthonormal mode functions

With the expressions of electric and magnetic fields
(2.5) and (2.6), the field energy HI stored in one period
(
—I & z & L + I) is obtained as

Here the normality in (2.18) for i =j will be satisfied by
determining the undetermined constants ct& and PJ of the
mode functions (2.16). The field energy H& of (2.17) be-
comes

HI= ,' g [P,'(t)+co,'Q—J'(t)] .
J

(2.20)

Thus the preparation for the field quantization has been
completed. The quantization is accomplished by replac-
ing P, Q, and HI with the operators P, Q&, and 8&,
and imposing the commutation relations as

[Q;,P&]=iA5J, [Q, , Q, ]=[P,,PJ]=0 . (2.21)

[&, , a ]=8, , [&,, &J.]=[&,,8, ]=0,
we obtained the Hamiltonian of the field as

(2.23)

Introducing further the annihilation operator 8 and the
creation operator 8 as

8, =(2fico, )
'

(cotQ, +iP, ),
(2.22)

&, =(2A'cu, )
'~ (co, Q,. iP, ), —

which have the commutation relations derived from
(2.21),
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Hf = g Ace, (a a, + —,
'

)

J

and the field operator E(z, t) from (2.5) as

E(z, t)=i g(Ace, l2)' U)(z)[&)(t)—&, (t}] .
1

(2.24)

(2.25)

Here, all the a modes and the b modes derived in Sec.
IIA must be included in the summation g, and their
mode functions are given in (2.16). Determining the fac-
tors aj and Pi in (2.16) by the normality defined in (2.18),
we have the following orthonormal mode functions in the
whole space:

r

1/2
2

sin[k o(z+I) —P, ] (z & —I)JO

Cp C1r=
Cp+C1

(2.28)

at two ends of the cavity is naturally included in the
mode functions, which can be seen clearly in the expan-
sions of the normalization factors in the Fourier series as

ary conditions at z=+I. %e can also see that the mode
function of the a mode is odd symmetrical and that of the
b mode is even symmetrical about the center (z =0) of
the cavity. It can be proved, by such parities, that the or-
thogonal relation still holds between the degenerate a
mode and b mode (Appendix 8).

The mode functions (2.26) combined with (2.24) and
(2.25), are the main results of this section. They possess a
number of important characteristics. First, the field am-
plitude reAectivity

2 1

U0(z) = e)L 1 —K sin (k, , l )
J

1/2

sin(k, ,z )

(
—I &z & I)

(2.26a)

1/2
2

sin[k, o(z —I)+P, ], (z & I)

1 —K cos (k, , l )

1 —K cos (k ~l }

00
(

)II
cos(2nk &I),

Cl n=p 1+ on

00

cos(2nk, , l ),
Cl n=p On

(2.29a)

&~ (z) =

1/2

cos[ —k,c(z+I)+Pb] (z & —I)

2 1

1 —K cos (k, , l)

1/2

cos (k, ,z)

( I« I )
(2.26b)

2
1/2

cos[k,o(z —I)+Pb], (z & I )
eQ

(2.29b)

where 50 „ is the Kronecker delta. On the other hand,
according to the Mittag-LefBer theorem, the same factors
can be expanded in another form as

1

I —K sin (kj, l )

2 co l +c.c. , (2.30a)
ci)& (co t 7' )

where

Cp
y„=tan

C1
tan(k, , l )

C1
P, =tan ' tan(k, l )

co

(2.27)

1 —K cos'(k, , l )

Cp

t cr 1 m= —oo

+c.c.
coj —(a) —i y, )

(2.30b)

It shows that co' and co" are the resonant modes giving
peaks in the spectrum, and y, y, is the halfwidth of these
resonant modes. They are given as

0&/„gt, &m.
2 1 ~c 1

y, =—ln — = ln
t„ r m.

i r
(2.31)

and the expressions for z & —I are derived by the periodic
boundary condition U (z) = U,.(z+L +21) and Eq. (2.14).
The mode functions outside the cavity have been re-
formed in a simple form compared to (2.16). It shows in
(2.26) that the amplitudes of the mode functions outside
the cavity are a constant (eoL)' independent of the
mode number j. This comes from the normalization of
the mode functions where the value of the integral over
the range ( —I &z & I) inside the cavity has been omitted
compared to the integral value outside the cavity
( L —I &z & I and ——I &z &L +I) by the assumption
I.))l. Under this condition, the amplitudes inside the
cavity can be obtained simply by the continuous bound-

co' =(2m +1)co, ,

Q)~ —2' Q)~

where

(2.32a)

(2.32b)

t„=4I/C1,

co, =2'/t, ,

(2.33)

(2.34)

t„ is the round trip time of the light propagating in the
cavity, and co, is the separating interval of the resonant
modes. It should be noted that although the a mode and
the b mode are degenerate at any co-, as stated in Sec.
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II A, their resonant modes co' and cu are separated with

the interval co, . Considering the parities of the a mode
and the b mode, it is clear that all these resonant modes
give antinodes at both ends of the cavity. The well-used
longitudinal normal-mode functions always give nodes at
the ends of the cavity which cannot explain the output of
the light from the cavity.

III. SPONTANEOUS EMISSION
FROM AN ATOM IN THE CAVITY

We consider the spontaneous emission from an initially
excited two-level atom with transition frequency co&
which is located at z =Zz inside the cavity (Fig. 1}. The
cavity is assumed to be at zero temperature and no
thermal photons will be excited. Using the results of the
field quantization (2.24) and (2.25), we can write the
Hamiltonian describing the system containing the atom
and the field as

H =Hf +8„pE(Z„—, t)

= +fico & a +8„ig(f—ice&/2)' U&(Z„)P(QJ —
&~ ),

J J

(3.1)

where 8„ is the atom's Hamiltonian in the unbounded
dielectric "free" space and p, is the component of the
atom s electric dipole operator in the polarization direc-
tion of the radiation field. The sum g fico /2 contained
in 8f of (2.24) is omitted here, since it will exert no
inhuence on the motion of the atom.

In the Schrodinger picture, the total wave function can
be written as

Q))
C„(r)= —g 2A

CIJ(t) = COJ

2A

' 1/2

(3.3a)

(3.3b)

where p, „=( u ~P ~1 ) . Using the initial condition
C,,(0)=0, we get from the above equations

2

2A o

X C„(r')dr' . (3.4)

Since the summation g, here includes the degenerate,
continuous a modes and b modes, it can be rewritten by
an integral over the continuous modes with the mode
density (2.15). Thus we have

~q(r))=C„(t)~u)~0&e "+yC,, (r)~t)~1, )e "J',
J

(3.2)

where
~
u ) and ~1 ) denote the upper and the lower atom-

ic states, respectively, ~0) denotes the state in which no
photon exists in any modes,

~
1 ) denotes the state in

which one photon exists in the jth mode while no photon
exists in any of the other modes, and C„(t) and CI (t) are
the probability amplitudes of the states ~u)~0) and
~l )~lj ), respectively.

Substituting the Hamiltonian (3.1) and the wave func-
tion (3.2} into the Schrodinger equation, we have

Q7

C„(t)= J dt' J dcojp(coj)t[UJ'(Z„)] +[U~(Z„)] Ie ' " C„(t') . (3.5)

Here, two approximations have been used. One is that
the factor m, has been taken out of the integral sign as a
constant co~, by assuming that it varies much more slow-

ly than other factors. The other is to allow the frequency
co to be negative for the convenience of calculation.

The reason for using these approximations is as fol-
lows: As for the integrand, p(co ) is merely a constant
given by (2.15), and [U'(Z„)] and [ U (Zz )]2 are
periodic functions of co with the period cu, . The remain-
ing factor is the Fourier transform of C„(t) which gives a
spectrum with a peak at co~ or several peaks near ~z. If
the width Ace of this spectrum is much smaller than co„,
the integral can be performed approximately only over a
small range Ace &&co&, and both of the above approxi-
rnations will be allowed.

The width Ace. can be approximately given by
~ C„ /C„~. Therefore,

~ C„ /C„~ && co„ is required; i.e., the
variation of the atomic state must be much slower than

the periodic motion of the light. We solve (3.5) with two
different methods to get a result in a general multimode
cavity and a result in a single-mode cavity.

Then defining

1 for n even
X '

cos(2k iZ„) for n odd . (3.6)

A. Expansion in the Fourier series
and the delay difFerential equation of the atomic state

Substituting the expansion of the Fourier series (2.29)
into the mode functions (2.26), we have for the range—1&z(=Z„)&l,

[Ug( Z w ) ] + [Ui~( Z„)]
4C oo n

cos(2nk, , 1 )
1C1 n=p 0 n
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2l —2Z~

C)
2

21 +2Z~
c&

(3.7}

and reforming the summation of (3.6), we have

Ua~ 2+ UbZ

oo 2 t(&oj —
m& )(t' —t)

r " d(co, —co„) cos(arjnt„)+r cos[co (nt, +t, )]+r cos[co, (nt„+tz)] e
6]C/K O

oo 1 + O

oo

2n

~~c~ .=o
e ' '5(t' t—+nt„)+ e " "5(t' —t nt„—)

I+5o„"1+5o „
ice&(nt„+tl ) —i co ~ (nt„+ t

l )+re " " ' 5(t' t+—nt„+t, )+re " " ' 5(t' t —n—t„t~)—
ice& (nt„+ t~ ) —Ice~ (nt„+t2)+re " " '-5(t' t+nt—„+tz)+re " ' ' 5(t' t n—t, —t2)— (3.8)

where 5(t) is the delta function, t„ is given by (2.33), and t~ (t2) is the round-trip time for the photon propagating be-
tween the atom and the right (left)-hand mirror. Substituting (3.8} into (3.5), we obtain a delay-differential equation for
the probability amplitude of the upper atomic state C„(t) as follows:

AO oo 00 ~

C„(t)=— C„(t)H(t)+2 g r "e " 'C„(t nt, )H—(t —nt„)+ g r "+'e " " ' C„(t nt, t—
, )H(t —nt„t, )——

n=1 n=0

+ g r2"+'e " " ' C„(t nt„t2)H—(t —nt„—t2)—
n=0

(3.9)

where H(t) is the unit step function and Ao is the spon-
taneous emission rate in the one-dimensional "free" space
of the unbounded dielectric medium, which is given by

(3.10)

Under the initial condition C„(0)=1, the solution of (3.9)
describes the transient process of the spontaneous emis-
sion from an initially excited atom in the cavity. Before
the time t = t, ( & t2 ), (3.9) reads simply as
C„(t)=( AOI2)C„(t), which means an exponential decay
such as that in the free space. After t =t, , more and
more terms appear at the right-hand side of (3.9), which
can be regarded as the result of interactions of the atom
with the radiations emitted by itself and multiply
reflected from the cavity mirrors. From the viewpoint of
the theory associated with image atoms generated by mir-
rors, ' these terms can also be considered as the effect of
cooperative decay of a chain of image atoms, which are

here located outside the cavity at the distances
c, (nt„+t& l2) from the right-hand mirror and

c, (nt„+t2I2) from the left-hand mirror.
Equation (3.9) is the same as that derived by Cook and

Milonni, ' where the mode functions of only the resonant
modes were used and a mirror reflectivity was introduced
phenomenologically. We solved the same problem, but
for a cavity with one perfect conducting wall instead of
one of the mirrors in the present cavity. ' There, a similar
delay-differential equation was derived, in which the fac-
tor r 2" of (3.9) is replaced by ( r)"; i.—e., the
multireflectivity r" of one mirror is replaced by ( —1)"of
the conducting wall.

B. Expansion in terms of resonant modes
and solution at a single-resonant-mode limit

Using the expansion (2.30} instead of (2.29) to express
the mode functions in the right-hand side of (3.S), we
have

C„(t)=— g I dt' f dc',
1 +c.c. sin (tot„).2

Ct)~ Om

2 I (u —co& )(t' —t)+cc. cos (cojt„) e ' " C(t'),
Ct)~ Qm

(3.11)
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(3.12)

and

ZA

C]
(3.13)

The right-hand side of (3.11}is given by the contributions
from all the resonant modes, and can be used to get a
single-resonant-mode limit by considering only one reso-
nant mode and neglecting other resonant modes. When
t ))t„, such a case for a resonant mode, for example, co',

where c.c. means the complex conjugation of the first

term within the same parentheses, Ao is given by (3.10),
and 0' and 0" are the complex frequencies of the res-

onant modes given by

can be obtained under the following single-resonant-mode
limit conditions:

Ao «1/t„y, « to„~b, ~
&(co, (5=~' ~„),

(3.14)

i.e., the atom must decay suSciently slowly during the
round-trip time t, to ensure the possibility of the single-
resonant-mode interaction, and in order to get the
single-resonant-mode limit both the halfwidth y, of the
resonant modes and the detuning 4 should be much
smaller than the resonant-mode interval co, . In such a
limit, only the resonant mode co' contributes appreciably
to the interaction with the atom, and the terms of other
resonant modes can be omitted in (3.11). Then perform-
ing the integration f "„dc', by the residue theorem, we

have

C„(t)=— ice (I —t)+c.c. sin (tti~t„)e ' dcoj

(2 — '20 mt' —'2n mt') C(t )
nm mA t t~d &+

'2nmtA
C (t i)

I m

2t, p 1 —2E~

(3.15)

2

C„(t)+(y,+i 6)C„(t)+ —C„(t}=0, (3.16}

where b, is the detuning defined in (3.14) and Q is the
"vacuum" Rabi frequency given by

2
Q 2Ap N Ap

sin (Q' t„)= sin (co' t„) .

Since t &)t, & 2t„, terms of the integral over the time 2t A

are negligible compared to the integral over much longer
time t, and thus we have

~C„(t)~2=e ' cos t =
—,'e '—[1+cos(Qt)] .

(3.18)

This shows a damped Rabi oscillation of the atomic state
with frequency Q. In the same limit 5=0, we have for
an overdamped cavity y, »0

0
~C„(t)~ = exp — t

2y.

2', A o sin (co' t„)
(3.17)

= exp
Vc

where the approximation 0' =co' —iy, =co' has been
used, since y, &(cu, &co'. The same equation as (3.16)
was derived by Cook and Milonni' directly from the
delay-differential equation. For the single-resonant-mode
limit at co, the same equation as (3.16) can be obtained
with b, =co coA an (0, /2)' =(2Ap/t„) os comtA

From (3.17) and the condition Ao (&1/t„, we have
Q ((4/ir)gati, Ao &((4/n)co, /t„=(2/H)co, &co„ i e , in. .
the single-resonant-mode limit, the Rabi frequency 0 is
much smaller than the resonant-mode interval e„as ex-
pected.

With the initial condition C„(0)=1 and C„(0)=0 [i.e.,
Ct (0)=0], (3.16) can be solved easily. In the limit b, =0
we have for an underdamped cavity y, &&0

= exp — FAot sin (co' tq—)
7T

(3.19)

where (3.17) has been used and F =co, /2y, is the finesse

of the cavity. When sin (gati' t„)=1, i.e. , the atom is near
to the antinode, (3.19) gives

~C„(t)~'=e (3.20)

This means that the spontaneous emission rate is F times
faster than in the one-dimensional free space of unbound-
ed dielectric medium. If the atomic radiation frequency

resonates with the lowest mode of the cavity, i.e.,
co„=co„the finesse F just equals the quality factor Q of
the cavity. For the usual optical cavity with cavity
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length much larger than the wavelength of the radiation,
we have co~ &&co, and the factor of the enhancement of
the spontaneous emission is, correctly, F rather than Q.

IV. DISCUSSION

The quantum theory of spontaneous emission present-
ed in this paper is based on the dipole approximation and
the rotating-wave approximation, which are implicitly
contained in the expressions of the Hamiltonian and the
wave function. It has been assumed that there is no in-
teraction between the atom and the cavity medium by
considering that the cavity medium has much larger tran-
sition frequency than that of the radiating atom.

As stated in Sec. III, the approximations used in (3.5)
require that the variation of the atomic state is much
slower than the periodic motion of the radiation. Two
main factors affect the motion of the atomic state: the
spontaneous decay rate in the free space A 0 and the pho-
ton round-trip time in the cavity t, . First, in the optical
range, Ao is of the order of 10 s ', which is much
slower than 10' s ' of the radiation frequency. Second,
if the cavity length is much longer than the radiation
wavelength, i.e., the inverse 1/t„ is much smaller than the
radiation frequency, the condition for the approximations
will be satisfied. ' When the cavity length is the order of
the radiation wavelength, it is appropriate to consider
only the case of the single-resonant-mode limit. In such a
case, from the results of Sec. III B we have
~C„/C„i ((co, Ao)' /2 (10 co„(here co, =co„and
AD=10 co„) and the approximations used in (3.5) are
therefore still valid.

With the help of the mode functions incorporating out-
put coupling, the intensities of the radiated fields both in-
side and outside the cavity can be obtained. The calcula-
tion processes are similar to those given in a recent pa-
per, ' and have not been repeated here.

It should be noted that the results of the spontaneous
emission obtained in this paper are all limited to one di-
mension, and of course they differ from those in three di-
rnensions. Here, we compare our results in the one-
dimensional cavity with that in the one-dimensional free
space to get an image of the spontaneous emission in the
one-dimensional world, which can help us to get an in-

sight into those in the realistic three-dimensional world.

V. CONCLUSIONS
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APPENDIX A

In this appendix, we show the derivation of the orthog-
onal relations included in (2.18) and (2.19). The wave
equation of the mode function (2.4) gives

d Ul(z)
2 J J

= —co pe(z)U (z) . (A 1)

The periodic boundary condition with a period from
z = —l to z =I.+I gives

U. (
—l ) = U (L + l ),

UJ (
—l ) = Ui'(L + l ), (A3)

for the electric and magnetic fields (2.6) and (2.7), respec-
tively. Using (Al) —(A3), we have

In conclusion, for the one-dimensional optical cavity
with two-side output coupling, we have derived the
orthonorrnal mode functions with a continuous spectrum,
and quantized the field of the cavity with them. Two
kinds of degenerate continuous modes have been derived,
which are odd symmetrical and even symmetrical about
the center of the cavity, respectively. The resonant
modes are also derived associated with the poles of the
mode functions, and all of them have antinodes at the
ends of the cavity.

With the above mode functions, we have developed a
quantum theory of the spontaneous emission from a two-
level atom in the cavity, and rederived Cook-Milonni's
delay-differential equation of the atomic state' in a
rigorous method. In the single-resonant-mode limit, we

have obtained, in an underdamped cavity, damped "vacu-
um" Rabi oscillation, and in an overdamped cavity, a
spontaneous emission rate F times faster than in the free
space.

I L+I I+L d Ui(z)f E(z)U, (z)U, (z) dz = — f '
U (z)dz—1 CO P I dZ

2 U,-'z U~ z dz — U z U~ z)dz
~.p —1 dZ —I

[U;(z)U, (z)];=',' —f ' 'U (z)U,'(z) dz

I+L, , 1 I+Lf U,'(z) U'(z) dz = f U,'(z)U,'(z) dz =0 (if co;%co ) .
2 I Q) p I

(A4)
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Therefore, with the addition of the normal relations, we
have

and

I+L
J e(z) U, (z) U, (z)dz =5,,—

E

(AS)

I+L, , ~
E+L—I U,'(z) U,'(z) dz =co, f e(z) U,'(z) U,'(z) dz

p —i —I

—C0.6, (A6)

APPENDIX B

In this appendix, we show the derivation of the orthog-
onal relation between the degenerate a mode and b mode.

The result of the integration of a periodic function over
one period is independent of the integration position.
Since the integrand e(z) U'(z) UJ (z) is a periodic function
with period L+21, we can change the range of the in-
tegration from (

—1,1+L) to be (
—1 L—/2, 1+L/2). In

the range (
—1 L—/2, 1+L/2), e(z) and U (z) are even

functions, and U'(z) is an odd function, hence their prod-
uct e(z) UJ'(z) U~ (z) is an odd function. Thus we have

E+L 6'zU zU z dz

ez U'z U z z=0. B1—
E
—L/2
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