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Threshold efFects in photodetachment near an autodetaching or excited-state resonance
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Near-threshold photodetachment processes are considered for a simple model system that
represents a negative ion that supports an excited state close to the threshold of a single-electron
continuum. The excited state is assumed to be autodetaching if it lies above the threshold. Expres-
sions for the discrete-state —discrete-state matrix elements of the Green's operator are derived and
are used to obtain a solution of the time-dependent Schrodinger equation which is exact within the
model. The weak-field resonance profile is presented, and the importance of terms that are neglect-
ed in the usual pole approximation is discussed. The time development of the populations and shifts
of threshold are discussed for stronger fields. Population trapping through threshold shifts and
through interference effects are considered. The possibility of meeting both trapping conditions
simultaneously is discussed.

I. INTRODUCTION

There have been a number of theoretical investigations
of threshold effects in the photoionization of neutral
atoms' and the photodetachment of negative ions. "
The two situations are, of course, different in that neutral
atoms support a Rydberg series of bound states below the
threshold of the continuum, while negative ions have a
density of continuum states going to zero at threshold,
and no Rydberg series. It is the latter case that is of in-
terest in the present work.

Among the effects predicted for negative ions exposed
to strong laser fields are a dynamic photodetachment
threshold and nonexponential "decay" of the discrete
state by photoabsorption. For example, Cohen-
Tannoudji and Avan" have discussed in a general context
the shift of the decaying state that can arise because of
the interaction with the continuum, and the partial stabil-
ization of the system which can occur if the discrete state
is shifted below the threshold of the continuum. They
have also discussed how, with increasing coupling
strength, the exponential decay of the discrete state is
changed into damped oscillations between the discrete
state and the continuum.

It has been predicted' that the size of the Stark shift
of the initially populated discrete state relative to the
threshold of the continuum will be directly proportional
to the laser intensity, with constant of proportionality
typically being of order 10 ' cm '/(W/cm ). It has
also been suggested that the effects could be enhanced in
negative ions featuring an autodetaching state near the
threshold of the continuum. For example, Voitkiv and
Pazdzersky' have considered threshold photodecay of
negative ions into s-wave and into p-wave continua in the
presence of a low-lying autodetaching state, and have
shown that the autodetaching state strongly affects the

photodetachment process.
It is also generally accepted that a full description of

threshold effects in photoionization or photodetachment
must account not only for the ac Stark shift, but also for
the "quiver energy" or "ponderomotive shift" of the de-
tached electron in the oscillating, externally applied
field. ' ' A dynamic threshold for photodetachment has
been observed experimentally by Trainham et al. ,

' who
used a low-frequency, high-intensity laser to generate the
shift, and used a high-frequency, low-intensity laser for
the photodetachment.

There have also been a number of studies of strong-
field effects in atomic systems supporting autoionizing
states that are far from threshold. ' One of the pre-
dictions of these studies of laser-induced autoionization is
a line-narrowing effect. This effect can be thought of as
arising through quantum-mechanical interference effects
similar to those that give rise to the Fano minimum ' in
weak-field photoionization near autoionizing resonances.
In model studies which do not take into account any of
the various background processes which can give rise to
photoionization, this line-narrowing effect becomes a
population trapping effect in which some of the popula-
tion of the discrete states never decays into the continu-
um.

Thus population trapping effects have been considered
in model systems within two quite different contexts,
namely through threshold shifts and through interference
effects in laser-induced autoionization. Other studies
have discussed the possibility of trapping arising in sys-
tems in which continuum structure can be provided by a
high-intensity laser instead of or in addition to
the autoionizing state which provides the continuum
structure in laser-induced autoionization.

In the present work we study photodetachment within
a simple model system representing a negative ion in an
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external, monochromatic laser field. The negative ion is

assumed in this work to support an autodetaching or ex-
cited state close to the threshold of the continuum. We
choose a particular energy dependence for the discrete-
statecontinuum matrix elements of the Hamiltonian,
and we find exact expressions for the matrix elements of
the discrete-state space Green's operator and of the
time-dependent Schrodinger equation for the model.
These expressions are used to show explicitly the well-
known conclusion that the "pole approximation" is not
valid in the vicinity of the threshold of a continuum in
systems featuring no Rydberg states. The expressions are
also used to study the time development of the system
and to consider population trapping occurring through
either or both of threshold shifts and quantum-
mechanical interference effects.

In this work we present an analysis of a model system
only, and no effort is made to model any particular real
negative atoms. However, rather than working with arbi-
trary energy and intensity units throughout this work, we
will work in conventional units, such as electron volts
and wave numbers for energies. Parameter sizes will be
chosen so as to illustrate clearly the effects of interest in
this work, and without reference to any particular atoms.
The energies and intensities presented can, of course,
easily be scaled to other values as long as various ratios
are kept constant.

In Sec. II of this paper we describe our model in de-
tail, and we derive exact expressions for discrete-
state —discrete-state matrix elements of the Green's opera-
tor for our model system. We also discuss some of the
processes that have been ignored in choosing the model.
In Sec. III we discuss the limitations of the pole approxi-
mation in the context of the Fano q parameter and the
Fano line profile. In Sec. IV we present the solution of
the time-dependent Schrodinger equation, and use it to
study strong-field effects in the time development of the
detachment probability and population trapping. Includ-
ed is a discussion of how certain of the poles of the
initial-state —initial-state matrix element of the Greens
operator can be interpreted as representing decaying
dressed states. The stabilization of these states via shift-
ing below the threshold of the continuum and via in-
terference effects is discussed in detail. Finally, in Sec. V
we present a summary and a discussion of our results.

II. PRESENTATION OF MODEL AND FORMALISM

We assume that the Hamiltonian for the system has
been decomposed as H =H +H + V, where H
denotes the atomic Hamiltonian in the absence of
configuration interaction, H denotes the Hamiltonian of
the radiation field, and V represents the sum of the
atom-field interaction and configuration interaction. The
eigenstates of H and the couplings between them are
shown in Fig. 1. The "unperturbed energy eigenstates"
of the model negative ion consist of two discrete states
and one electron continuum. One discrete state, denoted
by l

1 ) „,represents a bound state of the negative ion, and
is assumed to be the initial state. The second discrete
state l2) „has energy close to the energy threshold of the

( I ~l„)

FIG. 1. Schematic diagram of the energy eigenstates of H"
and of the couplings that arise through the interactions con-
sidered.

continuum. The continuum I l
E ) „) corresponds to an

unbound electron and neutral atomic core. For
definiteness, the electron continuum is assumed to be an
s-wave continuum. The bound discrete state l 1 ) „ is cou-
pled to the other discrete state and to the continuum by a
monochromatic laser. The second discrete state is as-
sumed to be coupled to the continuum by configuration
interaction. When its energy is above the continuum
threshold, the state is autodetaching. (One then could
think in terms of the upper state and the continuum to-
gether forming a structured continuum, but throughout
this work we will think of the upper state as separate
from the continuum. ) The eigenstates of H "+H are
taken to be product states of the atomic kets and
photon-number kets

(2.1)

where co denotes the laser frequency. We write the ener-
gies of states

l
1 ), l2), and lE ) by E&, E2, and E, respec-

tively, and we define the zero of energy to be the thresh-
old (lowest energy) of the continuum I lE ) I. Because of
this choice of zero, changing the laser frequency changes
E&, but not EJ or the continuum energies IEI; E& thus
serves as a laser frequency parameter, giving the energy
of the initial state plus one laser photon, relative to the
threshold of the continuum. We also assume that
& iIJ ) =5;J, &j lE ) =0 (i,j=1,2), and that the continuum
states have been normalized to a 5 function in energy:
&EIE'& =S(E —E').

We assume the following form for the matrix elements
of V coupling the discrete states to the continuum:

(2.2)

The p parameters are continuum-width parameters, and
have dimensions of energy. The parameters A, and Az
are coupling strength parameters, and also have dimen-
sions of energy. (Thus all dependence of V&z on laser
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photon number N, and correspondingly on laser intensi-

ty, is absorbed into A, . ) Close to threshold, the cou-
plings (2.2) exhibit the E'/ energy dependence of the
Wigner theory for couplings to an s-wave continuum.
We furthermore assume that each V&E is real and posi-
tive. This assumption can be made in the model without
loss of essential generality, provided we allow the
discrete-state —discrete-state coupling to be either positive
or negative.

The time-dependent Schrodinger equation for the
above system can be solved without further approxima-
tion. The populations of the discrete states at time t are
I(1 P(t)) I and I(2Iit(t)) I [with It((0)) = I 1 )], where

QG (z)Q =Q [ Q [z H— A—(z) ]Q j

A(z)= V+VP[P(z H— V—)P] 'V. (2.5)

Q [z H —A(z—)]Q

z E, ——X"(z) —V, —2' (z)

—
V2i

—X '(z) z Ei ——X (z)

where the X'J represent the various self-energies

(2.6)

For our model PVP=O (i.e., we neglect the continuum-
continuum coupling) and QG(z)Q is the inverse of the
simple 2 X 2 matrix

( jIQ(t)) = . f dz e "'(jIG(z)I 1 ), j=1,2 .
21Tl c

(2.3)

Here G(z) denotes the Green's operator, or resolvent,
defined in the complex plane by G(z)=(z H) '.—The
contour of integration c in (2.3) is in the upper half plane,
from + ~ + iO and —~ + iO.

In order to write expressions for the matrix elements of
the Green's operator appearing in (2.3), we first define
projection operators

&"(z)=(il VP(z —H') 'PVIj)

(iI vIE) &EI vIJ )
0 z —E

Thus

QG (z)Q = [[z E, —X—"(z)][z Ei —X—(z)]
—[V,2+2' (z)][V~, +X '(z)]]

z —Ei —X (z) Viz+2' (z)

(2.7)

P= fdEIE&&EI,

Q = II &(II+ I2&&2I .

One then can show that

(2.4)
V, +X '(z) z E, ——X"(z) (2.8)

For our model couplings, we use Ref. 41 and techniques
discussed in Ref. 10 to obtain

A
+/J(z) =

[ I/2+ (p )I/2]2j
—2(PiPz) (A, Ai)'

X"(z)=r"(z) =
1/2+(p )i/2][ ~ 1/2+(p )1/2][(p )1/2+(p )1/2]

(2.9a)

(2.9b)

(We have written these in terms of —iz' in anticipation
of defining the variable y = iz' in—Sec. IV.) We note
from (2.9) that X'J(0) = —

A, .
Before presenting any numerical results, we comment

briefly upon the approximations that have been made in
choosing the model. We have neglected processes such as
continuum-continuum transitions, photoabsorption from
the autodetaching state, photoabsorption from the initial
state into an alternative continuum, and spontaneous ra-
diative decay. We have also made the rotating-wave ap-
proximation throughout the work.

Because we neglect all continuum-continuum cou-
plings, we cannot expect the present work to describe
properly the strong-field effects that can arise for continu-
um electrons or above threshold ionization effects. More
specifically, the present model does not account for any
quiver energy' ' or ponderomotive shift of the continu-
um electron. This is not a serious drawback of the mod-
e1, however, provided we keep our laser intensities sma11

enough that the ponderomotive energy is small. The
ponderomotive shift is directly proportional to the laser
intensity, and for photon energies of order 1 eV (such as
will be of interest in this work) the ponderomotive shift is

approximately 10 cm '/(W/cm ). In the present work
we shall limit ourselves to intensities of order 10' W/cm
or less so that the ponderomotive shift is of order 10
cm ' or less. The lowest energy of the continuum will
remain at all times at our zero of energy, and "threshold
shifts" will occur in the present work only in the sense
that one discrete state is shifted below the lowest energy
of the continuum.

Two processes which prevent population trapping from
occurring, and which give a minimum width to the de-
caying dressed states, are photoabsorption from the auto-
detaching state and spontaneous radiative decay. The
former process has been discussed within the context of
laser-induced autoionization by Andryushin et al. It
also was included in the studies done by Voitkiv and
Pazdzersky. ' The latter process has been studied by a
number of authors, and can give rise to interesting
recycling effects. Of course, a major difference between
these two processes is that photoabsorption scales with
the laser intensity. The projected Green's operator
QG (z)Q can be adjusted to take these processes into ac-
count. For z in the vicinity of E, and E2, the photoab-
sorption can be included in QG(z)Q through the simple
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substitution of E2 —iI(/2 for E2, where I is the laser in-

tensity and Ig is 2m times the modulus squared of the ma-
trix element of the Hamiltonian between ~2) and the
photoabsorption continuum. Similarly, one-photon spon-
taneous radiative decay from ~2) can be accounted for
through the addition of —iy/2 to Ez, where y is the ra-
diative decay rate of ~2). Spontaneous radiative decay
from the electron continuum can also be taken into ac-
count, for z in the vicinity of E& and Ez, by minor re-
vision of QG(z)Q. ' ' These processes would need to
be accounted for in modeling real atoms.

A first-order correction to the rotating-wave approxi-
mation can be obtained by substituting E, —2"(—2'}
for E, in the formalism. ' The size of this shift is pro-
portional to and less than A I, and in our model depends
on the value of P, . More generally, the precise character
of the shift introduced by the counterrotating term de-
pends on the structure of the entire continuum, which
our simple model couplings do not take into account. Be-
cause of the smallness of the shift, as well as the inability
of our model couplings, which were chosen to model
threshold behavior, to account for details in the structure
of the entire continuum, we have not included any
correction to the rotating-wave approximation in our
analysis.

4

I

q 0

q 24

0. 1 0. 2

ENERGY (eV)

0. 3 0. 4

III. POLE APPROXIMATION DISCUSSION

ReA12(E+iO)
q(E)= —ImA, 2(E +i 0 }

V,2+ReX' (E+iO)
(3.1)

mViE VE~

For our couplings we have from (2.9)

In many works involving the decay of prepared sys-
tems, one makes the pole approximation (PA), which, in
the present context, is equivalent to neglecting the real
parts of the various self-energies. (One form of the PA is
to treat the real parts of the self-energies as constants in
energy, but throughout this work we will take the PA to
consist of the more extreme approximation of neglecting
the real parts entirely. ) Because we have exact expres-
sions for the self-energies within this model system, we
are able to examine closely the validity of the pole ap-
proximation within various contexts. For example, the
Fano q parameter is given by '

2.5 7.5 10

ENERGY (eV)

FIG. 2. Fano q parameter vs continuum energy as given by
Eqs. (3.1) (solid) and (3.3) (dashed). The pole approximation has
not been made in the former case, but has in the latter. (a) is a
closeup of the low-energy region of (b). Various parameters
have been set as follows: A, = IOO cm ', P, =l eV, P, =O. I
eV, 3, /I =2X10 ' cm '/(W/cm'), V~&/&I =6.73 X 10
cm-'/(W/cm')'".

p(P3/2P3/2)1/2/t g [(P P )1/2 E]ReX' (E+iO) =
[(g )1/2+(P )1/2]

I [(P P )1/2 E]2+E[(P )1/2+(P )1/2]2I
(3.2)

In the PA, one neglects the term ReX' (E+iO) relative
to V» in the expression for q, and writes simply

Viz
q «)pA=

1E E2
(3.3)

The pole approximation is well known not to be valid
near a continuum threshold. This conclusion is illustrat-
ed in Fig. 2, where we compare the full q parameter as
given by (3.1) with the pole approximation q given by
(3.3) for a case in which 0& V, 2 & ~ReX' (0+iO)~. We

note that

—2AI AqReX' (0+iO)=
(p p )1/4[(p )1/2+(p )1/2]

(3.4)

is always negative, so that for this case, q and qpA have
different signs close to threshold. The plots are equal at
only one point, that being at E =(p,p2)'/. The plots
clearly show the possible importance of ReX' in evaluat-
ing q at energies close to threshold.

The limitations of the pole approximation can also be
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[e(E)+q (E)]'
1+a(E)2

(3.5a)

exainined in the context of the resonance profile of the
autodetaching state, which is given by '

s

1.5 .

gX

I

t

E —Ez —ReA22(E +i0)
—ImAzz(E +i 0}

(3.5b)

IV. TIME DEVELOPMENT
AND STRONG-FIELD EFFECTS

Using the methods described elsewhere' the time t

population amplitude for the two discrete states can be
written, after the change of variable y = —iz' to elimi-
nate fractiona1 powers and multiple Riemann sheets,

t

(lip(r)&= . g, ' f dy

N(y, )
W(y, ]/'t e '"/ ),

D'(y, )

(4.1a}

(4.1b)

In the pole approximation one neglects the
ReAzz(E+i0) appearing in the definition of e, and uses

Q pA rather than q. Figure 3 shows the resonance profile
as given by (3.5a) both with and without the pole approx-
imation. The parameters are the same as for Fig. 2. Both
the curvature of the profile and the energy of the Fano
minimum are modified by the PA. It should be noted
that the appropriateness of the PA may be improved with
different atomic parameters. However, a solution to the
general problem of an autoionizing state near threshold
should ideally be obtained without making the PA.

0. 06 0. 12

ENE:RGY (6V)
0. 18 0. 24

FIG. 3. Fano profiles with (dashed) and without (solid) the
pole approximation for an autoionizing state near threshold
differ in shape and in their predictions of the energy of the Fano
minimum. The autodetaching state has energy E2=0.1 eV.
Other parameters are the same as in Fig. 2.

(2IP(r) &
= p(y. ) ipzt

dy
ni . D'(y ) e y —

y,

&(y, )
W(y &te ™/4).

D'(y, )

(4.1c)

(4.1d)

In (4.1a) and (4.1c) the contour of integration c' in the y
plane runs from —i ~ on the negative imaginary axis, to
the origin, then along the positive real axis to + ~. Any
poles encountered along these axes are to be avoided by
moving into the fourth quadrant. The quantities N(y),
S(y), and D(y) are given below. The y in Eq. (4. 1)
represent zeros of D(y), and D'(y) represents the deriva-
tive of D(y). The W function is closely related to the
complementary error function. The functions X, 5, and
D are, letting r =2(P,P2)' l[(P])' +(Pz)'/ ],

N(y)= —y [y+(P, )'"]'[/I P [y +(Pz—}'"]'(y'+Ez}j

~(y}=—»I I' [y+(P }'"]'[»+(P}'"1'—«[y+(P }'"][»+(P}'"l(~ ~ P P )'"j

(4.2)

(4.3)

D(y)=y I 1 j+y I2[(P, )'/ +(Pz)'/ ]j+y IE, +Ez+Pi+Pz+4(P, Pz)'/ j

+y f2((p])' pz+(pz)' p]+(E]+Ez)[(p])' +(pz)' ]j j

+y'jp]pz+EIE2+«]+Ez}[pl+p2+4(plp2} ] (pz/12+p] ~1} ~ V]2~ j

+y3I 2(E +E )[(p )I/2p +(p )I/2p ]+2E E [(p )I/'2+(p )I/2]

—2[(P )' P2A2+(P )' P /t]] —
2~ V]2~ [(P )' +(P )' ]j

+y I (EI +E2 }plp2 E]E2[pl+pz+ (p]p2) ] pl ~ 1(p2 2 } p2 2(p]+ I }

—
I I']21'[p]+pz+4(p]pz)'"]+2V]zr ( ~] ~zp]pz)'"j

+y '
I 2E I Ez [(pl }'"pz+(pz }'"p]]—2[E]pz ~ z(pl }'"+Ezpl ~1(pz }'"]

2~ y ~2[(p )I/2p +(p )I/2p ]+2@ r( g g p p )I/2[(p )I/2+(p )I/2]j

+y l EIE2plp2 E]plpz ~ 2 E2plp2 ~ I +plpz~ I ~ 2 r plp2 ~ I ~ 2

—
I &]zl'p]pz+2I']2«(~] ~2} p]pzj . (4.4)
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t (ne)
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FIG. 4. Solid curve shows the probability of the electron's
being in the continuum I ~E ) ) a time t after the laser is turned
on. The dashed and dotted lines show the populations of states

~
1 ) and ~2), respectively. Parameters that are not as in Figs. 2

and 3 are 32=0.01 cm ' (so that the autodetaching rate is
small compared with that of Figs. 2 and 3), I=1.00X10
W/cm'. The laser detuning is zero, i.e., E& =E2.

Figure 4 shows the time development of the popula-
tions for a case in which the coupling between the two
discrete states is strong compared to the other couplings
(i.e., for large q). The population of the continuum,
which we have calculated as 1 —~(l~g(t)))—~(2~$(t)) ~, increases nonlinearly in a familiar stair-
case form as the electron population undergoes Rabi cy-
cling between the two discrete states. [Throughout this
work we shall refer to the time t population of the contin-
uum [ ~

E ) J as the time t photodetachment probability.
We note, however, that if the laser is turned off at time t
and if the state ~2) is autodetaching, then the population
of ~2) will subsequently decay into the continuum, in-
creasing the detachment probability to 1 —((1~$(t) ) ~

. ]
For the parameters of Fig. 4, the probability of detach-

ment increases to a final value of 1 at times beyond the
range of the graph. However, for other parameters, it is
possible to trap population within the discrete states, so
that even the long-time photodetachment probability is
less than unity.

Before discussing in detail how the trapping phenome-
na arise in our formalism, we briefly review the usua1
resolvent description of the decay of a single prepared
state ~1). The matrix element of the Green's operator,
( 1 G (z)

~
1 ), when considered as a function of the com-

plex coordinate z, has a cut running from the threshold of
the continuum (which for us will be E=O) to infinity
along the positive real axis. Because of the cut there is
more than one Riemann sheet, and, if the state can decay
into the continuum, then (1~G(z)~1) has a pole z, , near
E„in the fourth quadrant of the second Riemann sheet.
This pole can be thought of as representing the decaying
state

~
1)—its real part gives the energy of state

~
1) (as

shifted by the interactions considered} and its imaginary
part gives half the width or decay rate of the state (in

units where fi= 1). The pole z& is the z which solves the
equation

z E—, —X"(z)=0,

where X"(z) has different forms on the two sheets. The
state is at the threshold of the continuum and thus at a
point of stabilization if z, =0. Such a solution occurs if

E,——X"(0)=0. In the present work we have chosen
our couplings so that XJJ(0)= —AJ. For a one discrete
state system satisfying this condition, the shifted state
will lie at the threshold of the continuum if E, = A &. It
will decay if E, & A „but will be stable if E, & A, . Fur-
ther, if E, is close to threshold and ReX"(z) is slowly
varying in the vicinity of z=0, then E, —A, will provide
a first approximation to the energy of the state.

In describing the decay of two coupled states one typi-
cally finds two poles in the fourth quadrant of the second
sheet, which can be interpreted in terms of decaying
dressed states, with again real parts corresponding to en-
ergies of the dressed states and imaginary parts corre-
sponding to half the decay rates. These poles are the
poles of the projected resolvent operator QG(z)Q of Eq.
(2.8) and are the solutions of det I Q [z H-
—A(z)]Qj =0. In this context a dressed state becomes
stable when the imaginary part of the pole goes to zero,
i.e., when there is a solution for real z 0 or for
z, =E —i0 for some E&0. If we make the change of
variable y = —iz ', then the first Riemann sheet of the z
plane is mapped to the right half (Rey) 0) of the y plane,
and the second sheet to the left half of the y plane. A
pole z in the fourth quadrant of the second sheet of the z
plane, representing a decaying state, is mapped to a pole
y in the third quadrant of the y plane. The trapping con-
dition z~ =E i'0 is re—placed by yj = —i&E. A pole on
the negative real axis of the first sheet of the z plane,
which can represent a stable state below threshold, will
be mapped to the positive real axis of the y plane.

The complex dressed state energies for our system can
be obtained by numerically finding the solutions of
D(y}=0. There will, in general, be eight roots of the po-
lynomial, but in most situations it is simple to identify the
two that can be thought as relating to the energies of the
complex dressed states. A convenient method of plotting
the dependence of the energies and decay rates of the de-
caying states on a parameter such as the laser intensity I
is to superpose plots ' of Re(z ) versus I and
Re(z )+~1m(z, )~ versus I. In Fig. 5 we plot the energies
and widths of the complex decaying dressed states versus
laser intensity for certain atomic parameters and fixed
laser frequency, while in Fig. 6 we plot the energies and
widths as a function of E, (and thus the laser frequency)
for fixed laser intensity and the same atomic parameters.
The energies and widths plotted were obtained by map-
ping the two roots of D (y) that we identified as represent-
ing the dressed states from the y plane to the z plane (to
z = —

y, ). In Fig. 6, a third root is also drawn (using a
curve with short dashes} for laser tunings less than 64
cm '. This third root lies on the negative real axis of the
second Riemann sheet. The stabilization of the upper
state at the Fano minimum and the stabilization or desta-



2604 S. L. HAAN, M. WALHOUT, AND J. COOPER 41

80
E
0

40

LLI

Z
LJ

INTENSITY ( GWic m~)

FIG. 5. Dressed state energies Re(z, ) {solid lines) vs laser in-

tensity. The dashed lines give information about the
dressed state half-widths

~
Im(z, ) ~

—the upper curves give
Re(zz )+25~1m(zz ) ~, and the lower curves Re(z, )+2.5 ~Im(z, ) ~.

(The multiplicative factors of 2.5 and 25 are merely included for
graph clarity. ) Parameters that differ from those of Fig. 2
are A &/I =2X10 cm '/(W/cm ), V»/&I = —6.73X10
cm '/(W/cm')'~', Az =10 cm ', Pz=0.4 eV, E~ =0.01
eV=80.65 cm '. The detuning E] —E, is —16 cm '. The
upper state has width zero [Im(z2) =0] at (to three significant
figures) I = 1.85 X 10 W/cm'. [The upper curve does not have
Re(z~)=E& in the limit I~0 because the autodetaching in-
teraction shifts the state slightly. ] For these atomic parameters,
q(E2) = —6. 19.

bilization of the lower state at continuum threshold (i.e.,
at dressed state energy zero) are both clearly visible in the
graphs. (In order to demonstrate the state-shifting effect
clearly while keeping the laser intensity below 10
GW/cm, we have increased the values of At/I and

150
C
0

V,z/&I from those used in the earlier figures. ) Under
certain conditions it is possible for both the complex
dressed states to be stable, i.e., for both trapping condi-
tions to be met simultaneously. This occurs in Fig. 5 at
laser intensity 1.85 GW/cm (to three significant figures),
but does not occur in Fig. 6. We note that this the "dou-
ble trapping" phenomenon can only occur if at low inten-
sities both states lie between the continuum threshold and
the Fano minimum. This condition requires q & 0.

The roots near the continuum threshold exhibit in-
teresting behavior near the stabilization intensity or fre-
quency. For example, the root representing the lower
state of Fig. 5 does not move directly from the fourth
quadrant of the second Riemann sheet through threshold
onto the negative real axis of the first sheet as the laser
intensity increases. Instead, and prior to stabilization, it
moves from the fourth quadrant of the second sheet into
the third quadrant of the second sheet, and then onto the
negative real axis of the second sheet. There is also a
conjugate root which moves from the first quadrant of
the second sheet into the second quadrant of the second
sheet, and then onto the negative real axis. These two
roots then move in opposite directions along the negative
real axis. One of them moves to the origin, and then
moves back along the negative real axis of the first sheet.
(This effect is barely discernible on the graph where there
is a small "bump" near where the lower state crosses
E=O.) The other root, which is not shown on the graph,
moves away from the origin on the real axis of the second
sheet. The motion is simpler in the y plane —conjugate
zeros come together on the negative real axis, and then
move apart along the real axis, with one of them moving
through the origin onto the positive real axis. Thus, if
one thinks of the roots as representing the decaying
states, we have for certain intensities the interesting
phenomenon of a state lying below the continuum thresh-
old, but maintaining a nonzero width.

The root(s) representing the lower state in Fig. 6 exhib-
its similar interesting behavior. A closeup of the behav-
ior near the destabilization threshold is shown in Fig. 7.
For laser tunings less than 64.0 cm ', there is a root on
the negative real axis of the physical sheet; this root is

50
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I

A 0
Laf
M
M
4d
K
A

LRSER TUNING (cm ')

FIG. 6. Dressed state energies Re(z, ) (solid and fine dashed
curves) and Re(z, )+10~1m(z, )~ (long dashes) vs E, (the laser
tuning relative to the continuum edge) for laser intensity
I=1.71 GW/cm . Other parameters are as in Fig. 5. Second
sheet roots for which Re(z, ) (0 are denoted by the fine dashed
curves.
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FIG. 7. Closeup of the "threshold" region of Fig. 6, showing

Re(z, )+[1m(z, )~ vs E, .
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denoted by the solid curve in Figs. 6 and 7. There is also
a root on the negative real axis of the nonphysical sheet;
this root is denoted by the curve with short dashes in the
lower left of the figure. At 64.0 cm ', the first root
reaches the origin, and then with increasing laser fre-
quency, it moves back along the negative real axis of the
second sheet until meeting the second root at tuning 64.4
cm '. The roots then separate and become conjugate
roots in the second and third quadrants of the second
sheet; they reach the first and second quadrants (i.e., have
energy greater than zero) at tuning 64.8 cm '. In both
Figs. 6 and 7, curves with short dashes denote second
sheet roots which have negative real parts.

For completeness, we also include information on the
locations of the other roots for the conditions of Figs. 5
and 6. The roots not mentioned above all lie on the nega-
tive real axis of the second Riemann sheet. None of them
lie closer to the origin that 2800 cm ' (0.35 eV).

Because of the complexity of D (y), it is not a simple
matter to predict analytically the conditions necessary for
stabilization of the complex dressed states. However, one
can show very simply that D(y) has a root at y=O (and
thus z=O) at laser intensity I such that

Ei(E2 —A2)I=
[vr ( A

2)' //] +v (—E2 —
A 2 )

where

(4.5)

v = A, /I, Ju= V, z /&I .

Equation (4.5) clearly gives a positive I when (for exam-
ple) E, and E2 —A z are both positive. (Since A 2 can be
thought of as a shift of the upper state due to the
configuration interaction with the continuum, the condi-
tion E2 —A2&0 is equivalent to the condition that the
upper discrete state lie above the threshold of the contin-
uum for I=O.)

The trapping condition for the higher-energy dressed
state is more difficult to write down. Numerically, the
condition is not difficult to find because trapping can only
occur at an energy equal to the energy of the
Fano minimum, ' which can be found by setting
s(E)= —

q (E), using Eqs. (3.5b) and (3.1), and solving the
resulting equation for E. (All the laser intensity and
frequency-dependent quantities cancel out, so that the lo-
cation of the minimum is independent of laser parame-
ters. ) One then can set y = i v'E in D(y), a—nd use the
trapping condition D ( i &E ) =0 —to obtain coupled
linear equations for the laser intensity and frequency in
terms of the various atomic parameters.

Figure 8 shows the photodetachment probability and
the populations of the discrete states for the double trap-
ping case (in which both the complex dressed states are
stable) which occurs in Fig. 5 near laser intensity 1.85
QW/cm . In this case, the photodetachment probability
rises to an asymptotic value of 0.36, and the trapped pop-
ulation oscillates indefinitely between the two states ~1)
and ~2). We emphasize that these "stable dressed states"
of the model arise not only through the interaction be-
tween the discrete states, but also through the interaction
of the discrete states with the continuum. We note, for

P(t)
0. 5

/'y
I

I
I
I
I

e
~ I

~ ~I
I

/4
I l
I l!';
I l

I ll

0. 25

0. 6 1.2 1.8 2. 4

t (ps)

FIG. 8. In the case of double trapping, the probability of de-

tachment rises quickly to a constant value. Rabi oscillations be-
tween the product states continue indefinitely. Atomic parame-
ters are as in Fig. 5, with I = 1.85 X 10 W/cm'.

example, that if one were to neglect the interaction with
the continuum, then one would expect the dressed states
to be separated in energy by bE = [(Ei Ez) +4—V iz]'
which for the parameters of Fig. 8 is 60 cm ' (7.4 meV).
However, the pole locations are numerically found to be
—2 cm ' and +101 cm ', for a net energy separation of
bE'=103 cm ' (12.8 meV). Correspondingly, the cy-
cling time is not 2M/b. E =5.6X 10 ' s, but is
2mB/hE' =3.2 X 10 ' s.

It is not always possible to identify two of the roots of
D(y) as simply representing two decaying dressed states.
To illustrate this difficulty, we show in Fig. 9 the motion
of three of the roots of D (y) with increasing laser intensi-
ty. At low laser intensities, two of the roots can be
identified with the atom-field product states; each of these
roots also has a conjugate root (of course, both the roots
and their conjugates are on the second Rieinann sheet),
and the other three roots lie on the negative real axis of
the second Riemann sheet. With increasing laser intensi-
ty, one of the "dressed state" roots moves toward lower
energy, eventually having a real part less than zero while
still maintaining a nonzero imaginary part. Simultane-
ously, one of the three second sheet negative real axis
roots moves along the axis toward the origin. At an in-
tensity of approximately 10.9 GW/cm, the two moving
roots have equal real parts. As the intensity is increased
further, the real axis pole moves to the origin and appears
on the first sheet at the intensity given by Eq. (4.5).
Meanwhile, the root with nonzero imaginary part contin-
ues to move toward lower energies; its imaginary part in-
creases rapidly in absolute value once its real part is less
than the real-axis zero. At high laser intensities, the pole
which lies on the negative real axis of the first sheet can
be thought of as representing a stable dressed state.
However, during the "crossover" period, neither root can
be identified as solely representing the lower dressed
state, and both are important in calculating the discrete-
state population amplitudes.

In Figs. 10 and 11 we show the time development of



2606 S. L. HAAN, M. WALHOUT, AND J. COOPER

150

0. 75

50
K
LJx
LLI

P(t)
0. 5

0. 25

$0

INTENSITY (GWicm~)

15 0. 2 0. 2

t (pe)

0. 3 0. 4

FIG. 9. Re(z, ) (solid curves) and Re(z, )+0.5lIm(z, }l (dashed
curves) for three of the roots z, of D(y). Atomic parameters
that differ from those of Fig. 3 are A

~
/I =2 X 10 '

cm '/(W/cm ), V~2/&I = —6.73 X 10 cm '/(W/cm )'
The laser detuning EI —E& is —505 cm '

( —63 meV). The two
lower roots have equal real parts at intensity 10.9 GW/cm'.
One of the roots moves in along the negative real axis of the
second sheet until reaching the origin, and then moves out
along the negative real axis of the Arst sheet. Another of the
roots lies where the laser is tuned at weak intensities, but then is
shifted continually downward with increasing laser intensity.
Its minimum width occurs when its real part is equal to the real
part of the root on the negative real axis, at —71 cm '

(
—8.8

meV), and is lIm(z2)l =14.5 cm ' (1.80 meV). For these atomic
parameters, q = —0.93.

the photodetachment probability for the system of Fig. 9,
at laser intensities 11.1 and 11.5 GW/cm, respectively.
At the lower of these laser intensities, one root of D(y)
lies on the negative real axis of the second sheet, and one
root lies in the third quadrant of the second sheet (i.e., it
lies "below threshold, " but maintains nonzero width); for
this case all population is eventually transferred to the

FIG. 11. Time development as in Fig. 10, except at laser in-

tensity 11.5 GW/cm', showing partial trapping of the popula-
tion in the discrete states and decaying oscillations between the
discrete states.

&1 vy, &
'

l&bl»l'= 1+I«
(E6 E)—(4.6)

continuum. At the higher of these intensities, one of the
roots lies on the negative real axis of the first sheet, and
some population does not decay into the continuum. We
note in Fig. 11 the decaying oscillations between the two
discrete states; their populations eventually reach con-
stant values of 0.26 and 0.02, reflecting their respective
contributions to the single stable dressed state. We also
note the oscillations in the total photodetachment proba-
bility. These latter oscillations are in contrast to detach-
ment probabilities calculated in the pole approximation,
in which the detachment probabilities display a staircase
form, such as in Fig. 4, and never decrease with in-
creasing time.

We note in comparing Figs. 10 and 11 that there is no
dramatic population trapping effect when one of the roots
jumps onto the real axis. It has previously been shown '
that for a single discrete state

l
1 & coupled to a continuum

t lgz & I so that a bound state lb & of energy Eb is formed,
the population of the bound state (for a system initially in
ll&) isgivenby

0. 75

(t)
0. 5

0. 25

It was also noted that in the limit Eb1'0 for an s-wave
continuum, in which l( 1 l Vlyz & l is proportional to E'
for small energies, the integral in (4.6) diverges, so that
l (bl 1) l approaches zero. This result also applies for the
model of interest in the present work, in which there is an
autodetaching state l2 & above the threshold of the con-
tinuum lE ), since one can allow lyz ) to represent the
structured continuum obtained by a diagonalization of
the l2) —

I lE & I system —it is simple to show that
0. 1 0. 2 0. 3 0. 4

t (PN)

FIG. 10. Time development of the populations of state l 1 )
(large dashes), state l2) (small dashes), and continuum [ lE) l

for the parameters of Fig. 9, at laser intensity 11.1 GW/cm .

& ll viz, &
=

& ll vlE &

+ [& llvlE&+z"(E+io)](2I vlE&
E E2 —X (E+iO)—

(4.7}
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FIG. 15. Time development of the populations of state ~1)
(large dashes), state i2) (smaller dashes), and the continuum
(solid curve), for the conditions of Fig. 14 at laser intensity
I=3.0 GW/cm . Since both dressed states have Im(z, ) =0, the
oscillations continue indefinitely.

FIG. 16. Time development of the populations of state ~1)
(large dashes), state i2) (smaller dashes), and the continuum
(solid curve), for the conditions of Fig. 14 at laser intensity
I= 10.0 GW/cm .

reaches as asymptotic value of 0.50, and the discrete state
populations each approach 0.25, representing their con-
tributions to the stable dressed state.

V. SUMMARY AND DISCUSSION

We have presented an exact solution of the time-
dependent Schrodinger equation for a model system con-
taining two discrete states and one s-wave photodetach-
ment continuum. We have shown explicitly that the pole
approximation is not a valid approximation near the
threshold of the continuum. We have examined the time
development of the populations and have observed that
transitions to the continuum are not irreversible. We
have examined population trapping effects for our model
system, and have observed that such effects can arise
through either a shift of a dressed state below the thresh-
old of the continuum or a shift of a dressed state through
the Fano minimum. We have also observed that under
certain conditions, both trapping conditions can be met
simultaneously. Under other conditions, the model
features a "decaying dressed state" with energy below the
lowest energy of the continuum. We have noted that at
high laser intensities there is no unambiguous minimum
laser frequency needed to detach the electron —there is
instead a smooth transition from partial photodetach-
ment to total photodetachrnent as the laser frequency is
increased. Finally, we have shown that for the case in

which the excited state of the negative ion lies below the
threshold of the continuum, the laser interaction between
the two discrete states can be used to shift the upper state
above the threshold of the continuum, where it can decay
through autodetachrnent. Our studies have involved an
s-wave continuum only. One can expect qualitatively
similar results for continua with other angular momenta,
although some behavior very close to threshold could be
strongly influenced by replacing the E' dependence of
Eq. (2.2) with a smoother E or E' dependence. De-
tails of such effects will be considered elsewhere.

While we have presented an exact solution for our
model, it must be remembered that a number of effects
were neglected in choosing the model. Indeed, some of
the effects we have studied within the model (such as the
behavior of the dressed states shown in Fig. 7) are in fact
smaller than other effects which have been ignored in the
model. These other effects would need to be included in
any complete description of the photodetachrnent process
within a real negative ion.
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