
PHYSICAL REVIEW A VOLUME 41, NUMBER 5 1 MARCH 1990

Low-energy positron-argon collisions by using parameter-free
positron correlation polarization potentials

Ashok Jain
Department of Physics, Box 981, Florida A &M University, Tallahassee, Florida 32307

(Received 25 August 1989)

We report differential, integral, and momentum-transfer cross sections and the scattering length

(Ao) for positron (e+)-argon scattering at low energies below the positronium formation threshold.

An optical-potential approach is employed in which the repulsive Coulombic interaction is calculat-

ed exactly at the Hartree-Fock level and the attractive polarization and correlation effects are in-

cluded approximately via a parameter-free positron correlation polarization (PCP) potential recent-

ly proposed by us. The PCP model is based on the correlation energy c.„„ofone positron in a

homogeneous electron gas; in the outside region, the c„„is joined smoothly with the correct asymp-

totic form of the polarization interaction ( —ap/2r, where ap 1s the target polarizability) where they

cross each other for the first time. The total optical potential of the e+-argon system is treated ex-

actly in a partial-wave analysis to extract the scattering parameters. It is found that the PCP poten-

tial gives much better qualitative results, particularly for the differential cross sections and the

scattering length, than the corresponding results obtained from an electron polarization potential

used as such for the positron case. We also discuss the "critical" points (representing the minima in

the differential scattering) in the low-energy e -Ar scattering. The present results involve no fitting

procedure.

I. INTRODUCTION

Recently, we discussed the issue of polarization poten-
tials in low-energy positron collisions with atoms and
molecules. It is a well-known fact that in the positron
(e+)-atom (or molecule) collisions, a true e+ polarization
potential is very difficult to incorporate without involving
any adjustable parameter. It is only recently that several
theoretical attempts have been made to consider the po-
larization of the target atom (or molecule) by the e+ at
the ab initio level; however, these rigorous calcula-
tions are not totally parameter-free. In some collision
systems, an electron polarization potential (EPP) works
reasonably well for the positron case also, although
there is no justification for doing that. In order to obtain
a truer positron polarization potential (PPP) than the
corresponding electron one (i.e., EPP), we need to go
beyond the second-order perturbation theory, which is a
formidable task. The second-order perturbation energy is
independent of the sign of the projectile charge, i.e., the
same for electron and positron particles. For many-
electron systems, the calculation of a true nonadjustable
PPP from more elaborate theories such as the polarized-
orbital or the multistate optical-potential approaches (see
Ref. 7 and references therein), becomes an arduous task
computationally. In most of the previous work on the
e+-atom collisions, either an EPP has been employed for
the e+ case or some semiempirical form of the polariza-
tion interaction has been derived (e.g. , see Nakanishi and
Schrader ).

Recently, we proposed a new parameter-free model po-
larization potential for the low-energy collisions of posi-
trons with atoms and molecules. ' Our results on the total
cross section (o, ) for the positron-CO system were

found to be in very good agreement with the available ex-
perimental data. In this paper, we present our calcula-
tions on the argon atom at 1-10eV. Our main emphasis
is on the differential cross section (DCS), which is very
sensitive (as compared to cr, ) to the polarization of the
target. Our calculated DCS at 2.2, 3.4, 6.5, and 8.5 eV
are compared with the available experimental data'
at these energies. Further, we discuss the critical points
which represent minima in the DCS as a function of in-
cident energy and the scattering angle. In addition, we
also report our value for the scattering length (Ao) for
the e+-Ar system.

In the next section, we describe the new positron polar-
ization potential and in Sec. IIA we summarize our
method of calculation. Section IIB presents the discus-
sion on the differential and integral elastic cross sections
below the positronium (Ps) formation threshold (i.e.,
E ~ 10 eV), while in Sec. II C the present calculation of
the critical points is described. The results on the
scattering length are given in Sec. IID. The final con-
cluding remarks are made in Sec. III. We employ atomic
units throughout this paper.

II. NEW POSITRON CORRELATION
POLARIZATION (PCP) POTENTIAL

Asymptotically, the polarization potential has the sim-
ple form —ao/2r for both the electron and positron pro-
jectiles. The difficulty arises when the projectile is in the
vicinity of the target charge cloud. A simple way to
remedy this difficulty has been to multiply the —o.o/2r
form by a cutoff function depending upon some adjust-
able parameter; however, this approach is unsatisfactory,
although the results may be, fortuitously, very good.
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Here, our goal is to look for a computationally simple
form of the positron polarization potential, which is
difFerent from the corresponding electron potential and
free from any adjustable parameter. The basic philoso-
phy of the present approach is akin to the method of
O'Connel and Lane' for the case of electron scattering
based on the correlation energy of the target in the pres-
ence of an incoming electron. The present positron po-
larization potentials are also based on the correlation en-

ergy of a localized positron in an electron gas and its hy-
bridization with the correct asymptotic form (

—ao/2r ).
Here, we consider the incoming e+ as a charged impurity
at a fixed distance in an homogeneous electron gas. In
positron annihilation experiments, a fundamental ques-
tion to be asked is how the electron-positron interaction
distorts the electronic structure of the system under in-
vestigation.

The positron correlation energy in an homogeneous
electron gas has been calculated phenomenologically' '
as well as using the Bethe-Goldstone-type approach. '

Recently, Arponen and Pajanne' have applied a. com-
pletely different approach to the problem of a light irn-

purity in an electron gas. In their method, ' the target
electrons are described by a set of interacting bosons
representing the collective excitations of the random-
phase approximation (RPA). Very recently, Boronski
and Nieminen' have described the density functional
theory of the electron-positron system and presented the
results on the correlation energy as a function of the den-
sity parameter r, (see later) for different n+(r)ln (r) ra-
tios including the case of one positron in a homogeneous
electron gas. Here n+ and n denote the densities of
positrons and electrons, respectively.

We can give the physical picture of the positron corre-
lation in an electron gas as follows. When the incoming
positron enters the target electronic charge cloud, we can
assume the positron as localized instantaneously and
correlating with the surrounding electrons of a given den-
sity n (r). The wave function of the positron in such an
electron-positron plasma can be written as'

—
—,
' V' P;+(r)+ p„,(n+(r)) P(r)—

0.302~r, ~0.56 (2b)

2E, „(r )= ' + ' —06298,
—13.151 11 2. 8655

(r, +2.5)2 r, +2.5

0.56 ~ r, ~ 8.0 (2c)

and finally,

2s«,„[n(r, )]= —179 856.2768n + 186.4207n —0.524,

8.0~r, + ~ (2d)

where n (r, ) is the electronic density corresponding to the
density parameter r, .

The positron correlation polarization (PCP) potential
defined as a functional derivative of the correlation ener-

gy with respect to p(r ), can be derived conveniently from
the following equation in terms of functional derivative of
the density parameter: '

V,o„(r)= 1 — r, —1

3 drs
e«,„(r,). '

(3)

Finally, we obtain the following form of the V„„(r)(in
atomic units) from Eqs. (2) and (3) for r, ~0.302

2 V«,„(r)= ', + [0.051 ln(r, )
—0. 115]ln(r, )+ l. 167,

—1.82

(r, )'

from the ground-state expectation value of the Hamil-
tonian which describes the electron gas plus the incoming
positron fixed at a distance. In the evaluation of c„„,the
e —e+ interaction has also been considered' [see Eq.
(1)]. The analytic interpolated expressions for the E„„in
the whole range of the density parameter r,
[—3mr, p(r)=1, where p(r) is the target undistorted elec-
tronic density], measured in atomic units (ao), are given
as follows:

2s«„(r, ) = — '

& &2
+ (0 05.1 lnr, —0.081)lnr, + l. 14,

1.56

(r, )' '

r, ~0.302 (2a)

2s„„(r,) = —0.923 05—0.054 59

r

6E; ~(n+, n )+
5n+(r)

P;+(r) =E,+f,+(r),
for 0.302&r, &0.56

(4a)

where p„, is the exchange-correlation potential (which
vanishes in the present one-positron case), P(r) is the
Hartree-Coulomb potential, and E,' ~ is the e + —e
correlation energy functional. Equation (I) has been
solved self-consistently. ' Following the paper of Ar-
ponen and Pajanne, ' Boronski and Nieminen' have pro-
vided explicit expressions for the e —e correlation en-
ergy (E„„),interpolating it for the whole radial region.
These expressions are obtained without giving any diver-
gence problems in the calculations of annihilation rates
over the entire range of the density parameter r, .' ' Ar-
ponen and Pajanne' have developed a new approach to
solve the problem of a charged impurity in an electron
gas. The e+ —e correlation energy c.„,„ is calculated

2V„„(r)= —0.923 05—
r

(4b)

and for 0.56~r, ~8.0
8.7674r, —13.151+0.9552r,

2V„„(r)= —— +
(r, +2.5) (r, +2.5)

+ 5 0 6298
(r, +2.5)

(4c)

Here we do not worry about the asymptotic
8.0~ r, ~ ~ region, as this range is beyond the crossing
point where the polarization potential is accurately given
by the —ao/2r term. We mention here that the interpo-
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lation formulas for the correlation energy [Eqs. (2)] were

formulated in such a way that for the limit r, ~DO, the
c.„„reaches the value of Ps ion energy, i.e., —0.262 a.u.
In the present positron case, we realize that in the r, ~~
limit, the correlation energy should approach the correct
asymptotic form of the polarization potential, i.e.,—ao/2r . We use the same ad hoc prescription as
O'Connel and Lane' by switching from correlation ener-

gy to the asymptotic polarization potential at their cross-
ing point.

Thus the PCP potential V, ~
(r) for the e+-atom sys-

tern is taken to be

order to generate the p(r) at all r values, the one-electron
radial orbitals of the argon atom were computed by the
self-consistent Hartree-Fock method (for details see
Ref. 24). The value of the polarizability of argon atom is
taken to be 11.08 a.u.

In order to solve the partial-wave equation (6) for the
scattering phase shifts, we use the variable-phase-
approach (VPA) technique. In the VPA method,
the differential equation (6} is converted in terms of first
derivative of the phase function yI(kr}. We rewrite the
6rst-order phase function equation as follows:

y'I(kr) = ——[2V, , (r)X ],2

and

V~( (r)=V„„,(r), r~r, (Sa)
where

aoVPcP ( )—
2T

(Sb)

where r, is the crossing radius. We have used here two
versions of the PCP potential: one, by employing just the
correlation energy s„„in Eq. (5a) (to be designated by
PCP1); and two, by taking Eq. (5a} as such with V„„
from Eqs. (4a) —(4c) (to be represented as the PCP2 mod-
el). In addition, we will also present the similar cross sec-
tions under the electron correlation polarization (ECP}
potential, ' which has recently been used for positron-
molecule scattering also.

The present PCP prescription is an approximate model
approach in order to continue our search for a true posi-
tron polarization potential that is different from the cor-
responding electron potential and involves no adjustable
parameter. However, the PCP potential [Eq. (5}] has
several favorable points worth mentioning here: First, it
involves a true short-range correlation of the incoming
positron with the target electrons at short distances and
exhibits correct behavior in the asymptotic region;
second, it is quite simple to evaluate and convenient to in-

corporate into any optical potential partial-wave analysis
or close-coupling techniques; third, it is quite different
from the corresponding ECP; and 6nally, it gives qualita-
tively good results, particularly for the DCS parameter.
Furthermore, the scattering length calculated with the
new potential compares very well with the measured
values (see later).

X =cosyl(krj}&(kr) siny—I(kr)rii(kr),

IO

0.4-

O
0.2—

I.O—

0.0
O
O

I

.0
a.u. )

I

2.5

and j I(kr) and rii(kr) are the usual Ricatti-Bessel func-
tions. Equation (7) is integrated up to a sufficiently
large r value different for different I and k values. The
corresponding phase shift yI is extracted in the r~00
limit. In terms of the scattering S matrix
S&(k)=exp(i 2yI ), the o, and DCS are calculated from

A. Scattering calculations

Here, we summarize the method of obtaining the
scattering parameters. In the usual potential scattering

problem, we solve the following differential equation for
the scattered electron function Rl for the lth partial wave
at an energy of k, i e.,

d RI(r) + k — —2V, , (r) Ri(r)=0,
dT T

(6)

where V,„,(r) is a local real optical potential for the e
Ar system written as a sum of repulsive static [V„(r)]and
the attractive polarization [V„„(r); PCP1, PCP2, and
ECP models] potentials. The evaluation of the V„and
the V, &

requires the charge density p(r} of the target. In

O.OI

FIG. 1. Various polarization potentials (in atomic units) for
the e+-Ar system. The potentials PCP2, PCP1, and ECP are
shown respectively by solid, dashed, and long-dashed lines. The
various notations are explained in the text. In the inset are
shown the total optical potentials (repulsive static plus the at-
tractive polarization terms) with various approximations: solid
line, V„+V~,~, dashed line, V„+V„„'; long-dashed line,
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and

maxI

o', = (2l+1)~1 —S)(k)~, o, = g crt,
I=O

I 2
max

2 g (2l+1)[SI(k)—1]PI(eos0)
dQ 4k2

(10) 0

10-1

where Pl(cos&) is a Legendre polynomial of order I. The
momentum-transfer cross sections (o ) are evaluated
from the integration of Eq. (10) with a weighting factor of
1 —cos8.

%'e made convergence tests preserving numerical accu-
racy up to 0.0001 with respect to radial distance and the
step size. In addition, the convergence criterion in the
number of partial waves were chosen to be the 0.00001.
In this low-energy region, we do not need a large number
of partial waves, i.e., I,„;a value of 1,„=20 is sufficient
for well-converged DCS at the highest energy considered
here.

In Fig. 1, we show the present PCP potentials (PCP1
and PCP2 both) along with the corresponding ECP
curve. There is a significant difference between the ECP
and PCP curves. The PCP1 approximation [using e„„,
Eqs. (2)] is about 10% less attractive than the corre-
sponding PCP2 [using the V„„,Eq. (3)] term. The cross-
ing points (with the asymptotic polarization potential) for
the PCP and the ECP potentials are, respectively, 2.0
(PCP1 and PCP2 values are very close to each other) and
3.6 a.u. This simply means that the e+ —e correlation
energy is stronger, thus giving rise to a more attractive
positron polarization potential than the corresponding
electron potential. It seems realistic since the positron is
expected to distort the target charge cloud deeper due to
strong positron-electron correlation. This difference in
the ECP and PCP models gives totally different DCS and
ao parameters in the present low-energy region (see later).

1 l I l I I 1 1 ~ I 4 J ~ I I

50 100 150
Angle (deg)

FIG. 3. Same as in Fig. 2, but at 3.4 eV.

The total optical potential V,z, (r), displayed in the in-

set of Fig. 1, is a sum of repulsive static and attractive po-
larization terms; thus there exists a zero-potential
[V,~, (r)=0] point which is quite different for the PCP
and ECP cases. Certainly, the role of the position of the
zero-point potential is important in shaping up the
scattering cross sections since this point decides the
penetration and sign of various partial waves. The two
versions of the PCP potential also have a small difference
with respect to the zero point. Thus the e+ scattering is
more sensitive to the inclusion of the polarization poten-
tial than the corresponding e case, where exchange in-
teraction also contributes significantly in reproducing the
features of the cross sections. In the zero-energy limit,
the role of the position of the zero-point potential is even
more critical (see Sec. II C).

8. Differential, integral and momentum transfer
cross sections
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FIG. 2. DifFerential cross sections (in units of ao/sr) for the
e+-Ar elastic scattering at 2.2 eV. Present theory: solid curve,
PCP2 model; dotted curve, PCP1 model; dashed curve, ECP
model. The squares are the theoretical results without includ-

ing any polarization eftects. The experimental points (crosses)
are due to Coleman and McNutt (Ref. 10).

We now present our DCS and integral (o, and o )

cross sections by using the PCP (both versions, i.e., PCP1
and PCP2) model for the e+-Ar elastic scattering at low

energies below the Ps formation threshold, where a
wealth of experimental data for total and
differentia1' ' cross sections are available for compar-
ison. We would, however, compare our u, values with a
few selected measurements only to avoid crowded points
in the figure. Et is only recently that the DCS for the pos-
itron scattering can be measured in the laboratory. Such
a pioneering experiment was first performed by Coleman
and McNutt' at low energies below the first excitation
threshold, Later, Hyder et al." measured the e+-Ar
DCS for 100, 200, and 300 eV energies at 30'-13S an-
gles, while more recently this group reported their rela-
tive DCS measurements at lower energies and other an-
gles also. ' More recently, Floeder et al. ' reported their
relative DCS for the e+-Ar system at 8.S and 30 eV be-
tween 26' and 65 angles. Since these recently measured
values (except the work of Ref. 10) are not absolute, their
comparison with various theoretical DCS data ' in-
volves a normahzation procedure.

Figures 2-5 display our DCS at 2.2, 3.4, 6.7, and 8.5
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FIG. 4. Same as in Fig. 2, but at 6.7 eV.

150

eV energies, respectively. We have plotted all the three
models (PCP1, PCP2, and ECP) along with the experi-
mental points from Refs. 10-13. From these figures we
clearly see that the PCP model is more realistic than the
corresponding ECP one. We must remember that the
present results involve no fitting parameter as compared
to previous calculations. ' However, the agreement
between experiment and these previous semiempirical cal-
culations ' is only satisfactory. From Fig. 10 of Ref.
8, where the positron-Ar DCS below Ps threshold is com-
pared with measurements, the situation is not quite clear
since the theoretical results are plotted only up to a 70'
angle and the experimental points are shown only up to
60'. Here, we have reported our calculations at all an-
gles. The experimental data of Bielefeld and Detroit
groups for the 8.5- and 6.7-eV DCS clearly exhibit a dip
in the DCS at middle angles; this structure is approxi-
mately reproduced by the present PCP models, while the
ECP potential is unable to give the right shape of these
angular distributions. We also notice a significant
discrepancy between the relative measurements of Refs.
12 and 13. The present PCP DCS seems to agree with
the measurements of Floeder et a1. rather than the data
of Smith et al. at 8.7 eV.

The two versions of PCP (i.e., PCP1 and PCP2) differ
only slightly. At 8.7 eV, the position of the minimum is
strikingly in fair agreement with the measurements; how-
ever, there is some discrepancy between our PCP curves
and the experimental points with respect to magnitude.
We have not used any further normalization procedure
than the one already taken care of by these experimental-
ists. At further lower energies (2.2 and 3.4 eV, Figs. 2
and 3), our PCP curves compare qualitatively very well
with the absolute data of Coleman and McNutt. ' The
trend of the PCP DCS follows the absolute experimental
values of Ref. 10. Here also, the ECP model does not
give the right shape of the cross sections. There is large
difference in the position and magnitude of the dip struc-
ture given by the PCP and ECP models; the ECP dip
occurs at about 40' less than the position of the PCP
minimum. No other parameter-free theoretical calcula-
tions (except the empirical ones) are available at such low

energies. Since the FCP approximation is parameter-free,
its success over the ECP one cannot be ignored, and
therefore the former model deserves further attention.
Nevertheless, we do expect some discrepancy between
theory and experiment due to the fact that the process of
virtual Fs formation is neglected here and also the model
nature of the PCP potential. In addition, the accuracy of
the relative measurements" ' is also not very clear.

We now discuss our integral cross sections. Figure 6
shows the 0, and o. scattering parameters for the e+-
Ar system in the 1 —10 eV range. Also shown in this
figure are the two sets of experimental data (0, ) from
Refs. 29 and 39 only and the theoretical semiempirical re-
sults of Nakanishi and Schrader (for both the o, and 0
cross sections). Again, we see from Fig. 6 that the PCP
models compare reasonably well with the measured data,
particularly in reproducing the general shape of the cross
sections in the whole energy region considered here. It is
to be noted that the ECP approximation works well for
the electron scattering. ' The PCP curves (Fig. 6) are in
qualitative agreement with the semiempirical calculations
of Nakanishi and Schrader. At somewhat higher ener-
gies (E ~ 3 eV), the ECP cr, curve is in better agreement
with the recent measurements af Charlton et al. How-
ever, we must emphasize here that the success of any
model potential calculation should be judged from the
differential cross section point of view. The PCP 0, cross
sections along with the calculations of Nakanishi and
Schrader agree with the experimental values of Kauppi-
la, Stein, and Gesion rather than the recent observa-
tions of Charlton et al. The two sets of experimental
data shown in Fig. 6 differ significantly with each other in
the 4-10 eV energy region.

The o values in all the three approximations (PCP1,
PCP2, and ECP) are displayed in the lower part of Fig. 6.
Also shown in this part of Fig. 6 are the theoretical
semiempirical results of Nakanishi and Schrader. Here,
the ECP curve is quite different from the other three
curves shown in Fig. 6 for the 0. . At very low energies

10'

100

c 10

b

10 0
~ ~ ~ I ~ ~ s s I I ~ ~ a I ~ ~

50 100

Angle (deg)

150

FIG. 5. Same as in Fig. 2, but at 8.7 eV. The circles are the
measured values of Smith et al. (Ref. 12), while the experimen-
tal data (at 8.5 eV) of Floeder et al. (Ref. 13) are plotted as
squares.
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sion). Thus, assuming only the two-wave scattering
[s (1=0) and p (/ =1) waves], the minima in the DCS
occur at angle 0;„defined by

cos8;„=—
—,'cos(yo —y, )[sin(go)/sin(g, )] .

In Table I, we have listed go, g&, y2, g3, and t9;„at 2.2
eV in several models PCP1, PCP2, and ECP) including
the semiempirical calculations of Nakanishi and
Schrader. From Table I, we see that the higher-order
phase shifts (I &2) are the same in all models, while the
1=0 and 1 phase shifts are very sensitive to the treatment
of polarization. This means that the phase shifts with
l & 2 do not penetrate the target region and scatter main-
ly with the asymptotic polarization potential, which is
known correctly. The value of 8;„ increases with the
strength of the polarization in the target region. The
values of the critical parameters (angle, 8„;energy, E„;
DCS„) in all the present models are given in Table I
along wigh the estimates of %'adehra, Stein, and Kauppi-
la (they used the phase shifts calculated by McEachran,
Ryman, and Stauffer ). Again we see that the PCP ap-
proximation is close to other theoretical estimates. It
could not be possible to find these critical points in the
ECP model; this further supports our findings that the
ECP is not a right choice for the positron case.

000 I I

4 6 8

ENERGY (eV)

l

IO

FIG. 6. Integral (o, ) are momentum transfer (o ) cross sec-
tions (in units of 10 ' cm ) for the e+-Ar elastic collisions at
1-10 eV. The various models are shown by solid (PCP2),
cross-dashed (PCP1), and dot-dashed (ECP) curves. The
theoretical semiempirical results of Nakanishi and Schrader
(Ref. 8} are plotted as a dashed curve. The experimental data
are taken from Kauppila, Stein, and Gesion (Ref. 29) (closed cir-
cles) and Charlton, et al. (Ref. 39) (triangles). For various nota-
tions see the text.

(below 3 eV) the ECP model seems to give totally
different results than the expected shape of the integral
(cr, or cr ) cross sections. From Fig. 6, it is quite clear
that the PCP model describes the low-energy e+-Ar elas-
tic scattering more realistically than the corresponding
ECP approximation; this fact is further supported by the
calculation of scattering length (see below).

C. Critical points

The critical points are related with the minima in the
DCS. In the present low-energy region, the position and
the magnitude of the minimum in the DCS are highly
sensitive to the polarization potential (see Figs. 2 —5).
However, the higher partial waves (mostly I &2) are nat
affected by the details of the polarization patential in the
target region. For the present e+-Ar case, for example,
at 2.2 eV, only the s and p waves change with various po-
larization models (also the contribution of these higher-
order partial waves is nat crucial in the present discus-

D. Scattering length ( A p )

lim k cot5o(k) =— 1

k O Ao

where 5o is the s-wave phase shift at energy k . Here we
report aur Ao values in the PCP1, PCP2, and ECP ap-
proximations at very low energy (E =0.0001 eV) along
with the experimental and other theoretical values avail-
able in the literature. (We checked the convergence or
the zero-energy limit at several lower energies 0.0001,
0.0005, and 0.001 eV with Ao to be —4.89, —4.88, and
—4.81, respectively, in the PCP1 case; there is virtually
no change in the Ao value below 0.0001 eV.) The PCP
values for A (

—4.89 a.u. in PCPl and —5.42 a.u. in
PCP2 approximations) can be compared with several
measurements, e.g., —(4.4+0.5) a.u. by Lee and Jones,—(2.8+0.7) a.u. by Tsai, Lebow, and Paul, and
—(3.5+0.5) a.u. by Hara and Fraser. The correspond-
ing theoretical Ao value of Nakanisi and Schrader is
—4.5 a.u. while McEachran, Ryman, and Stauffer re-
part their number to be —5.30 a.u.

(12)

The calculation of the Ao involves the collision prob-
lem in the zero-energy limit, The role of polarization in-
teraction becomes very critical for the calculation of Ao
or Z,s (not considered here). In the positron case, the
zero-energy scattering is even more difBcult due to strong
polarization and correlation effects and the cancellation
between attractive polarization and repulsive static po-
tentials. In this energy region, only the s wave (l =0) is
significant, and therefore higher-order partial waves can
be neglected in this part of the calculation. %'e now test
our PCP parameter-free prescription by calculating the
scattering length Ao, which is defined in the zero-energy
limit as follows (neglecting higher-order terms in k ):
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TABLE I. Phase-shifts and the value of the 8,„ for positron-Ar scattering at 2.2 eV in various

theoretical models. The 8„,E„,and DCS„are, respectively, the values of critical angle, critical ener-

gy, and the DCS at H„and E„for the positron-Ar system in various models (see the text for notations).

Quantity

XO

X1

X2

X3
0,„(deg)
L9„(deg)
E„(eV)
DCScr(ao )

'Reference 8.
Reference 43.

PCP1

0.1324
0.202
0.053
0.018

102.6
93.5
2.15
0.0002

PCP2

0.169
0.208
0.052
0.018

105.7
93.8

2.35
0.000 273

ECP

—0.22
0.120
0.052
0.018

35.0

Semiempirical
calculation

(Ref. 8 or 43)

0.0543'
0.1857'
0.052'
0.018'

99.6'
951

1.67
0.000 14b

On the other hand, the present ECP value of —1.68 for
Ap seems to be way o8'from the correct value. This can
also be seen from Fig. 6, where the ECP cr, and 0 cross
sections have wrong behavior at low energies (below 1

eV). It is a well-known fact that the relation [Eq. (10)] is
true for those long-range potentials which asymptotically
fall off as r ', where s ~ 3 (see Ref. 47), i.e., the polariza-
tion interaction in the present case. A lower value of Ap
in the ECP model than the corresponding PCP or experi-
mental values simply means that the ECP potential is too
weak to actually represent the polarization of the target
due to positron impact. Thus even in the zero-energy
scattering case, the behavior of polarization potential at
short distances has substantial effect on the scattering pa-
rameters.

III. CONCLUSIONS

In this paper, we have employed an approximate
parameter-free positron correlation polarization potential
to investigate the low-energy collisions of positrons with
argon atoms. The new PCP potential is determined from
the correlation energy c.„„ofone positron in a homo-
geneous electron gas. For the c.„„,we have employed the
recent accurate results of Boronski and Nieminen' based
on the theroy of Arponen and Pajanne' for c„„,in the
whole radial region. The c.„„is simply a function of the
target electronic density and very easy to calculate com-
putationally. At 1arge distances, the correlation term is
replaced by the correct asymptotic form of the polariza-
tion potential ( —ao/2r ) by following the crossing point
procedure suggested first by O'Connel and Lane. ' We
tested two versions of this PCP prescription: one, just
the c,„„,energy as such (PCP1) and two, the correlation
potential V„„, [PCP2, Eq. (4)], which should be an ap-
propriate way to obtain correlation potential from the
e„,„energy (see Refs. 48 and 49).

For the present positron-argon case, we found that the
PCP (both PCP1 and PCP2) model gives qualitative as

well as quantitative agreement with experimental results,
while the corresponding electron polarization potential
used as such for the positron case fails to reproduce ob-
served features in the cross sections. This fact is further
proved by calculating the scattering length (A o) in all the
three PCP1, PCP2, and ECP models; we find that the
PCP values for Ap are much closer to the experimental
data than the corresponding ECP result. We also noticed
that the difference between the PCP1 and PCP2 parame-
ters is not significant; however, at very low energies
(below 3 eV), the small difference between the PCP1 and
PCP2 models is enough to change the position of the dip
in the DCS by about 5'. In the zero-energy limit, the
value of Ao changes by 8% by switching from PCP1 to
PCP2 approximation. We also reported our results on
the critical points in the DCS and found that there the
PCP model is in reasonable agreement with previous esti-
mates.

It is thus quite obvious that for the positron-scattering
we need a different polarization potential than the one
used for electron case. This conclusion is quite similar to
the one discussed properly by Morrision, Gibson, and
Austin for the positron-molecule case. ' In particular,
the use of an electron polarization potential for the posi-
tron case should not be carried out for the DCS and the
zero-energy parameters such as the A p.
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