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In this paper a quantum electrodynamical theory of cooperative Raman scattering in fluids is

developed. The process is one in which pairs of molecules undergo concerted Raman transitions via

an intermolecular energy transfer mechanism. The formalism is also extended to chromophore
pairs in which intramolecular energy transfer is involved. Using the Power-Zienau-Woolley mul-

tipolar Hamiltonian, intensity equations of the Kramers-Heisenberg type are derived which are val-

id over all regions of molecular separation. In the near zone it is illustrated how the intensity of
cooperative scattering is simply that obtained by consideration of the instantaneous response of one
molecule to the scalar field generated by another. Within this regime it is shown that the rate of
scattering has the familiar R dependence on intermolecular separation R associated with in-

teracting induced dipoles. In the far zone it is demonstrated that the fully retarded and causal in-

teraction between molecules is mediated through virtual photon coupling, and that this leads to a
result for the intensity that dies off with R . This long-range-interaction contribution to the
overall scattering intensity is generally ignored in collisional treatments of intermolecular interac-
tions, yet is likely to be of more significance than higher-order multipole terms in near-zone calcula-
tions. Finally it is shown how bands in a Raman spectrum due to cooperative scattering effects may
be identified by their unique pressure characteristics, or by observation of light scattering that
occurs outside the interaction volume of the laser beam. In the case where the scattering occurs be-
tween molecules or chromophores held in a fixed orientation with respect to one another, it is
demonstrated how detection may be facilitated through the manifestation of a differential scattering
effect.

I. INTRODUCTION

It is well known that the environment of a molecule
can affect its optical scattering characteristics. The pres-
ence of solvents with high refractive index, for example,
can lead to local field enhancements and hence intensity
increases. Such solvent effects, which can occur even at
moderate densities, are known to lead to solvatochrornic
effects and are often associated with changes in vibration-
al frequencies of the solute. Such modifications to the
solute spectrum are generally pressure dependent, indi-
cating that they arise as a result of molecular proximity
effects.

One such mechanism by which these effects are medi-
ated is the dipole-induced-dipole' (DID) mechanism, in

which the interaction potential has the familiar R
dependence on molecular separation. The extreme dis-
tance sensitivity of this mechanism is such that phenorne-
na in which it is implicated are normally referred to as
collisional. In fact, most DID calculations are based on
nonrelativistic treatments which fail to give a result gen-
eral for all regions of molecular separation. This occurs
because of the assumption that the response of one mole-
cule to the presence of another is mediated through the
instantaneous coupling of the neighboring molecule's
electrostatic scalar potential (see, for example, Ref. 6).
This approach produces results which are, therefore, only
valid in regions where relativistic contributions are negli-
gible (the near zone).

More rigorous relativistic quantum electrodynamical

treatments, which consider the interaction of neighboring
molecules as being mediated by virtual photon coupling,
show that the interaction potential at large separations
(the far zone) in fact dies off as R, reAecting the classi-
cal limit for radiative energy transfer. Consequently,
significant coupling effects persist even in the absence of
collision in this region. Craig and Thirunamachandran
have derived equations for the Maxwell field in the vicini-
ty of a molecule by consideration of how the vector po-
tential is modified in relation to the field in vacuo. In
their treatment, conducted within the Heisenberg repre-
sentation, the molecule plays a passive role via its polari-
zability. The resultant modifications to the vacuum field
are manifest in nonunity refractive indices and other re-
lated local field effects. However, no net energy is
transferred in the associated scattering processes.

A spectroscopically more interesting process is one in
which molecules of the ensemble interact inelastically
with the radiation field. Here bimolecular effects are
especially pronounced in connection with inner coordina-
tion shells, hydrogen-bonded species and van der %aals
complexes. In each case the interaction between mole-
cules can lead to modifications in the polarization proper-
ties of the scattered light, Raman frequency shifts, and
changes in the pressure characteristics of Raman
bands. ' ' Multiple scattering processes can also lead to
other interesting features in a Raman spectrum. For ex-
ample, the interaction between two centers can provide a
mechanism for energy exchange such that the process

A +B +Am~ A *+B +%co'
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occurs, leading to the possibility of observing bimolecular
combination bands in regions where neither A nor B
shows normal Raman activity, i.e.,

))t(co —co') =(E ~ +Etttt),
A'( co —co' )WE ~,Etrt),

(1.2)

(1.3)

II. THEORY

Within the framework of quantum electrodynamics
(QED) the effect of interacting molecules or chromo-
phores can be described in terms of virtual photon cou-
pling, such that the interactions which occur between
charges in different molecules propagate with the speed
of light. In this case it is therefore necessary to ensure
that all molecular interactions are fully retarded, taking
account of the finite speed of propagation. In this treat-
ment we utilize the multipolar Hamiltonian of Power and
co-workers. ' ' This form of interaction Hamiltonian
contains no static term and is manifestly causal. In this
sense it has a distinct advantage over the minimal cou-
pling formalism as derived in the Coulomb gauge, which
describes radiation-molecule interactions in terms of the
scalar potential y and the transverse vector potential a .
In this representation both y and a are nonlocal and not
fully retarded. ' Hence the interaction Hamiltonian in-
cludes static contributions which give rise to a false in-
stantaneous precursor signal. In any complete calcula-
tion the static signal, which arises from terms involving
a, exactly cancels the longitudinal electrostatic interac-
tion, giving a Lorentz-covariant result. Of course, either
choice of Hamiltonian gives the same result ' how-
ever, by adopting the multipolar Hamiltonian it is possi-
ble to ensure causality from the outset greatly simplifying
subsequent calculations.

Assuming that the radiation wavelength is long in
comparison to the molecular dimensions of the site at
which the radiation interaction occurs, it is valid to re-
tain the leading, electric dipole, term in the multipolar

where the Raman transition at A is designated
~a'&~~a &, and that at B is ~P'&~[P&.

This type of synergistic Raman scattering may also
occur as a result of coupling between chromophores in
the same molecule. Here the operation of an intramolec-
ular scattering mechanism leads to the appearance of
combination bands due to excitation of two normal
modes within the molecule. This effect is more common-
ly viewed as an induced anharmonicity in the group vi-
brations originating from the interaction between transi-
tion dipoles in the two chromophores. As we shall see,
chromophore coupling can lead to an induced chirality
manifest in the appearance of circular differential scatter-
ing (even in the electric dipole approximation), an effect
especially pronounced in Raman 90' scattering experi-
ments. This mechanism is sensitive both to the separa-
tion distance and the relative orientation of the two in-
teracting chromophores. It is, therefore, apparent that a
good understanding of this effect in normal scattering ex-
periments could lead to information about the chemical
environment of the scattering sites.

expansion. In the Heisenberg representation the interac-
tion Hamiltonian has the explicit form

H&„,(k, k, , t)= —eo 'p(g, t) d (k, A, , R&, t), (2.1)

X I
e'"'(k)a'"'(k, t)e'"'

—(A)(k}[&(x)(k t)]te —It rI (2.2)

where e'"' is a polarization vector in the direction of the
electric field, a' '(k, t) and [a' '(k„t)] are the normal
photon annihilation and creation operators, respectively,
and where for a plane wave description of the radiation
field we have a' '(k, t)=a("'(k)exp —idiot.

In this paper we define the incident laser beam in terms
of its polarization vector e'"'(k), and the scattered light
by the polarization vector e' '(k'). Within the Power-
Zienau-Woolley formalism of quantum electrodynam-
ics, ' ' all molecular interactions are mediated by the ex-
change of virtual photons, which we here designate by
wave vector p and polarization label c. By assuming that
all interactions between molecules occur outside the re-
gion of wave-function overlap, it is possible to define the
initial and final states of the cooperative scattering pro-
cess described in Eqs. (1.1)—(1.3) as

[i &=)a;P;n;0;0&, (2.3)

~f &=~a', P';(n —1);1;0&, (2 &)

where the sequence in the ket denotes, respectively, the
molecular state of A; molecular state of 8; occupation
number of the laser beam in the direction of propagation
k; occupation number of the scattered photon mode in
the direction of scattering k', occupation number of the
virtual photon states, (p, s).

In principle there are two allowed cases, corresponding
to where either (a) one center absorbs the laser photon
and the scattered photon emerges from the other center,
or (b) both the absorption and emission occur at the same
center. In each case the virtual photon essentially propa-
gates the energy mismatch between the two centers.
These two cases, which are illustrated in Fig. 1, are asso-
ciated with quite different selection rules since the former
mechanism involves an even number of photon interac-
tions at each center, and the latter an odd number. In
fact, case (a) results in the normal Raman selection rules
for the transitions at each center, while case (b) is associ-
ated with hyper-Raman selection rules at one center and
infrared selection rules at the other. In this paper we
concentrate on the case where the transitions at both A

and 8 satisfy the normal Raman selection rules, and we
therefore restrict our attention to mechanism (a}.

The rate of cooperative scattering can be calculated via
the fourth-order perturbation term in the Dyson equa-
tion, so that the evolution operator U(t, 0}for the process
is given as

where p(g) is the electric dipole moment operator for a
molecule g at a position R&, eo is the vacuum permittivi-

ty, and d is the transverse electric displacement operator
which for the mode with propagation vector k (circular
frequency to =el k

~
) and polarization A, , is given by

d~(k, A, , r, t) =i(hckeo/2V)'
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(a) (b)

(c)

FIG. 1. Two possible bimolecular scattering mechanisms; (a)
corresponds to cooperative Raman scattering and (b) distribu-
tive Raman scattering.

FIG. 2. Two collapsed time-ordered diagrams for a scatter-
ing event involving the annihilation of a laser photon at A and
creation of a scattered photon at B.

—4

U(t, O)=, T f dt, f dt, f dt, f dt~H;"„, (k, t, )H;"„,(p, t, )H~, (p, t, )H;„,(k', t4)
0 0 0 0

(2.5)

where T is the Dyson time-ordering operator. Here there
is implicit summation over virtual-photon modes, and po-
larization labels are dropped for brevity. The amplitude
of the probability for finding the system in a state

~f ) at
time t due to the interaction switched on at t=O, given
that at time zero the state was in a state ~i ), is given by
cI; (t),

c&, (t) = (f ~
U(t, O) ~i ), (2.6)

where
~f ) and ~i ) are given in Eqs. (2.2) and (2.3). To

calculate the result for cI, (t) explicitly requires the sum-

ming of all time orderings in Eq. (2.5). This calculation is
facilitated by the use of time-ordered diagrams, and Fig.
2 illustrates four typical contributions.

For the case where molecular centers A and 8 are
identical one needs to sum a total of 48 contributions al-
lowing for absorption of e' '(k) at A and scattering of
e' '(k') at 8, or vice versa. However, in what follows we
demonstrate how the cooperative scattering process may
be described in terms of the collapsed time-ordered dia-

I

grams given in Fig. 3. In this form we obtain an interest-
ing physical insight into this pairwise interaction, and its
relation to multiple-scattering processes.

To establish the equivalence of the two sets of time-
ordered diagrams we define a canonical transformation
such that interactions of lowest order are eliminated from
the calculation. In this way it is possible to define two
effective interaction Hamiltonians which describe the na-
ture of the scattering process at the two molecular sites.
We start by defining the Hamiltonian H, which, for the
cooperative scattering process, may be written as

H =Ho+H;"„,(p, e)+H;„,(p, e)+H;"„,(k, A, )+H;„,(k', A, '),
(2.7)

where 00 represents the Hamiltonian of the uncoupled
molecule-radiation system, and subsequent terms denote
coupling perturbations. By methods described in detail
elsewhere, ' it can be proven that this Hamiltonian is
just one of a set of Hamiltonians of the form

H =Ho+H;"„,(p, e)+H;„,(p, e)+H;"„,(k, A, )+H;„,(k, k')

i [[S,HO]—+ [S,H;"„,(p, e)]+[S,H;„,(p, e)]+[S,H;"„,(k, A, )]+[S,H;„,(k, A, ')]I —
—,'[S,[S,HO]]+ (2.8)

whose Lagrangians all give rise to the same Heisenberg
equations of motion. Here S is termed the generator, and
may have any form whatsoever, and the ellipses represent
higher-order terms. Clearly the Hamiltonian defined in
Eq. (2.4) is obtained by setting S=const, since then the
generator commutes with all operators and only the
zeroth-order terms survive.

i [S,HO]=H, "„,(k, A, )+H,„,(k', A, ')

=i [S",Ho]+i [S,HO] . (2.9)

As mentioned above the generator S is chosen such
that interactions of the lowest order are eliminated from
the calculation, in which case it obeys the relation
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(a)

where E„=E,—E„" and the state labels of A and the
virtual photon have been suppressed since they appear
unchanged at each end of the Dirac bracket; in writing
Eq. (2.11) we have also assumed that there are no one-
photon resonances. The result for the generator S" is
directly analogous to that above, and can be obtained by
swapping the labels 8~ A and k'~ —k.

Having explicitly calculated the form of the generator
S it is possible to obtain the form of the transformed in-
teraction Hamiltonian. By substituting Eq. (2.11) and its
counterpart of S" into (2.10), we obtain the transformed
Hamiltonian for the system. Note that the commutator
terms [S,H;"„,(p, e)] and [S,H;„,(p, e)] contain all neces-
sary interaction terms to describe the cooperative process
defined in Eqs. (2.5) and (2.6). We thus define two
effective interaction contributions

FIG. 3. Two collapsed time-ordered diagrams for a scatter-

ing event involving the annihilation of a laser photon at A and

creation of a scattered photon at B. =H,",(k)+H'„(k ) . (2.12)

«(" k'}= '( [S Hint(p ~)]+[S'H;.t(p e)]]

+ [S,H;„,(k', A, ')] I + (2.10)

where the ellipsis represents higher-order terms. Equa-
tion (2.9} implies that the generator S is a function of the
two interaction Hamiltonians H "(k,A, ) and H ( 'k1'), ,

and this in turn implies that the last two commutators in

Eq. (2.10) are second order in H "(k,A, ) and H (k', A, '),
and will therefore not contribute to the process under
scrutiny. For similar reasons all higher-order terms are
of little interest.

The next step in the calculation is to evaluate the gen-
erator S defined in Eq. (2.9). Assuming that the basis
states are all orthonormal eigenfunctions of the Hamil-
tonian Ho, we find that

With this choice of commutator, we find that Eq. (2.8) be-

comes

H =Ho+HAt(p, e)+HBi(p, e)

i I [S—, H;"„,(p, e)]+[S,H;„,(p, e)]+[S,H;"„,(k, A, )]

Operating on either side of Eq. (2.12) with the initial and
final states of the system defined in Eqs. (2.3) and (2.4), we
find that the matrix element for the effective Hamiltonian
for the transition ~i ) ~ ~f ) is simply

(f~H«(k, k')~i) = —eo a;",(k)d (p)d, (k)

—eo a,"(k')d, (p)dj (k') . (2.13)

a'r ra a'r ra

(2.14)

Written in this form the meaning of the commutator
terms is clear, since the rank-two tensors appearing in
Eq. (2. 13) are none other than the Raman polarizability
tensors for molecules A and 8, defined as

&1(k', ~');» IS'Is, ;0(k', X) )

i ((k', A,—');» [H;„,(k', I,'}/s;0(k', A, ) )

E,~ —yak'
(2.11)

(2.15)

Using the effective interaction terms and applying
second-order perturbation theory we find that

U(t, 0)= T f dt, f dt, H,"~(k, t, }H,~(k', t, )1 2 eff 1

(i fi) «, f «, f «, f «, H,"„, (kt&)H;"„,(p, t )Hz;„, (p, t, ) H;„, ( kt )4 (2.16}

This is an important result since it vindicates the description of cooperative Raman scattering by the collapsed time-
ordered diagrams given in Fig. 3, in which each molecular center undergoes a scattering event involving a virtual pho-
ton.

Substitution of Eqs. (2.12)—(2.16) into (2.6) gives us the explicit form for the time-dependent probability ainplitude.
Carying out the necessary time integrations, applying closure, and performing the summation over the polarizations of
the virtual states, leads to the result
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e
cf;(t)=

—i(k'R —kR )b a

4e V
(nkk')' a;",(k)aki(k')e;(k)ei(k')

()
~ (K +Kp)(Ktt+p) (K p—)(Ktt+p)

t'ct(K +K );.R ict(Ke —p)

(K +Kp)(K +p) (Kti p)—(K +p)
(2.17)

where 51k is the Kronecker delta tensor, the vector
R=(Rb —R, ) defines the location of center B with

respect to A, and

E —Ack
K (2.18)

Etpt3+ lick
'

(2.19)

In the conventional Fermi golden rule treatment, the
second and fourth terms within large parentheses in Eq.
(2.17) are usually ignored, on the grounds that they are
highly oscillatory, and that the sum over virtual states
will therefore lead to a vanishing contribution. However,
it is apparent that the poles in the denominators result in

I

—] (k'.R —k R )b a

cf;(t)= (nkk')'~ a,".(k)aki(k')e;(k)ei(k'}
16%262 V

significant contributions whenever the energy of the vir-

tual photon satisfies energy conservation for absorption
or emission at each molecular center. Thus in coopera-
tive processes the usual Fermi treatment has to be
modified. In the limit of a large quantization volume, it
is possible to replace the summation over all virtual states
by an integral over p space. Care must be taken, howev-

er, since in the special case where molecule A remains in
its ground state after cooperative procedure, stimulated
emission and absorption processes favor a process where
the virtual photon exists in the mode of the laser radia-
tion. The corresponding term in the summation is then
weighted with an additional factor of n ' at each photon
vertex. Consequently, on resorting to spherical polar
coordinates, and carrying out angular integrations, we
obtain

xf (
—V5 +V Vk)

—I(k'R —kR )b a

ict(K +Kt)) ict(K —p)

(K +Kt) )(Kp+p) (K p)(Ktt+p)—
ict(K +K&) ict(K& —p)

+
(K +K&)(K +p) (K& p)(K +p—)

4e V
(n k k')' a;"(k)aki(k')e;(k)ei(k')(5jk k~kk )—

ict (K + Kit);),.R
X

(E +Et')(Kt)+k)

tet(Kc, p)
1 ),)t.R

(

—tet(K +Kp)

(K —k)(Kt)+k) (K +Et')(K +k)+
(Kt) —k)(K +k)

(2.20)

The term involving (n )' corresponds to the stimulated emission-absorption case mentioned above. Over physically
measurable time scales, this term will be of negligible importance unless the scattering at A is elastic; for the specifically
inelastic scattering process considered in this paper, the term may be dropped.

In order to evaluate the integrals in p space, one notes that, on the energy shell (K = —Kt)),

ict(K +K ) ict (K —p) ict(K +K ) ict (K& —p)

f sin(pR) (e e —1} (e ' —1) (e e —1) (e e —1)
0 iR (K +Kt))(Kt)+p} (K p)(K&+p) (K —+K&)(K +p) (K& p)(K +p)—

ict (K +K&)
sin(pR ) (e ~ —1) +

~

~

1
dp

iR (K +Kt))(Kt)+p) (K —p)(Kt)+p)

sin(pR )
~

~

0 iR

ict (K —p) ict (K —p)P
+ dp.(K p)(Kt3+p) (K& —p)(K +p)—
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Of the last two integrals the first term has no pole in the
region of integration, and is highly oscillatory. This in-

tegral is very similar to that ignored in the Fermi
golden-rule treatment of the second-order matrix ele-
ment. This term averages to zero over periods of p that
are sufficiently large, and is therefore ignored. The
fourth integrand has two simple poles in the region of in-
tegration, and cannot be ignored. Noting that the princi-
pal contribution to this integral arises from the poles, it is
possible to extend the limits of integration to ( —00, ao )

so long as we ignore all poles not previously included in
the region (0 &P & ao ). The integral involved is then easi-

ly solved by taking the Cauchy principal part. '

Performing the integration in Eq. (2.20) leads to the
following result for ct )R:

—i (k'.R —k R )b ae
cf, (t) = (ygkk')' a "(k)a (k')

8%262 v

Xe, (k)ei(k')( —V 5,„+V,V„)—
/Kpct —iK {R—ct) iK&(R —ct)

(e ' —e e ) . (2.21)
a P

The time-dependent probability Pf; ( t ) is now given by the
square modulus of the probability amplitude defined in
Eq. (2.21), and is thus

kk'
Pf, (t) =

2 a,",(k)a»i(k')e, (k)ei(k')a "„(k)a, (k')e (k)e (k')
4@0V

X (4n eo) '( —V'5, » + V, V» )—(4n eo) '( —V'5„,+ V'„V', ) R'
—1 —iK (R' —ct) —iK (R —ct) iK (R —ct)+iK (R' —ct)

X 2( —2+e s +e e ' ).
(Ka+KP)

(2.22)

Although the above result in principle represents the
correct time-dependent probability for a scattering pro-
cess from A to B, it in fact corresponds to a physically
unrealistic case where there is no imprecision in the mea-
surement of the wave vectors of either the laser or the
scattered photons. In a normal Raman experiment, how-
ever, the photodetector subtends a finite solid angle at the
scattering center, and the associated uncertainty in the
wave vector of the scattered light is accounted for by
summing over radiation modes within a small element of
solid angle around k. As in the Fermi rule treat-
ment, we convert this summation to an integral over k',
noting that the energy conserving value for ~k'~ dom-
inates at all times beyond the femtosecond regime. In
fact, the long-time limit of the integrand is a 5 function
corresponding to exact energy conservation. ' Since
the integrand is highly oscillatory everywhere except at
the pole E&= —K, the integral limits can be extended to
(
—~, ao },and the variable of integration changed to K&.

taking the principal part of the integral leads to a physi-
cally measured probability that comprises outgoing
waves only, i.e.,

kk' A
Pf,. (r) = p», a,"(k)a»i(k')e;(k)ei(k')

4e V

Xa „(k)a, (k')e (k)e~(k')(4~co)

where pk. is the density of scattered radiation modes

k' VdQ

(2m) Pic
(2.24}

If;(k') =
2

a;J(k)a»i(k')e;(k)ei(k')a „(k)I (k)k
(4neo)

Xa, (k')e (k)e (k')(4meo)

X (
—V 5,» +V) V» )—(4n.eo)

and the pole ensures that the energy conservation condi-
tion K&= —K =K is obeyed.

The rate of differential scattering into an element of
solid angle dQ about the direction k' is obtained by
diFerentiating equation (2.23) with respect to t. More
usefully the result can be recast in terms of a radiant
scattering intensity If;(k'), defined as the Raman scatter-
ing energy radiated in the direction of k' per unit solid
angle per unit time,

X ( —V 5i»+V) V» )—(4m.eo)
X( V~25 +VI V~ )

iK(R —R'I (2.25)

X ( —V' 5„,+V'„V', ),2~ere ' (2.23)

where I ( k ) is the irradiance of the incident laser beam
for the mode k. Operating on the Green's functions with
the differential operators gives the result
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(4~co} '( —V 5 k+V V„)—exp(iKR)

= Vjk(K, R) =
3 ( [(5jk 3—R Pk .)[cos(KR)+KR sin(KR)] —(5 k P—Pk .)[K R cos(KR}]]

4meoR

+i [(5 k
3—PJ Ak )[sin(KR) —KR cos(KR )]—(5 k

P—Pk )[K R sin(KR )]j ), (2.26)

where V k(K, R) is the polarization-summed complex retarded interaction tensor. This is often referred to as the pho-
ton propagator for a photon traveling between the two molecular centers, or the tensor field. It is of direct interest to
consider the physics of the above results for a pair of interacting molecules. In this case the term V „(K,R) V„,(K', R)
has the form

V,„(K,R) V„,(K,R) = [(5,„3P—,P„)(5„, 3A„—P, }(1+KR )
16m eoR

—[(5ik 3A R—
k )(5„,—P„R,)+(5 k R)Rk—)(5„0 3P„—R, )]K R

+(5~q A~Rk—)(5„, P„P,—)K R (2.27)

In the limit where the intermolecular separation is small,
only the first term in the above expression contributes to
the intensity. Substitution of this term into Eq. (2.25)
simply gives the familiar longitudinal induced-
dipole-induced-dipole result for the scattering intensity.

In the long-range limit we find that the last term in Eq.
(2.27} is the dominant term This . result is simply that for
a process where a real photon scattered at A is subse-
quently scattered at site B. The quantum electrodynami-
cal result given in Eq. (2.25} thus shows how multiple in-
elastic scattering and induced-dipole-induced-dipole
scattering are in fact merely the long- and short-range
limits of a unified theory of cooperative Raman scatter-
ing, involving intermolecular virtual-photon energy
transfer.

In the discussion so far, the theory has been concerned
with a cooperative scattering process in which the in-
cident laser photon is annihilated at A, and the scattered
photon is created at site B Equ. ation (2.25) therefore
gives the intensity for light cooperatively scattered from
one molecular center (site B) In a. ny complete calcula-
tion, however, the converse case, where the laser photon
is annihilated at 8 and the scattered photon is created at
A, must also be accounted for. The observed intensity
for pairwise scattering is consequently given by the sum
of the two probability amplitudes obtained in Eq. (2.21).
By following the procedure outlined in Eqs. (2.22) —(2.26)
we obtain the concomitant result for the observed Raman
scattering intensity,

I kk'
If;(k')= ta,"(k)ak&(k')a "„(k)a,z(k')e, (k)e &(k')e (k)ez(k') Vjk(K, R) V„,(K,R)

(4n eo)

+a;"(k')ak&(k)a "„(k')a~ (k)ek(k)e J(k')e, (k)e„'(k'}V&,(K', R)Vz~(K', R)

+a;"(k)ak&(k')a "„(k')a, (k)e;(k)e '&(k'}e,(k)e„'(k') Vk(K, R) V~ (K', R)

Xexp[ i (k —k') R]+—a;j(k')ak~(k)a "„(k)a,z(k')ek(k}e J(k')e (k)

X ez(k') V&k (K', R)V„,(K,R)exp[i (k —k') R]], (2.28)

where K'=(E ~ +tick')Itic An interesting . feature of
Eq. (2.28} is the appearance of interference terms charac-
terized by exponential phase factors. These terms arise as
a result of quantum-mechanical interference between the
probability amplitudes for cooperative Raman scattering
from center A to center B, and from B to A. Such terms
will only contribute when both molecules are within the
interaction volume of the laser. As we shall see later, the
inclusion of these phase factors in the interference terms
can lead to a circular differential Raman effect.

As it stands, Eq. (2.28) is applicable to systems where
the A-8 pair is held in a fixed orientation with respect to
the laser light. The theory should thus allow one to de-
scribe, for example, the effects of bimolecular scattering

in matrix-isolated species. In the special case of solids
Raman scattering is best treated as a many-body problem
within a full multipolar, or minimal coupling frame-
work. In the theory to be developed below, we con-
centrate on the wider issues of pairwise scattering in
fluids, where higher-order scattering mechanisms are sta-
tistically of little significance. This can lead to two types
of behavior. The first occurs when chromophores within
the same molecule undergo a cooperative scattering pro-
cess. This process of intramolecular scattering may be
observed in large molecules where chromophores outside
the range of orbital overlap interact through induced
dipole-induced dipole coupling. The second type of be-
havior that may be exhibited occurs when chromophores



2554 D. L. ANDREWS AND N. P. BLAKE 41

on different molecules undergo pairwise, or bimolecular
scattering. In this case, studies of such behavior could
access new information as to the nature of solvent-solute
interactions.

III. COOPERATIVE SCATTERING IN FLUIDS

A. Intramolecular scattering

In this section we consider the case where an A-8
chromophore system with fixed mutual orientation is free
to rotate in the laser beam. The results to be derived are

therefore applicable to scattering processes where the
centers A and 8 refer to chromophores within a mole-
cule, van der Waals molecule, or ligands within a crystal
field or coordination shell. In order to calculate the ob-
served rate for the intramolecular scattering for an en-
semble it is necessary to effect an orientational average.
This is achieved by first specifying a laboratory-fixed
Cartesian frame into which all polarization vectors are
cast, related to the molecular frame by the usual Euler
angle matrix. If we do this we can write the rotational
average of (2.27) as

I kk'
If;(k')= [a&„(k)a„(k')a"(k)a,e(k'}e;(k)e I(k')e (k)e'(k')V„„(K,R)V, (K,R)(lz;l, ll ls )

(4ne }

+a&„(k')a„,(k)a "(k')a~&(k)e;(k)e I(k'}e (k}e'(k')V,&(K', R)Vs (K', R)(l;„ll„l,l~ )

+a&„(k)a„,(k')a "(k')a,s(k)e;(k)e I(k')e (k)et(k') V„,(K, R) V& (K', R)

X(l,~l„l,l~ exp[ i(k——k') R])

+a&„(k')a„(k)a " (k)a,s(k')e, (k)e I(k')e (k)e~(k')V, q(K', R)V,(KR)

X(l,„l,„l I sexp[i (k —k') R]) ] (3.1)

where the angular brackets denote the need for a rota-
tional average, and where l „ is the direction cosine be-
tween the j axis of the laboratory frame and the p axis of
the molecule-fixed frame.

While the rotational averages can be calculated via
direct integration over the Euler angles, the results are
more readily obtained through use of irreducible Carte-
sian tensor methods which cast the sets of contracted po-
larization tensor s in a form directly amenable for
use. The first two terms in Eq. (3.1) require a

straightforward fourth-rank isotropic average of the type
outlined in Refs. 40 and 42, while the last two terms in-
clude orientationally dependent phase factors and there-
fore require the utilization of fourth-rank phased aver-
ages given in Ref. 41. Assuming that intramolecular cou-
pling is the predominant mechanism, and that bimolecu-
lar scattering is negligible, the result obtained by explicit-
ly evaluating these averages can be written concisely in
the following form:

p(( j)

If (k')=C Q g, ' i'j, (~k —k'~R)gI'f. „A"'q'[T"'t'( A, B;K,K')+( —1)'T'&'t"( A B;K K')]
1=op,,=i 2'(jt)'

+ ggI'f. ,
A' ''t'[S' '~(K, K')+S' '~'(A B;K K')] (3.2)

where

I(k}k'
(4m.eo)

(3.3)

and where j ( ~k
—k'~R) is a spherical Bessel function of

order j; g&4. ] is the rank-four, weight-j, tensor metric,
tabulated in the literature, and N4' the multiplicity of

n 2n —3k —j —1
X'&'= y ( —1)"

n n 2
k

(3.4)

where 0 k ~ [(n —j)/3]. The tensor invariants A 'i'q',
~' ' ', and T' ' ' are contracted sets of polarization vec-

the weight-j representation in the rank-four tensor sub-

space given by
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TABLE I. Explicit forms for the polarization and molecular response invariants.

A (J;P)

0
0
0
1

1

1

1

1

1

2

(e.e )(e.e')

(e e')(e e )

(k —k').(eXe )(e e')

(k —k'). (e Xe)(e'-e )

(k —k') ~ (eXe')(e e )

(k —k') ~ (e Xe)(e e')

(k —k') ~ (e Xe')(e e)
(k —k') ~ (e Xe')(e e )

(e e )[e' (k —k')e (k —k') —
—,'(e e')]

[~e' (k —k')[' —-', ]
(e e')[e (k —k')e (k —k') —

—,'(e e )]
(e e )[e' (k —k')e (k —k') —

—,
' (e e')]

[[e.(k —k')
I

' —
—,
' ]

(e e')[e (k —k')e (k —k') —
—,'(e e )]

[(k—k') (eXe)[e' (k —k')~'
—

—,'[e (eXe)e' (k —k')+e' (eXe)e (k —k')+(k —k') (eXe)]}
[(k—k') (e Xe)e (k —k')e' (k —k')

—
—,'[e (e Xe)e' (k —k')+e' (e Xe)e (k —k')+(k —k') (e Xe)(e e')][

[(k—k') (eXe')e (k —k')e (k —k')
—

—,'[e (eXe')e (k —k')+e .(eXe')e.(k —k')+(k —k') (eXe')(e e )]}
[e (k —k')e (k —k')e (k —k')e' (k —k')

—
—,'[(e e )e (k —k')e' (k —k')+ [e' (k —k')~'+(e e')e .(k —k')e. (k —k')

+(e e )e (k —k')e'. (k —k')+ [e.(k —k')['+(e e')e (k —k')e. (k —k')]
+ —,', [(e e )(e e')+ I+(e e')(e e )])

s' 'p'( A, B;y,y')

ax x (co)ax x (co')ax q (m)a q x (co') Vq q (y) Vq q (y)

12 34 16 7 23 67

~2~3 y ~6~7 y )

r'J'P](A, B y y')

~,~3 y ) V~,&~,(y')a~, ~,(~)a~,-.
,
(~')a ~,~,(~')a~,~,(~)

Vg ), (y)Vg g ')ag g co)ag g (co')a)", g (co')ag g co

Vq z (y)V& ~ (y')a& ~ (co)a~ ~ (co')a& & (co')az (co)

a~ ~ (~)a~ ~ (~')a ~ ~ (~')a ~ .- (~)V~ ~ (y) V~ & (y')~& ~ ~ ~~

a."...(~)af,~,(~')a."...(~')a:,~,(~)V»...(y ) V.,~,(y')~. ..;P ~

a,", (cg)af, (co')a„", (co')a,',- (co)V, , (y)V, , (y')e. ..P,
a~[~2(N)a:3~4(" )a ~5~1(" )a ~7'8(N) Vk2~3(y) VX5~8(y )e~...R

a,", (co)a,', (cg')a,", (co')a,', (co)V, , (y) V, , (y')e, ~, P,
AA3yAA,

X[a,"„(co')a„'~(co)k, P, —
—,'a,", (co')a,', (~)]
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TABLE I. (Continued).

g (g;p)

ak k ( )-~ k ( ) VX2~3(y) V~ ~8(y')

X [a»'~» (~')a»" » (~')R»~P»6 —
—,
'

a»'~» (~')a»" » (~')]

)&»p»p»,

»,&»p»,

V~... y'

X [a; » (co')a»» (co)P» P» —-'a;, (co')a»» (co)]34 78 4 7 3 34 48
a (a)')a„(co)V (y)V„(y')

X [a»» (co)a»» (co')P» P» —
—,
' a;" » (co)a»» (co')]

aA, A, (~ )a A, A. (~ ) VA. A,,(y ) VA.,A.,(y )

X [a» „(co)a»» (co)R» 4» —
—,'a»» (co)a»» (co)]

a ", (co')a, ,(co) V, ,(y) V, ,(y')

X [a»~», (co)a»3»~(co')R»~ P» —
—,
'

a»",»2(co)a»'3»~(co') ]

e»»» V»» (y) V»» (y') [ a»»(co)a»» (co')a»» (co')a»» (co

—
—,
' [a»» (co)a»» (co')a»» (co')a»» (co)A»

+a», (~)a»» (~')a»» (m')a»'» (co)R»12 34 5 7 8 4

+
a~ »(»2)co'a»3( »4c)oa~ »(»co')a»» (co)P» ]]

e»»» V»» (y) V»»8(y')Ia»» (co)a»» (co')a»" » (co')a»» (co

—
—,'[a»»2(co)a»» (co')a»» (~')a»» (~)A'»

+a»" » (co)a»» (co')a»» (co')a»» (co)P»12 34 5 ~ 7 8 I

+a»» (co)a»» (co')a»» (co')a»» (co)R» ]]
e»»» V»» (y) V»» (y ) I a»» (co)a»» (co')a»» (co')a»» (co

—
—,'[ ",( )», ,( ') ", ,( '),, ( )P,

+a,", (~)a»'» (co')a»» (co')a»» (co)P»

+a»» (co}a»» (co')a»
&

(co')a»» (co)P» ]]
V»» (y) V»» (y')ta»~»2(co)a»3» (co')a „» (co')a»» (co)A»P'

—
—,
'

[a»~»2(co)a»3»~(co')a g~»6(co)a»~»~(co)P» P»6

+a»" » (co)a»'3» (co')a,"» (~')a»'» {co)R» P»

+a,"» (co)a»» (co')a»" » (co')a»'» (co)P» k»

+a»" » (~)a»» (~')a»" » (co')a»» (~)P» k»12 34 5 4 7 8 1 7

+ a»" » (co)a»» (co')a,", (co')a»» (co)P» k»

+a»» (co)a»» (co )a»» (co )a»» (co)~» ~» ]
+ —,', [a„",(co)a»' » (~')a»" » (co')a»' »8(co)

+a~ ~ (co)ag ~ (co')a g ), (a)')a g g (~)12 34 5 4 1 8

+a»" » (co)a»» (co')a»» (co')a»» (co)][

tors and molecular tensors, respectively, explicitly defined
in Table I.

The short- and long-range behavior of the result ex-
pressed by Eq. (3.2) and its polarization properties are ex-
amined in more detail in Secs. IV and V, respectively.

B. Bimolecular scattering

In the intermolecular coupling regime the problem is

significantly more complicated, since one needs to per-
form a distribution average for the fluid. The starting

point for the theory is Eq. (3.2), where the random orien-
tation of the A-8 pair with respect to the radiation field
is already accounted for. For a system where the two
centers are chemically identical and free to rotate with
respect to one another, one has to replace
the T' '( A, B;K,K'), T'~' '( A B;K K'},
S' '~'( A, B;K,K'), and S' '~'( A~B;K~K') terms by
their isotropic averages (( T" ~'( R „,R~;K,K' ) )),
(( T'J'~'(R„~R~;K~K') )), ((S' '~ (R„,R~;K,K') )),
and ((S' 'I"(R„~R~;K~K'))). The replacement R„
for A, etc. , reflects the fact that, for a unicomponent
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fluid, each molecule is now only distinguishable via its

position vector R. The procedure for the further orienta-

tional averaging denoted by the double angular brackets
is now as follows. First an average of species A with

respect to 8 and the intermolecular displacement vector
is required, followed by a further average of the B species
with respect to the propagator, to account for the fact
that the molecule A may be positioned anywhere on the
surface of a sphere of radius R around B. The nature of
this procedure is outlined elsewhere.

The total intensity of intermolecular scattering from a
I

X5(R1—R, ) . (3.5)

The intensity of bimolecular cooperative scattering at R,
is then given as

point R& within the fluid is obtained by summing the
rates for the coupling of A with all B molecules within
the interaction volume of the laser. Following conven-
tion, one defines the polarization density at a point R,
within the fluid as

a,"(k,R, )a „(k,R, ) =f d R&a; (k, R
&
)a „(k,R &

)

~(J)
C ~ 3

' (2j)!I, (k )= f—d'R, y y y . ' Vg (!k 1!It—)g~g. ,
A'1'"

2 — '
. 2J(ji)z i ~ ';i

X (5(R„—R, )[((T'i'I'(R„R;K, K')))

+(—1) (( T"' '(R)~Ra', K~K') )) ]

+ ggff o)A ' [((S ' (Ri Rg'K K )))+((S" '(Ri~R~, K~K'}))])„ (3.6)

(3 7)

In Eq. (3.6) the angular brackets with the subscript d
refer to a distributional average, and the factor —,

' is intro-
duced to compensate for the fact that we count each pair
of molecules twice when summing over both A and B.
Since cooperative scattering is an incoherent process (i.e.,
the intensity is proportional to the sum of the squares of
the probability amplitudes for each pair), the coherent
four-body contributions are only nonzero for forward
elastic scattering. (The proof of this is lengthy, and may
be found in the Appendix to this paper. ) Using the fol-
lowing identities for a one-component fluid,

f d R25(Rs —R2)f (R2)=f (Rs ),

p= 5 Ri —Rq
B

and

(3.8)

5(R, —R „)5(Rz—Rz I) =P R (R, —Rz),
A B (~A)

(3.9)

where p is the number density and g (R) is the pair corre-
lation function for the fluid, it is possible to reduce Eq.
(3.2) to

~(j)

If, (k'}=—f. d R, p g g .
' i'j (ik — kiR) g($.

)A'J'~'
)=o,,,=i 2'(j'}'

X g R, —R, T'J ~' RRKK'
+( —1) (( T' ' '(R|~R2', K~K') && ]d'R,

+ g gI'f o) A ' '~' f g (Ri —Rq)[((S' '~'( R„R;2K, K) ))
pe

+«S "~(R,-R,;K-K )&&]d R, . (3.10)

Convoluting the integrals in Eq. (3.10}makes it possible to express the distance dependence of the integrands solely in

terms of the integration variable R=R, —Rz. Using this property of the integral finally gives for the overall bimolecu-

lar Raman scattering intensity
~(J)

4 4

If;(k')=2nCp VI g g .
' i'j, (ik —k'iR}gg, iA"'~''

)=o.q=i 2'(j'}'

X f R g(R)[((T'J ~'(Z;K, K }))+(—I) ((J'T'~j'(R; K K')))]dR
0

+ g g~(f o)
A""f R'g(R).[&&S"'"(R;K,K') &&+ &&S"' '(It;K~K') )) )dR (3.1 1)
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where VI is the interaction volume of the laser. This is

the result for intermolecular scattering within a one-

component fluid. In this equation evaluation of the angu-
lar parts of the integrations has been facilitated by ex-
ploiting the isotropic nature of the integrands.

One-component systems can produce interesting
features whereby the bimolecular scattering process pro-
vides a mechanism for the appearance of combination
and overtone bands even in the case of a simple harmonic
molecular force field. Chemically more interesting is the
case where bimolecular scattering occurs between two
chemically distinct species A and 8. Here the resultant

combination bands clearly cannot be accessed by any uni-
molecular scattering mechanism. In this instance we
must replace the pair correlation function defined in Eq.
(3.9) by

z 5(R) —R. $(R, Rl, )) PAP8g (Rl Rz(,
aE A b68

(3.12}

where the summations over a and b represent inclusion of
contributions from all molecules of types A and 8, and

p~ and pz are the number densities of A and 8 species,
respectively. The scattering intensity now becomes

g(J)
4 4

. , ~'j, (lk —k'IR)gg„A "'
J =Op q=l 2 (j!)

X gg" g

+( —1)'(( T"'~'( A, B;R;K~K') )) ]dR

+ y g~(l;o A '"J R'g "'( R)[((&"'"( AB;R; K, K') ))
p~q

+ &(S'0'&'( A, B;R;K K') )~]dR
(3.13)

The process is now directly proportional to the densities
of each component in the system.

A. Near zone

IV. DEPENDENCE ON THE PAIR SEPARATION

A unique feature of cooperative scattering processes is
the detailed nature of the scattering intensity dependence
upon the relative displacement of the two chemical
centers. In this section the explicit pair separation
dependence is examined in more detail. It is possible to
identify two limiting cases which are of particular in-

terest, corresponding to near zone and-f(2r-zone behav-
ior.

Physically the most important regime is that in which
lKlR, lK'lR, and lk —k'lR are significantly less than 1.
In general, the appropriate short-range limits of the equa-
tions given in the previous section produce a significant
simplification since all Bessel functions except those of
zeroth-order become vanishingly small. Using the results
obtained for a chromophore pair, we find that only the
isotropic unweighted terms survive and the rate equation
in the near zone becomes the following.

(e e )(e e')
I,(k')=

30 (e e')'(e e )

T 4 —1 —1

—1 4 —1

—1 4

1. Chromophore pair

az z (co)az z (co') Vz z (K)[a z ~ (co)a z z (co') Vz z (K)+a z z (co')a z z (co) Vz z (K')]

X a& & (m)az &
(co') V& z (K)[a & & (co)a & &

(~') Vz & (K)+a & z (co')a & & (co)V& z (K')]

a~ q (co)az z (co') Vz z (K)[a ~ & (co)a & &
(co') Vz & (K)+a z z (co')a z z (co}V& & (K')]

+( A~B), (4.1)

(4.2)

where the intermolecular photon propagation tensor is given by the well-known static dipole-dipole interaction tensor
of classical electrodynamics,

1
lim Vki(K, R)=

3
(5

4qre+ '

leading to an overall R rate dependence. We note in passing that the short-range limit for Vk&(K, R) as given by Eq.
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(4.2) is traceless; this feature considerably simplifies subsequent results for bimolecular Raman scattering intensities.

2. Free moleeules (near zone)

For bimolecular scattering processes where short-range interactions dominate, we find that the rate is

I(k')= p "p V&I (4~e e
~

—1 —~e.e') ) X [ —11( A, B,+ A3B, )+14( A, B,+ A, B, )]

+(3le e I' —2+3le e'I')[ —(A, B2+ A2B, + A2B3+ A382}+34A2B2]

+100(—le e I'+4 —le e'I')A~B2

+( —[e e [
—1+4(e e'[')[14( A, B, + A383) —11( A, B3+A3B, )]J, (4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

+ V; (K,R) V; (K,R)

+ V~j(K', R}V; (K', R)

+ V,"(K',R)V; (K,R)],
(4.10)

where

A
&
=a&&(k)a „"&(k)+a&&(k)a„"„(k')

+a~q(k')a &&(k }+a&&(k')a„"„(k'),

Az =a&„(k)az„(k)+a&„(k)az„(k')

+ &a&(k')a &„(k)+a&„(k')a&„(k'),

A 3 a&„(k }a„"z(k ) +a&„(k )a „"z(k '
)

+a&„(k')a „"z(k)+a&„(k')a„"z(k'),

B& =a„„(k)a (k)+a„,(k)a (k')

+a„„(k')a~(k)+a„,(k')a (k'),

B2 =a„,(k)a „,(k)+a„,(k)a „,(k')

+a„,(k')a „,(k)+a~, (k')a „,(k'),

B3=a„,(k)a,„(k)+a„,(k)a,„(k')

+a„,(k')a, „(k)+a„(k')a„,(k'),
V2= lim R dR g" R V, E,R V; EC', R

C~O C

I

tions the propagator is purely transverse and traceless,
taking the form

lim VkI(K, R) = (5klPI, PI )exp(iKR)
1

re -o 4rreoR

= Vk7(K, R) . (4.11)

In the far zone, it is not possible to ignore the phased
terms in the rotational average, and the hence the full ex-
pression derived in Sec. III must be used. While the re-
sult could be utilized in computational work, it is too
complicated in form to allow one to obtain any directly
useful information, and will not be further considered
here.

Interestingly, the R dependence of the intensity
equation for a pair of molecules is canceled by the R
which arises in the calculation of the scattering intensity
for the ensemble, associated with the number of mole-
cules in a shell of a given thickness at distance R. This
cancellation leads to a summed result which is indepen-
dent of the intermolecular distance involved. Of course,
this result ignores the finite life of the virtual photon. In
any real system, one would have to allow for the possibili-
ty that the virtual photon itself is involved in multiple
scattering processes. This ~ould lead to the inclusion
of a R-dependent radiative damping term giving a result
which, to some extent, tails o6'with R.

where, in Eq. (4.10), we emphasize that the near-zone
limit of the propagator is taken. Since the principal con-
tribution to the integral occurs in the near zone, the limit
of the integral can be extended to infinity without
significantly a8'ecting the result. If the irradiation fre-
quency is not close to any absorption band in the fluid,
the approximately index-symmetric nature of the scatter-
ing tensor leads to the relations 32= 33 and B2=83.
Further simplification arises in cases where the Raman
signal comes from a one-component fluid, where it is ap-
parent that Hi=Bi c42=82 and A3 B3.

B. Far zone

The far-zone limit, defined as the region where
( (K(R, (K'(R }» 1, is normally satisfied when R & 100 nm
for vibrational scattering processes. Under these condi-

C. Bimolecular forward scattering

In what follows we consider the specific case where one
of the molecules involved in the cooperative process sits
outside the interaction volume of the laser beam. In this
way it is possible to obtain a simple result, so long as the
intensity of light scattered parallel to the laser beam is
measured. In this forward scattering beam geometry, the
intensity of scattered photons created within a cylindrical
volume around the collimated beam of the laser has an
especially simple form since the interference terms can-
not contribute to the scattering intensity. (For cross
terms to exist, both molecules involved in the scattering
process must reside within the interaction volume of the
laser. ) For this geometry the pair correlation function is
defined as
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5(R, —R„)5(R2—Rs )

A E V,„BE(V —
V,„,)

(4.12)

where the sum over A is taken over all molecules within
the interaction volume of the laser, the sum over 8 mole-

cules includes only molecules outside the interaction
volume of the laser, and p, p are the number densities
within these two regions. In order to simplify the prob-
lem, we shall assume that this region does not include the
near zone. (This is not such a crude approximation since
to encroach upon the near zone would require that the
detector region be within —100 nm of the interaction
volume. ) The observed intensity I,b, (k') for this
geometry may be written as

~CD
p "p'V2 [(41e e I' —1 —

I

e.e'I') [23(:-~0', +:-,4, ) —2(:-,4,+:-,e, ) ]6750

+(3le e I' —2+3le e'l')[ —7(:-,+,+:-,e, +:-,e,+:-,q, )+38=,q, ]

+100(—le e l'+4 —le e' ')=,y,
+( —le e I' —1+4le e'l )[—2(:-~4,+:-3+3)+23(=~+3+=3+i )]j, (4.13)

where

:-,=aqq(k)a „"„(k),

:-~=a~„(k)a~„(k),

:-3=a„"„(k)a„"g(k),
4, =a„„(k')a (k'),

%~=a„,(k')a „,(k'),

%3=a, (k')a, „(k'),

V, =f d'Rg "~(R)[V;,"(K',R) V,", (K', R)
det

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

powers of the density, and following the treatment out-
lined by Kirkwood, ' the explicit differential pressure
dependence may then be written in the form

Bg (R,p, T) =Prexp[ —u (R)/kT]
Bp

X [pg )(R, T)+2p g2(R, T)+ ],
(5.1)

where u (R) is the intermolecular potential, Pr is the iso-
thermal compressibility of the fluid defined as

+ V;i" (K,R) V;J (E,R)], (4.20)

where Vd„refers to the volume sampled by the detector.
One of the principal advantages of this beam geometry is
that it allows one to directly observe the far zone.
Another advantage is that the results are of sumciently
simple structure to allow one to interpret the depolariza-
tion ratios for any observed Raman band, as will be
shown in Sec. VI.

V. PRESSURE DEPENDENCE
OF THE BIMOLECULAR SCATTERING RATE

In principle, it is possible to distinguish bands, which
are present in the Raman spectrum as a result of bimolec-
ular scattering processes, via their pressure dependence.
It is not readily apparent that rates dominated by either
long- or short-range energy transfer will exhibit different
pressure dependences, but this can be shown as follows.

In the near zone, we find that the intensity of coopera-
tive scattering is extremely sensitive to pressure. This
occurs because the pseudostructure of the fluid leads to
highly oscillatory behavior close to the origin (R =0). In
order to obtain an explicit pressure dependence for the
intensity in the near zone it is necessary to know some-
thing about the density dependence of the pair correla-
tion function for the fluid. Most treatments (see, for ex-
ample, Ref. 47) expand the pair correlation function in

1 BV

V& Bp
(5.2)

and partially differentiating with respect to pressure at
constant temperature, we find that

(5.4)

so that the differential change in the bimolecular light
scattering intensity is simply proportional to the iso-
thermal compressibility.

and the coefficients g„(R,T) describe contributions to the
correlation function which arise as a result of (n+2)-
body interactions. The g„(R,T) are related to the virial

coeScients, and are explicitly calculated using the
modified cluster integrals of Mayer and Controll. '

In the far zone, we find that the g„(R,T) coefficients in

Eq. (5.1) tend to zero, reflecting the fact that the liquid
has no long-range structure. In this regime the pair
correlation function is stationary with a value close to
unity, and the pressure dependence of the scattering in-

tensity should therefore solely reflect the quadratic
dependence on density. Writing the intensity equation as

(5.3)



41 QUANTUM ELECTRODYNAMICAL STUDY OF BIMOLECULAR. . . 2561

VI. POLARIZATION DEPENDENCE
FOR THE CHROMOPHORE PAIR

The polarization parameters listed in Table I are exper-
imentally variable, their values depending on the scatter-
ing angle and the polarization of both the incident and
scattered light. In a conventional experiment the scatter-
ing angle is usually 90', and the values for the polariza-
tion parameters in several experimental configurations
with this beam geometry are listed in Table II.

A. Intramolecular scattering: the chromophore pair

A novel feature of the intramolecular scattering pro-
cess is the appearance of phase-lag terms arising from
scattering interference of the A and 8 chromophores. It
is well known that where the chromophores are
dissymmetrically juxtaposed such interference terms re-
sult in circular differential scattering. ' Since this
property can prove useful in identifying lines in the spec-
trum attributable to intramolecular scattering, we shall

I

examine it here in some detail.
The first four columns of Table II give explicit values

for the polarization parameters when circularly polarized
light is used. The first column labeled L~I, for exam-
ple, refers to a scattering geometry where the laser beam
is polarized with left-handed helicity, and where the in-
tensity of scattered light with the same helicity is mea-
sured; L ~R refers to a geometry where left-handed cir-
cularly polarized light is incident upon the Quid, and
where the intensity of scattered light of the opposite
handedness is measured. Examination of the columns in
Table II reveals that even j value polarization parameters
are not changed by reversing the combined helicity of in-
cident and scattered beams, while odd-j valued polariza-
tion parameters change sign when the helicity is reversed.
Conventionally, this type of chirality is expressed in
terms of circular intensity differentials Th. ese can be ob-
tained from the leading j&ljo terms in the rate expres-
sions, and are explicitly given by

I(L ~[() I(R -+—[() (co' co)RT"—'

I(L ff)+I(R ~[[) cT' "
I(L~l) I(R ~l—) (ci)' co)R(T"—'"+T"'"+T""—T"")
I(L~l)+I(R ~l) c(T' '"+2T' ' '+T' ' ')

(6.l)

(6.2)

The coefficient given expression in Eq. (6.1) is that most commonly measured. This has the simplest structure of all, be-
ing finite so long as the molecular response tensor T"' ' is not zero, which is generally the case so 1ong as the Raman
polarizability tensor for the transition is not isotropic. The second differentia scattering coefFicient is included for corn-
pleteness. The most interesting feature of these dissymmetry factors is their linear dependence upon the intrachromo-
phore distance R. This behavior has been noticed in connection with circular diff'erential Rayleigh and Raman scatter-
ing and optical rotation.

In addition to the two polarization ratios above, it is possible to define a third ratio, which measures the degree of
helicity reversal; this has the explicit form

I IL +L) I(L —+R) —2(co' ——a))R( 2T"'"+T"' '+—2T"' '+ T"' ')

(L ~L)+I(L~R) c ( T(0; 1)+4T(0;2)+T(0;3)) (6.3)

TABLE II. Values of the polarization parameters A"'~' for 90' scattering experiments for eight
different polarization geometries.

p L~L L~R R~L
1/4

1

1/4
0

—i/2
i/2
i/2
i/2
0

1/6
1/6

—1/3
—1/3

1/6
1/6

i /10
2i /5

0
3/20

1/4
1

1/4
0

i/2
—i/2
—i/2
—i/2

0
1/6
1/6

—1/3
—1/3

1/6
1/6

—i/10
—2i/5

0
3/20

1/4
1

1/4
i/2
i/2
0
0

—i/2
—i/2
—1/3

1/6
1/6
1/6

—1/3
—1/3
i/10

0
2i/5
3/20

1/4
1

1/4
—i/2
—i/2

0
0

i/2
i/2

—1/3
1/6
1/6
1/6

—1/3
—1/3
—i/10

0
—2i /5
3/20

1/2
1

1/2
i/2

l

1/2
i/2
0

—i/2
—1/6
—1/3
—1/6
—1/6

1/6
—1/6
—i/5
i/10
i/10
1/70

1/2
1

1/2
—i/2

1

—i/2
—i/2

0
i/2

—1/6
—1/3
—1/6
—1/6

1/6
—1/6
i/5

—i /10
—i /10
1/70

0
1

0
0
l

0
0
0
0
0

2/3
0
0

1/6
0

2i /5
—3i/10
3i /10
11/35

0
1

0
0

0
0
0
0
0

2/3
0
0

1/6
0

—2i/5
3i/10

—3i /10
11/35
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This coefficient is of interest since its value for right-angled scattering is only nonzero if the chemical species responsible
for the scattering is chiral. This remark applies both to normal Raman scattering by individual free molecules, and to
cooperative scattering by chromophore pairs. In the latter case the chirality refers to the coupled system, and analysis
of the detailed structure of the numerator of the terms in Eq. (6.3) reveals that the condition is only satisfied where the
chromophores are dissymmetrically placed with respect to each other, and where their Raman polarizability tensors are
anisotropic. This situation corresponds exactly to the well-known coupled-oscillator model for chiral behavior. For
forward scattering, the reversal ratio can be nonzero even for achiral systems; it then represents a measure of the degree
to which the handedness of the laser beam dresses the molecular states of the free rnolecules and thereby induces a
chirality.

B. Free molecules

Circular differential scattering from free molecules can only be manifest by chiral species, where the effect results
from interference between electric dipole and either magnetic dipole or electric quadrupole interactions. To the level
of approximation considered here, bimolecular scattering per se does not contribute to differential scattering in an iso-
tropic fluid, as all odd-order Bessel function terms vanish when the further necessary orientational averages are effected.
However, it is possible to glean some useful properties of the bimolecular scattering path via polarization characteristics
of the radiation field. These polarization experiments are best conducted for the specific forward scattering geometry
discussed earlier, where the detector measures the intensity of the light scattered outside the interaction volume of the
laser, but parallel to the laser beam. Under these conditions one is studying the far-zone properties. If the beam is not
close to any one-photon absorption bands, we find that the observed scattering intensity equation (4.13) for a single
component fiuid reduces to

m.C Vl,b, (k')= p "p V2I(4~e e
~

—1 —
~e e'~ )[23(:-)+:-3)—4:")=3]

+(3)e e
(

—2+3(e e'( )[ —14(:-):-2+:-2-=3)+3&:"2]

+100(—/e e
/

+4—/e e'/ ):"2

+( —/e e
/

—1+4/e e
/ )[ —2(:")+:-3)+46:-(=2]f. (6.4)

The first notable aspect of Eq. (6.4) is that the depolariza-
tion ratio becomes

1(j~
~~ )

—21:-',+331:-2—14:-)=2

42:" +342:- +32:",:-2
(6.5)

for transitions that occur purely as a result of the bi-
molecular scattering mechanism. Here I(L ~i) refers to
the rate of forward scattering of light with the same po-
larization as the incident beam; I ( j.~

~~
) refers to the rate

at which light of polarization perpendicular to the in-
cident beam is emitted. In order to glean useful symme-
try properties from the depolarization ratio, it is con-
venient to cast the molecular invariants in irreducible

tensor form. For index-symmetric polarization tensors
we find that the two molecular tensor invariants may be
written as

(0+ ) (0+ )
1 aAAapp ~akp asap

= =a a =a' +'a' +'+a' +'a' +'
2 Ap Ap Ap Ap Ap Ap

(6.6)

(6.7)

where the superscripted (n+) refers to a tensor of weight
n and even parity. Tensors of weight (0+) are isomorph-
ic with the totally symmetric representation of the rnolec-
ular point group, while the tensors of weight (2+) trans-
form as traceless rank-two tensors of even parity. Cast-
ing Eq. (6.5) into an irreducible tensor format gives the
result

100&(0+)(0+)(0+)(z(0+)+620&(0+)&(0+)&(2+)(z(2+)+331&(2+)&(2+)&(2+)(2+)
AP AP VO VO ))tP AP VO VO

I ( J ~J ) g 16~(0+ )~(0+ )(z(0+ )(2(0+ )+7g0~(0+ )(z(0+ )(z(2+ )tz(2+ ) +342(z(2+ )(z(2+ )(z(2+ )~(2+ )

asap asap avo avo AP AP VO VO Ap Ap VO VO

(6.8)

Thus the depolarization ratio p(l) has the value —,
" for a

pure weight-zero transition and 34] for a pure weight-two
transition. It is interesting to note that the depolariza-
tion ratios obtained for transitions that occur solely as a
result of cooperative scattering are thus slightly higher
than those obtained in the dilute gas approximation;
hence we would expect that in condensed phases multi-
body scattering rnechanisrns would lead to increases in
the observed Raman depolarization ratios.

VII. CONCLUSION

To conclude, in this paper a quantum electrodynamical
theory of cooperative scattering in fluids has been
developed. Using the retarded multipolar expansion of
Power, Zienau, and Woolley fully causal intensity equa-
tions for bimolecular scattering, which are valid over all
intermolecular separations, have been derived. For pro-
cesses involving cooperative scattering between free rnol-



41 QUANTUM ELECTRODYNAMICAL STUDY OF BIMOLECULAR. . . 2563

ecules, equations have been given for the observed
scattering intensity which take full account of the molec-
ular distribution of the liquid. It has been shown how
these results can be employed to elucidate the pressure
dependence of the process, and how, for a specific beam
geometry, it is possible to define a depolarization ratio
which can be used to verify the symmetry of the two
transitions. In the case where the molecules involved in
the bimolecular scattering process are held in fixed orien-
tation with respect to one another, it has been illustrated
how the manifestation of a differential scattering effect
may be used in identifying these bands in the spectrum.
In assessing the importance of the effects described, it
may be noted that short-range cooperative Raman effects
are typically smaller than their single-center counterparts
by a factor of the order of a leoR, where a leo is the Ra-
man polarizability volume. For an intermolecular sepa-
ration on the angstrom scale, this factor can be expected
to be of the order of 0.1-0.01. Exploitation of resonance
conditions may, however, substantially offset the intensity
diminuation associated with this factor. It should there-
fore be possible using the methods described above, along
with modern Fourier transform Raman spectrometers, to
identify such cooperative contributions.

APPENDIX: PROOF THAT COOPERATIVE
RAMAN SCATTERING IS INCOHERENT

In the result obtained in Sec. II of this paper, it is illus-
trated how the Fermi rule result may be obtained, and in
particular how the intensity of cooperatively scattered
light is proportional to the square of the matrix element
Mf;. For an ensemble the latter may be written as

e " ' a;"(k)ak&(k')e;(k)e&(k')
A, BW A

iK (RB —R~ )

X (
—V'5, k +V) Vk ) (Al)
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where the summation is over all molecules in the ensem-

ble, and all other terms have their usual meanings. Tak-
ing the modulus square of Eq. (Al), we find that there are
two types of contribution,

A, BW A c,Dxc
iK (RB —R~ )

X( —V 5jk+V Vi, ) a „(k)a, (k')e (k)e (k')

—iK.(R —R )D c

x( —V'5„,+V„V, )
D C

(A2)

These contributions are (i) the coherent contribution, which arises when A AC, D and BAC, D; and (ii) the incoherent
contribution, which arises when A =C and B =D Since it is .the purpose of this appendix to show that the coherent
part does not contribute to the scattering intensity, we shall specifically concentrate upon this term in Eq. (A2).

In order to arrive at the proof we shall consider the coherent contribution that arises from two arbitrary points
within the liquid, specifically R& and R3. These points correspond to the sites where the cooperative scattering is ini-

tiated, i.e.,the points where the laser photons are annihilated. Thus

~Mf; ~
(R „R3)= g 5(R, —R„)5(R3—Rc)e

A, BA A

C& A, DWC
iK.(R —R )B 1

X a~(k)akim(k'}e;(k)ei(k')( —V 5)k+ V Vk )
(Re —R, )

—iK.(R —R )D 3

Xa „(k)a, (k')e (k)ez(k')( —V 5„,+V„V, )
(RD —R3)

Using the methods of Sec. III we can write this equation as

~Mf, ~ (R „R3 ) = f d R2 f d R~(Rz —R, )p(R4 —R3)e
iK(R —R )2 I

Xa,~(k}a&&(k')e;(k)e&(k')( V5jk+VJ Vk }-
(R~ —Ri)

—iK-(R —R )4 3

Xa „(k}a,z(k')e (k)e (k'}(—V 5„,+V„V, )
(R~ —R3)

(A3)

(A4)
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Now consider the integral over R2,
iK.(R —R )

k' 2 1 'k' Rf d'R~(R2 —R, )e '( —V 5,„+V,VI ) =f d'R~AJ„(R2 —R, )e
—m

' 1 ' (R2 —R )

where
Ajk (R2 —R, ) is the Fourier transform, i.e.,

A,„(R,—R, )=(2~) 'f d'qA, „(q)e

Substituting this result into Eq. (A5) we obtain the result

(A5.)

(A6)

f d R2A k(R2 —R&)e '= f d qA k(q)e ' f d R2e

3 f d qA„(q)e '5(k'+q)

ik' R]
A k( —k')e

Jk (A7)

Naturally a similar result is obtained for the second in-
tegral in Eq. (A4); substituting this result and its counter-
part into (A4) gives

~Mf, ~ (R, , R3) =a;",(k)a&&(k')e, (k)e, (k')a „(k)

Xa, (k')e (k)e (k')
4m

XA k( —k')A„, (k')
—i (k' —k) ~ (R —R )Xe 3 ] (A8)

In order to obtain the matrix element for the ensemble it
is necessary to sum over all points within the fluid. If we
convert the sum to an integral over R, and R3, we find
that Eq. (A8) is only nonzero when k' —k=0 (since the
exponential gives a 5 function), completing the proof.

As a final aside it is worth considering the interference
terms that arise in the incoherent contribution, since it is
by no means apparent that these terms in Eq. (A2) will
survive when one performs the distributional average.
For these terms the squaring of the matrix element gives
terms of the type

IMf, I'(R~) = g 5(R, —R„)e
A, BW A

Xa "„(k')a,~(k)e~(k')e (k)a,", (k)

X a'„,(k')e, (k)r, (k')

X Vl, (K, Rq —R, ) V„,(K', R2 —R, ),

which give, on performing the distributional average,

~Mf;~ (R))=f d R~(R2 —R))e

Xa "„(k')a,~(k)e~(k')e (k)a;"(k)

X ak&(k')e, (k)el(k')

X V,k (K, R2 —R, ) V„,(E', R2 —R) ) .

Restricting our attention to the integral over Rz,

R~ R2 —R) Vjk E,R2 —R

X V„,(K', Rq —Ri)e

= f" d'R2Ajkgo(R2 Rl)e'" "'"
where we have defined the Fourier transform

Ajk„, (Rq —R))=(2n) f d qA)k„, (q)e

which allows to express the modulus square of the defined
matrix element as

~Mf, ~

=a,J (k)all(k')a "„(k')a,p(k)e, (k)el(k')

Xe„(k')e,(k) A k„,(k —k),1

Sm

which is simply the result obtained by convolution of the
original integral over R.
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