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Recent developments in quantum optics have led to new proposals to generate number states of
the electromagnetic field using conditioned measurement techniques or the properties of atom-field

interactions in microwave cavities in the micromaser. The number-state field prepared in such a

way may be transformed by the action of a displacement operator; for the microwave micromaser
state this could be implemented by the action of a classical current that drives the cavity field. We
evaluate some properties of such displaced number states, especially their description in phase

space. The photon number distribution is shown to display unusual oscillations, which are inter-

preted as interference in phase space, analogous to Franck-Condon oscillations in molecular spec-
tra. The possibility of detecting these oscillations is discussed, through the photodetection counting
statistics of the displaced number states. We show that the displaced-number-state quantum

features are relatively robust when dissipation of the field energy is included.

I. INTRODUCTION

Recent developments in quantum optics have led to
suggestions of how nonclassical states of light, particular-
ly number states of the electromagnetic field, may be
prepared. ' At microwave frequencies the Rydberg-atom
micromaser is highly sensitive to the quantized nature of
the radiation field in a cavity and has "trap" states where
the field approaches a number state with a large degree of
sub-Poisson photon statistics. These trap states are
those in which the quantum field has the required photon
number to generate multiples of full Rabi cycles in subse-
quent atoms entering the cavity, leaving the field, in
consequence, unchanged. A distribution of interaction
times, analogous to normal laser pump fluctuations, will
wash out such effects. Experimental observation of
sub-Poissonian trap states, with the cavity field prepared
to good approximation in a number state, has been re-
ported when care was taken to ensure uniform atom-field
interaction times in the micromaser.

Localized one-photon states have been constructed by
optical shutter techniques using photons generated in
pairs in parametric down conversion, where the signal
photon opens a photoelectric detection gate to the idler
photon. Related aspects of such conditioned measure-
ments have been proposed for photon number-state
preparation in nondegenerate parametric arnplification.

Given that photon number states (at least those with
modest occupation numbers) can be generated, it is natu-
ral to ask whether they can be amplified. Rather than ad-
dress this problem directly, we turn our attention to the
simpler problem of displacing a number state by a
translation operator 8(tx), the generator of coherent
states from the vacuum. A displacement of a field state
(usually the vacuum) may be implemented by driving the

quantized field by a classical current. To this end, we
have in mind a microwave cavity field relevant to the mi-
cromaser, which can indeed be driven by a current with
essentially negligible quantum fluctuations. Had we
prepared the microwave cavity initially in a vacuum
state, such a classical current would displace the vacuum
to create a coherent state. In this paper, we examine the
consequences of driving a cavity field, initially prepared
in a number state, by a classical current, or, in other
words, of displacing the number state.

We will call the states derived by acting on the number
state with a displacement operator the displaced number
state. The idea of a displaced number state can be found
in earlier work, for example, in the work of Cahill and
Glauber, where it was defined as the eigenstate of an
operator used to expand functions of boson annihilation
and creation operators in a given order. They did not as-
sociate these states with a physical state of intrinsic in-
terest. Boiteux and Levelut' have studied what is
equivalent to the displaced number state in their work on
generalized coherent states. More recently, Roy and
Singh" and Venkata Satyanarayana' have discussed the
displaced number state extensively and have related it to
the general form of the transition probability found in-
dependently by Feynman and Schwinger. ' In one sense,
the displaced number state is obtained from a number
state by adding a nonzero value to the field amplitude.
We will show in this paper that the displaced number
states have interesting and unusual physical properties.
The number state is determined by its photon number
while the phase is completely random. The amplitude of
the field has a zero expectation value. By displacing in
phase space, a field amplitude is added to this state, and
the photon number has now a contribution from the
coherent component of the field. The state becomes
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II. DISPLACED NUMBER STATE

In this section we summarize various properties of the
displaced number state necessary in later sections. The
displaced number state is defined by

la, n &=D(a)ln &,

where D(a) is the displacement operator, given by

D(a)=exp(a& —a"8) .

(2.1)

(2.2)

For n=0, the displaced number state, Eq. (2.1), reduces
to the well-known coherent state, introduced by
Schrodinger. ' Some properties of the displaced number

phase dependent because of the phase of the displace-
ment, is centered around a new origin located at the
coherent amplitude position, and is invariant by a rota-
tion around this point, with phase-independent fluctua-
tions. Despite this apparent simplicity, several interest-
ing consequences emerge from this study. First, although
the field is nonclassical and does not possess a well-
behaved diagonal coherent-state P distribution, we will
see that the fluctuations of the field quadratures and the
photon number can be greater than the vacuum fluctua-
tions. This is an important point, because we usually as-
sociate a nonclassical field with having either of these ob-
servables with less fluctuations than the vacuum. Second,
this state shows very striking oscillations in the photon
number distribution, "' related to the Franck-Condon
oscillations observed in molecular transitions between
displaced oscillator states. ' We interpret these photon
distribution oscillations as the result of interference in
phase space. Furthermore, using the arguments of Ref.
15, because the regions interfering in phase space can be
very close to each other (as we will show), the probability
of measuring such oscillations increases. One final im-
portance of the displaced number state is that it provides
the generalization of the coherent state (which is a dis-
placed vacuum state} to states obtained by displacing
photon number states originally with at least one photon
present. ' ' If only one photon were initially present,
this displaced one-photon state and the coherent states
would be two states which would be microscopically
close; through the measurement of their photon number
distributions, one could have a macroscopic distinction
between these states. We demonstrate that such a mea-
surement is possible, by investigating the influence of dis-
sipation, or equivalently of nonunit quantum efficiency in
these oscillations, showing that the displaced number
states are much less sensitive to dissipation and imperfect
detection than the squeezed states.

The plan of this paper is as follows. First, we define
the displaced number state and describe some of its prop-
erties. We calculate the quasiprobability functions and
the deviation from a Poissonian field. The relationship
between squeezing and displacement of any state is dis-
cussed, and as illustrations we compare the squeezed
number states with the displaced number states. The
photon number distribution is discussed, and we find that
it displays some unusual oscillations, which are explained
in terms of phase-space interference. '

We define the quadrature operators by

X, =@+a',
X'2= —i(8 —a ) .

(2.4)

(2.5)

With the use of Eqs. (2.1)—(2.5), the variances
((W;) ) =(X; ) —(X'; ) of the quadrature operators in
the state la, n ) are

((W;) )=(a,nl(AX;) la, n)=(2n+1)
(i=1,2) . (2.6)

These variances are independent of the coherent ampli-
tude of the state, but linearly dependent of the initial
photon number n The p.hoton number variance ((b,& ) )
1s

&(~&}'&=(2n +1)lal', (2.7)

and is always greater than that for a number state and a
coherent state. With the use of Eqs. (2.7) and (2.8), we
find the Mandel Q parameter, ' measuring the deviation
from a Poisson statistics for the state la, n )

&(~&)'& —
& & &

n+lal'
(2.8)

where the average photon number

&e&=n+lal', (2.9)

in which the contributions from the numberlike and
coherentlike characters of the field are explicitly
displayed. For Poissonian statistics, Q=O. If Q&0, the
light is said to be sub-Poissonian, otherwise, it is super-
Poissonian. From Eq. (2.8), we find that the state la, n )
has sub-Poissonian photon statistics if lal (—,', in other
words, if the coherent contribution adds more than half a
photon to the average photon number, the state is super-
Poissonian independent of the initial photon number n.

III. QUASIPROBABILITY FUNCTIONS

A quantum quasiprobability is defined in terms of the
displacement operator D(A, } [Eq. (2.2)] as

W(P,p) =m fTr[pD(A)]e~~ ',
X exp(pi, *—p*A. )d A, . (3.1)

For p=1, we obtain the P distribution; p=0 gives the
Wigner distribution and p = —1 gives the Q function.
Based on this definition, very general conclusions can be
reached about a given new state of light, if such state can
be demonstrated to be obtained by a transformation from
a previous one. We denote the original functions and
operators with a subscript 0 and the displaced ones with
a subscript d. Let us consider the efFect of the displace-

state can be derived using the transformation of the an-
nihilation and creation operators under a displacement

B(a)&D (a) =a —a,
(2.3)

D(a)8 D (a)=& —a* .
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the well-known Wigner function for the number state
W„(P) (see, e.g., Ref. 22 and references therein),

%„(x)=, , K„(x)exp( —
—,'x ),1 1

n' (2"n!)'
(4.1)

(3.9)

where X„(x) is the Laguerre polynomial of order n

We see that there will be oscillations in this function, and
negative values occur in some regions. In the following
discussion, we will use X,(x ) = 1 —x. Displacing a
single-photon state to obtain ~a, 1 &, the resulting Wigner
function have negative values inside the circle ~P

—a
~
(—,',

centered at e, but is positive outside this circle. The
maximum value is reached at the circle centered at a of
radius ~a —

P~ =1.5. This function is displayed in Fig. 2
for the state ~a=7, n =1&.

%q„(x)= 1 1

(2"n!)
H„(x —v'2a )

Xexp[ —
—,'(x —&2a) ] . (4.2)

The number distribution Pz„(m) of the displaced num-

ber state is one of the quantities associated with this sim-

ple state with the most interesting properties. For the
displaced number state, the number distribution is
defined by

where H„(x) is a Hermite polynomial. The displacement
operator for a real displacement translates x ~x
—v'2a, thus the wave function +z„(x) for the dis-
placed number state is

C. Comparison with the squeezed number state
Pz„(l)= I dx %z„(x)%„(x) (4.3)

As expected from the discussion in the beginning of
this section, we see that Figs. 1 and 2 have the same form
as for the number state. Comparing Fig. 1 with Fig. 2(b)
of Ref. 20, representing the Q function for the squeezed
number state, we see that a simple contraction cannot
transform one Q function into the other. Nevertheless, it
is easy to see that Fig. 2(b) of Ref. 20, for the Wigner
function of the squeezed number state, is exactly the ex-
pected contraction of our Fig. 2. The Wigner function
for the squeezed number state has the same maximum
value, in any direction of the phase space, but for points
located in an ellipse rather than a circle.

IV. PHOTON NUMBER STATISTICS

A. Wave functions and number distributions

The coordinate space wave functions of the number
state is that of the harmonic oscillator

which is directly analogous to the Franck-Condon over-
lap in molecular transitions responsible in that context
for the oscillations which are such a noticeable feature of
vibrational substructure in molecular electronic transi-
tions. Assuming I & n, it is found that '"

p (~)
n +2(l —

n)&
—a [~(l —n)(&2)]2

g1
dll I ! fl (4.4)

where XI„' "'(x) is an associated Laguerre polynomial.
From Eq. (4.1), it is readily seen that this number distri-
bution is symmetrical in n and I, i.e., the probability of I
photons in state ~a, n & is equal to the probability of n

photons in state ~a, I &.

There is a simple relationship between the displaced
number state

~ a, n & and the Hamiltonian of the harmonic
oscillator. By applying the displacement operator to the
eigenvalue equation

we obtain

8~ ~
a, n &

= ( n + —,
' )Ace a, n &, (4.5)

where 8z =8(a)A'08 (a)=bc'(8 —u')(8 —a)+ —,'.
The displaced number state is seen to be an eigenstate of
the displaced Hamiltonian for the harmonic osci11ator.

More generally, for a complex displacement we can use
the number states directly rather than the position space
wave functions. The photon number distribution of the
displaced number state Pz„(l) can be obtained from

P „(1)=l&Ila,n &I =l&tlD(a)ln &I (4.6)

where now u is a complex number. From this equation,
it is seen that this photon distribution is symmetrical in n

and I, as in the previous case. We find for the matrix ele-
ments of D(a), when I ~ n,

& l(B(a)(n & =(n!/I!)' a' "e

FIG. 2. Wigner function for the displaced number state

(4.7)

in agreement with earlier results, "' so that we obtain
explicitly
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The oscillations in Pd„(l) can also be understood as the
Franck-Condon oscillations occurring in molecular emis-
sion of light due to electronic transitions. ' There, the
electric dipole is proportional to the Franck-Condon fac-
tors, which are essentially the overlaps of the wave func-
tions corresponding to the vibrational sublevels of the
two electronic levels of the transition. In our case, we
have the two electronic levels being replaced by the two
parabolas, one for a harmonic oscillator, the other one
for the displaced harmonic oscillator, and the Franck-
Condon factors replaced by the overlaps between the
number state and the displaced number states. The tran-
sitions are more probable at the turning points of the har-
monic oscillator. This explains the external peaks of
Pd„(1).

FIG. 4. Pictorial representation of number states and dis-

placed number states in phase space.
V. EFFECT OF DISSIPATION ON PHOTON

NUMBER DISTRIBUTIONS

Fig. 4. The number distribution is displayed in Fig. 3(b).
Now, we have two kinds of overlaps with the number-
state bands: single overlaps in the left and right hand
sides of the ~a, 1) band and two overlaps between the
upper and the lower parts of the ~a, 1 ) band and the
number-state bands. For the single overlaps, the photon
number distribution is simply proportional to the overlap
areas. When there are two overlaps, the photon number

distribution is the sum of the overlap areas with ap-
propriate phases. This results in the interference between
the contributions from the two overlaps. They construc-
tively or destructively interfere and the photon number
distribution gives rise to oscillations. Notice that the sin-

gle overlaps between the number-state bands and the
~
a, 1 ) circles on the left-hand side are thicker than the

ones on the right-hand side. Because of this, a higher
value of Pz„(l) is expected for the peak occurring at small
values of l. Also, there is a larger number of ~0, l ) bands
crossing ~a, 1 ) on the right than on the left, so that the
peak for larger l's must be broader than the first peak,
occurring for small l's. The minimum between these
peaks is explained by the destructive interference between
the upper and lower overlaps.

For the other states ~a, n ), with n & 1, most of the
preceding analysis can be applied with the same con-
clusions about the position and the widths of the external
peaks [see Figs. 3(c) and 3(d)]. The last peak will be
broader and lower than the first peak. But because there
is a larger number of double overlaps than in the previous
case of ~a, l), a possibility of constructive interference
between the upper and lower overlaps is introduced in
the middle part [between the two external peaks of Fig.
3(c), for example], and new peaks and minima are intro-
duced as n increases. Indeed, the central peak of the dis-
tribution Pd„(I) for ~a, 2) occurs around the value of 1,

which is giving the minimum Pd„(l) for ~a, 1 ) [see Fig.
3(c)]. This alternation of minimum and maximum as n

increases is analogous to what happens for the squeezed
number states. '

Milburn and Walls' discussed recently the behavior of
the number distribution, when a harmonic oscillator in-
teracts with a vacuum heat bath. This is also a model for
the effect of imperfect photodetection discussed by Mol-
low, and more recently by Srinivas and Davies, and by
Mandel. The results of Milburn and Walls describe the
possibility of an experimental detection of oscillations in
the photon number distribution for the squeezed states.
Their argument is very general and uses the Q function to
describe the oscillations and their detection. The condi-
tion for the existence of oscillations for a squeezed-state
number distribution is that the system must be strongly
squeezed; the oscillations come from the interference be-
tween two quite distant regions in phase space. Because
the coherence between these two regions is strongly
damped by imperfect detection, this implies that such a
detection would be extremely improbable. But we know
from the previous section that the oscillations in the pho-
ton distribution for the displaced number state come
from the interference between two regions which may be
very close indeed for some states, and the state ~a, 1) is
an obvious candidate to study such a question.

A. General expression

We can analyze the effect of dissipation on the oscilla-
tory behavior of the photon number distribution, ' ' us-
ing the model developed by Milburn and Walls. The cav-
ity mode is assumed to be decaying to a heat bath at zero
temperature, so that using standard techniques the field
reduced density operator is shown to have the evolution
described by the following equation:

oo

P(1;p)= g P(k) I
p'(1 —}u)

k=1
(5.2)

where p=e r'. Equation (5.2) describes how the photon
distribution P(1;p) of one cavity mode decays in time

dt a ' 2
= ——[Ho,p]+ —(2&p& t —a t&p —pa &), (5.1)

where Ho is the free Hamiltonian and y is the damping
constant. The solution of Eq. (3.1) is given by' '
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from an initial value P (1;1)—:P (1), and is valid in gen-
eral. As time goes to infinity, p tends to zero, and we
conclude that for any I)0, the probability vanishes, and
the final state is the vacuum field, with P(1,0)=51o. Be-
fore analyzing the general expression for P (1;p), it is in-
structive to consider the effect of dissipation on a number
state in ) and a coherent state ia ).

B. Dissipation of a number state

For an initial number state ~n), P(l, l)=51„. In this
case, we obtain from Eq. (5.2) a result given explicitly by
Srinivas and Davies, generalizing the Bernoulli form of
the counting distribution to include decay of the field
elements,

we obtain, finally,

(piai~)'P(l;p) =

X[(1—p)/a/ +(1—pfai ) ] . (5.7)

VI. CONCLUSIONS

For t =0, we have p = 1, and Eq. (5.7) reduces correctly to
Eq. (4.9). For t~ ao, we correctly obtain a unity proba-
bility of the vacuum state. In Fig. 5, we show the photon
distribution P (1;p) for the initial displaced number state
i7, 1) for p=0.9,0.7,0.5,0.3. We see that even for a dissi-
pation, or a quantum efficiency, p =0.5, the two peaks are
still resolved, as we anticipated above.

p'(1 —p)" ' (1(n)
P(l, p)= 0 (1)n) (5.3)

C. Dissipation of a coherent state

For an initial coherent state ~a ), we obtain

According to this equation, the probability of finding
fewer photons than the initial number becomes nonzero,
and simultaneously the probability of finding the initial
photon number decreases, as expected, because the cavity
is losing energy. For each particular I (n, there is a
different value of p =po (and consequently of time) in
which the associated probability reaches the maximum
and then decays to zero, where go= I /n. We see that this
value depends also on the initial state in ). It takes more
time for the probability of small I's to reach the max-
imum value than for the probability of large I's. Also, for
the same I, the maximum is reached later for an initial
state with a large n, than for small initial value of n.

We have studied several properties of the displaced
number states of the harmonic oscillator. We obtained
the Q and Wigner functions and introduced a general ar-
gument which allowed us to relate these functions with
those distribution functions for the number and the
squeezed number states. This argument shows that if two
states are related by a squeezing (Bogoliubov) transforma-
tion, then only the Wigner functions of the two states are
related by a contraction, this being not true for all the
other possible quasiprobability functions, including the Q
function and the P function. The analysis for the photon
number distribution showed that this function exhibits
oscillations in the photon number distribution, as expect-
ed from a genera1 argument based on interference in
phase space. This argument was further developed in a
qualitative way, and several properties of the photon
number distribution were explained by an inspection of
phase-space contours. We investigated the possibility of
detection of the oscillations of the photon distribution of
the displaced number state, by using a model of detection
as a damping mechanism, and our conclusion is that even

P (1 )
—P/a

I! (5.4)

The distribution remains Poissonian, but the position of
the maximum shifts towards zero.

X g [k'+2k(1 —t'ai')
I& =0

k

+(1—ia~ ) ] „,
where x = ( 1 —p) ~a

~
. Using the identity

oo k

(k +2kb+6 ), =[x+(x+b) ]e",
k=0 k!

(5.5)

(5.6)

D. Dissipation of the displaced number state

The initial photon number distribution is given by Eq.
(4.8). Let us consider the case n= 1. In this case, the
time evolution of the photon number distribution is given
by (after rearranging and redefining the index of the sum-
mation)

I a 2(l —1 I

P(1;p, )= exp( lal )
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FIG. 5. Effect of dissipation, or, equivalently, of nonunity
quantum efficiency p for the detection of the oscillations of the
photon distribution for the displaced number state ~7, 1). We
plot the photon distribution corresponding to p =0.9,0.7,0.5,0.3.
The oscillations are still resolved for p =0.5.
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with a strongly imperfect detection system the oscillation
in the photon number distribution of the displaced num-
ber state could be experimentally demonstrated. This is
rather encouraging, recalling that recently a one-photon
state has been produced in the laboratory. Adding a
coherent contribution to the amplitude of this state
should, in principle, pose no insurmountable practical
barrier. This experiment would also be of general impor-
tance in demonstrating that the coherent component add-
ed to the amplitude of a one-photon state is capable of
making this state macroscopically different from its
neighbors, which differ from it only microscopically, such
as the displaced vacuum (coherent state, without oscilla-
tions) and the three-peaked two-photon displaced state

(which should not be confused with the two-photon
coherent state, better known as the squeezed coherent
state).

We have recently become aware of the work of Kral,
who, using a different approach to problems related to
those discussed here, has also found interesting nonclassi-
cal properties of the displaced number state.
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