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Transverse relaxation of spin-polarized *He gas due to a magnetic field gradient
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The presence of a magnetic field gradient in a sample cell containing spin-polarized *He gas will
cause an increased transverse relaxation rate. The origin of this relaxation mechanism is the loss of
phase coherence of the atoms due to the fluctuating magnetic field seen by the atoms as they diffuse
throughout the cell. The Redfield theory of relaxation due to randomly fluctuating magnetic fields
is applied to yield expressions for the transverse relaxation rate for spherical and cylindrical sample
cells. Experiments performed with an experimental *He free-precession magnetometer give results

in agreement with the theory.

I. INTRODUCTION

The longitudinal relaxation of polarized nuclear spins
in a gas due to a magnetic field gradient has been studied
by Schearer and Walters' and by Gamblin and Carver’ a
number of years ago. In these papers a theory of longitu-
dinal relaxation is developed that yields a relaxation rate
in agreement with experiments.

The work on the transverse relaxation problem has
been more recent. Richards et al.,’ in a paper on a He
nuclear Zeeman maser, note that the transverse magneti-
zation decays exponentially with a time constant given by

T%=((Aw)2>r,), (M
where ((Aw)?) is the average of y*(H,—{ H, ))* over the
cell volume and 7, is a characteristic diffusion time of
the order R?/D for a spherical sample cell of radius R
and self-diffusion constant D. In the expression for
((Aw)?), y represents the gyromagnetic ratio of the spin
species, H, is the magnetic field within the cell, and ( H, )
is the volume average. For a simple gradient field the re-
laxation rate is then

1 ky?R*VH,|?
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where k is an experimentally determined constant of or-
der unity. Cates, Schaefer, and Happer* have developed
a comprehensive theory of relaxation due to field inho-
mogeneities for both T, and T,. The theory is valid for
all pressures and field values. In the high-pressure limit
(for which the diffusion time is long compared to the pre-
cession time), Cates, Schaefer, and Happer give the result
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for the transverse relaxation rate for a spherical cell. The
theory is extended in a paper by Cates et al.’ to include
the effects of oscillating magnetic fields. In experiments
performed by Cates et al.’ on '”Xe gas the values of the
transverse relaxation in a rotating frame are found to be
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in good agreement with theoretical predictions.

In this paper the Redfield theory, as described by
Slichter,® is applied to find the transverse relaxation rate
due to a magnetic field gradient for spin-polarized atoms
in a gas enclosed within a cylindrical or spherical cell.
Experiments have been performed with polarized *He gas
and the results are compared with the theory.

II. THEORY

The transverse relaxation due to a field gradient is
caused by polarized atoms in the sample cell at various
positions precessing at slightly different rates. Suppose
the magnetic field in the cell may be described by a con-
stant field H, and a uniform gradient VH

H(r)=H,+VH-r . @)

The origin of the coordinate system is taken as the center
of the cell with the z axis along H; According to
Slichter,® the motion of the spin (I), neglecting source
terms, is given by

2
(1) =y (1) X M), = L[Sy, () + SO,

()

2
1y =p({1) X Hy), — L[S (@0)+ S, (ML, )
dt y y 2 y
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2
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where

Sux(@)= [ (H()H, (t+7))e "d7 (8)

and similar expressions exist for Sy, (w) and Sy, (w). The
average in Eq. (8) is taken over the atoms of the sample
cell. In (5)-(8), wy is yH,. From (7) we can identify the
long>itudinal relaxation rate as the decay constant for
(1,
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T—I:%-[SHx(a)o)-!-SHy(a)o)] , (9)

and the transverse relaxation rate as the decay constant
for (I, +il A )

2 2
—1—=I—[S,,x(wo>+s,,y(w0)]+l’—s,,z(O) . (10)
T, 4 2
The autocorrelation function of (8) may be written as
2
(H ()H (t+7))= ax)‘ (x(t)x(t+71))
2
+ | == | (p(e+71)
dy
aH, |’
(z(t)z(t+71)) , (11)
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with similar expressions for H, and H,. Independence of
the motion in the three coordinate directions is assumed.
Equation (11) states that the gradient relaxation rates are
determined by the positional autocorrelation functions
such as (x(¢)x(t+7)) or the corresponding spectrum
S, (o). Determination of the spectrum S, (w) is straight-
forward for the frequency much larger than 1/7,. If the
average time between collisions is 7, then we can write
the autocorrelation function for the x velocity as’

(u (D (t+1))=(u)e ™, (12)

Tc
where {(u2)=kT /M. Here k is Boltzmann’s constant, T
is the absolute temperature, and M is the ’He mass. The
spectrum corresponding to (12) is

2<u3>7'c
ux @)=—"——5>—, (13)
14w’
and since u, (t)=dx(t)/dt
S ()= 2<u§>rc (14)
=@ 0?1+ w’%)
From (11)
Sy (@)=|VH, |*S (0) , (15)

and similar expressions may be written for Sg,(w) and
Sy.(w). The expression for the longitudinal relaxation
rate is then

2

—7%1—=Ii—(|VHX|2+|VHy|2)SX(a)O). (16)
We expect (16) to be valid if the distance that the atoms
diffuse in time 1/, [i.e., (2D /w,)'"?] is small compared
to the cell dimensions. For representative experimental
conditions of a 0.5-G field and a 10-Torr pressure, this
diffusion distance is 0.16 cm, which may be compared to
the cell diameter of 5.08 cm. Schearer and Walters' show
that (16) is quite accurate for 7. chosen as
(2.2+0.2)Xx 1077 sec for 1 Torr at 300 K.
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From (10) and (11) the transverse relaxation rate 1/7,
may be written as

2
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It is clear that, because of the factors S,(0), etc., the
effect of diffusion cannot be neglected as in (16). The ker-
nel of the problem is hence to find the autocorrelation
function (x(t)x(t+7)) for times comparable to the
diffusion time. The autocorrelation function for x based
on times ¢ and ¢, may be written as

(xx0)=ffp(r,t;ro,to)xxod3rd3ro , (18)

where p(r,t;ry,1,) is the joint probability density of an
atom being at position r at time ¢ and being at position r,
at time t;. For concreteness we assume that ¢ >t,. The
joint probability density can be factored into a single
probability density p(ry,zy) (which is uniform) and the
conditional probability density p(r,¢|ry,2o)

p(r,t;ro,to)=p(r0,to)p(r,t|r0,to) . (19)

For times \t—tol much greater than the collision time
¢, the conditional density obeys the diffusion equation’

DVzp(r,tlro,to)=—s—tp(r,t]ro,to) (20)

subject to the reflection boundary condition

Vp(rg,tlrg,ty) n=0, 1)

where rg is on the cell wall and n is an outwardly direct-
ed normal unit vector to the cell wall. The initial condi-
tion is

p(r,tylre,tg)=8(r—r,) . (22)

We note that r and ¢ are viewed as the independent vari-
ables in (20)-(22), with r, and ¢, considered as parame-
ters.

Equations (20)-(22) have been solved for a few simple
geometries. Suppose that the cell is cylindrical (i.e., of
uniform cross section) with ends that are plane and nor-
mal to the cell axis. Let x be the cell axis so that the end
planes occur at x =+L /2. Initially we assume that VH,
is in the x direction. The conditional density is found to
be
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22
1,2 =& _n*m’D|t—t, nax nmx,
p(x,tlxg,tg)= 7 + 7 n=1,23,_”e K 7
22
2 0= n*m* Dt —t, nx nmx
+= 3 e 0s cos . (23)
L n=2,4 L2 L L
[
Then ) P 2
L/2 L/2 =3 a2 1k 1
(xx0)=f_L/szp(xo,to)dxof_L/pr(x,t|xo,t0)dx B, 26 fOP Jy a dp (31
_8L* g a1~ n’m’Dlt —t,| (24)  With the autocorrelation function (yyo) we can deter-
mt ,,% n* L? ’ mine S,(0) and 1/T,,

In (24) p(x,,t,) has the uniform density 1/L. Then
S,0=[ " (x(tx(t+m))dr

_16L* i 1
7D n=13,. .. n®
_L
oD (25)

and the expression for the transverse gradient relaxation
rate is

2
1 1

T, 2T,

oH,
ax

’}’2L4
120D

(26)

In (25) the summation was replaced with 7°/960 from
Gradshteyn and Ryzhik.?

Next we consider a cylindrical cell for which the cross
section is circular in the y-z plane with radius a. Suppose
that VH, falls along the y axis. For this case the condi-
tional density may be written

XnkP
a

XnkP

J

n

1
(r,tlrgtg)=—= 3 AuJ
p Iro 0 2mal nE),( kdn

i — — (2 — 2
Xem(zb aﬁo)e (xg Dlt—tyl7a®) '

27)

The (p,¢) coordinate system is defined by y =p cos¢ and
z=psing. The quantities x,, are zeroes of the first
derivative of the Bessel function J,

d
EJ,,(X,,;( )=0, (28)
and A4, are given by
2
Ank= a5 ¢ . (29)
fo Ji(xp/alpdp
The y autocorrelation function is found from (27) to be
x3,D|t—t,
(yo)=a*3 Akake_—l_k—az—O_ ’ (30)
k

where

3H, |’

dy

1 _ 1 ylat Ay By

T, 2T, D

(32)

2
ko X1k

Manipulation of Bessel function identities yields (except
for Ay)

A, = 2 (33)
T xE —n?)

Jixy)

By=—7—. (34)
X 1k

The summation of (32) may be written

A By 1 7
=2 =—, (35)
k x%k % x?k(x%k'_l) 96

The transverse relaxation rate is then

2
2,4 | 3H,
A1 Jyla 192 (36)
T, 2T, 96D | dy

From (26) and (36) one can write the relaxation rate for
a general cylindrical cell of length L and radius a
2 2

74 [ 3H 2,4 | 0H,
1L rL (%% Tra (37
T, 2T, ' 120D | ox 9D | ay

The derivation of (37) depends on the fact that
(x(t)y(t'))=0. One should note that (37) still applies if
H, is not directed along the z axis (which is perpendicular
to the cell axis). For this case H, in (37) should be re-
placed with the component of H along H,,.

We next consider the spherical cell of radius R subject-
ed to a gradient along the z axis. A spherical coordinate
system is chosen, for which x=r(sinf)cos¢,
y =r(sinf)sing, and z =r(cosf). From (20)-(22) the con-
ditional density for this case is

X r

&)

XmTo

R

1 .
p(r,tlro,t0)=—3 S A
R nl,m
XY (6,)Y),(60,¢0)
x2D|t—t,l
xe- 2Pl Ztol (38)
R2

where
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4, = R® (39) coil axis were perpendicular to Hy and to each other.
I fORijIZ( X,,r /R)dr ' The operation of the magnetometer proceeded in three

In (38), Y,,, are spherical harmonics, j; represent spheri-
cal Bessel functions, and the values x, satisfy

—d;jI(xl,,)=0 . | (40)
The z autocorrelation function is found to be
2
x3D|t—t,l
(22g)=R*3 A, B e~ —s =, 41)
. R
where
X1t 2
_ 1 R 3. In
B"_F fo ri | R dr) . (42)
The expression for 1/T, is hence
2
2p4 | OH, A B,
11  rR z ! 43)
TZ 2T1 D dz n xlzn

The values of A, and B, are found in the Appendix to
Ref. 4:

Zx%,,
Aln= . 2 ’ (44)
j,(xl,,)[xln—l(l‘i-l)]
-2
Ji(xy)
L= (45)
X in

The value of the summation in (43) is also given in Ref. 4:

n 12n n x?n(xlzn—Z) 175 °

The traverse relaxation time is hence
2
OH,
oz

1 1

T, 2T,

8y2R*
175D

(47)

For the general case where the gradient in H, is not along
the z axis (i.e., the direction of Hy), then (3H,/dz)? in
(47) should be replaced with |VH,|%. This result is in
agreement with Cates, Schaefer, and Happer* for the
high-pressure limit.

III. EXPERIMENT

Experiments have been performed to measure the
transverse relaxation of spin-polarized *He gas due to a
magnetic field gradient using an experimental *He free-
precession magnetometer in the Earth’s field (of 0.53 G).
The experimental magnetometer consisted of a He cell
(cylindrical or spherical), a ‘He lamp, a lens to collimate
the lamp light and direct it into the cell, a circular polar-
izer, a 12.7-cm-diam set of Helmholtz coils, and two
many-turn pickup coils adjacent to the cell. Oscillators
provided the voltage to drive the electrodeless discharges
in the cell and lamp. The magnetometer was oriented so
that the light from the lamp was directed along the
Earth’s field Hy. The Helmholtz coil axis and the pickup

stages. In the first stage the cell and lamp electrical
discharges were established. The discharge in the cell re-
sulted in a population of 23S, metastable atoms. These
atoms absorbed some of the circularly polarized
238 -23P radiation from the lamp and became partially
polarized. Through spin-exchange collisions of polarized
metastable atoms and ground-level atoms, the ground-
level nuclear spin became polarized.” After several
minutes a nuclear spin polarization of 1% -3% accumu-
lated along the H, direction. At this point the lamp and
cell discharges were extinguished. In the second stage a
small (relative to H|) oscillating magnetic field from the
Helmholtz coil was used to rotate the cell polarization so
that precession would begin. This required a few
seconds. During the third stage the precessing cell polar-
ization induced an oscillatory voltage in the pickup coils.
The free precession continued for a time interval of con-
venient length, usually of the order of T,. After the free
precession was started, the magnetic field gradient was
established and the precession signal amplitude was
periodically measured. In the experiments, a high im-
pedance amplifier to the pickup coils was used in order to
eliminate the possibility of radiation damping.!® The
amplified signal amplitude was measured with a
Hewlett-Packard 5420A Spectrum Analyzer.

The magnetic field gradient was provided by two ten-
turn, 8.26-cm-diam coils. These were placed 1.83 m
apart on a (magnetic) east-west line with the magnetome-
ter centered between them. A sketch of the magnetome-
ter and the gradient-producing coils is given in Fig. 1.
The coils were connected to a power supply so that the
magnetic moment associated with one coil was parallel to
H, and the other antiparallel. This arrangement was
chosen to produce the gradients dH, /3x and dH, /9dz (at
the center of the cell) with the other gradients being small
relative to 0H,/dx. To a first approximation, the
gradient-producing coils may be considered as point mag-
netic dipoles. In this case the gradients other than
0H,/dx and OH, /0z are identically zero. To a second

’
!
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10-TURN con.j ;E\\
~
~

~
~

SAMPLE CELL

10-TURN COIL
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H. Z

FIG. 1. Sketch showing placement of *He magnetometer
sample cell and magnetic gradient producing coils.
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FIG. 2. Transverse relaxation time of spin-polarized *He as a
function of the magnetic field gradient. Curves are shown for a
5-Torr, 12.35-cm-long cylindrical cell and a 10-Torr, 4.96-cm-
diam spherical cell.

approximation, terms of the order of (b/x)*dH,/dx
must be added to the first-approximation gradient values.
Here b is the coil radius and x is the separation between
the cell center and coil center. Because (b /x)? is small
(0.002) and the square of the gradients appears in the
1/T, expressions, the dipole approximation is considered
adequate and all gradients other than 0H,/dx and
d0H, /9z are neglected. The experiments were performed
in a building constructed of nonmagnetic materials for
use in magnetometer testing. The naturally occurring
magnetic gradient inside the building was of the order of
0.03 nT/cm.

During the course of an experiment, precession signal
amplitudes were recorded regularly at a convenient time
interval (typically 1 min). After the data were collected,
a maximum-likelihood estimate of the measured trans-
verse relaxation time T',,, was found.

The experimental results are displayed in Fig. 2, in
which the relaxation time T, is plotted as a function of
the gradient dH, /dx. The experimental points are indi-
cated by circles or diamonds. The theoretical curves,
shown as solid lines, were calculated using a 3He diffusion
constant of 1370.2 cm?/s (for 1 Torr and 300 K).!!

The lower curve of Fig. 2 applies to a 5-Torr, 12.35-
cm-long cylindrical cell with its axis oriented along the x
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direction. The indicated relaxation time plotted in Fig. 2
is the relaxation time due to gradient relaxation alone;
the effect of normal relaxation with zero gradient has
been removed. Hence, the value of T, plotted in Fig. 2 is
found from

—_ (48)

where T,,, is the total measured relaxation time and T,
is the zero-gradient (wall) relaxation time. The measured
zero-gradient relaxation time for the cylindrical cell was
5347 s. The two experimental values differ from the cal-
culated values using Eq. (37) by an rms average of 1.38%.
In the calculation of the theoretical value, the 1/(2T)
was ignored. The calculated T, relaxation time for the
cylindrical cell subjected to a 1-nT/cm gradient is 2 X 10
s. The results for a 10-Torr, 4.96-cm-diam spherical cell
are shown in the upper curve of Fig. 2. The zero-
gradient relaxation time was 53 509 s. For this cell the
experimental values differed from the calculated values of
Eq. (47) by 7.35%. The agreement of the experiments
and the theory is considered to be reasonably good.

It might be noted that if the summations in Egs. (25),
(32), and (43) are approximated by only the first terms,
the resulting errors are less than 0.15%, which is small
compared to experimental errors. For a more complicat-
ed cell geometry which may require a numerical estima-
tion of the diffusion time, a one-term approximation for
the autocorrelation function appears quite adequate.

IV. CONCLUSIONS

Theoretical expressions for the transverse relaxation
rate of a spin-polarized gas due to a magnetic field gra-
dient have been found for cylindrical and spherical sam-
ple cells. The expression for the spherical cells agrees
with that of Cates, Schaefer, and Happer* (for the high-
pressure limit). Experiments have been performed with
spin-polarized *He gas confined within a cylindrical and a
spherical cell. The measured values of gradient relaxa-
tion time agree well with the theoretical values.
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