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In this work we give the values of traces of p-order reduced-density operators. These traces are
obtained by application of the spin functions and of the symmetric-group properties. The relations
obtained here wiI1 allow an easy and fast evaluation of the high-order spin-adapted reduced Hamil-

tonian matrix elements and high-order Hamiltonian moments.

I. INTRODUCTION

In the spin-adapted reduced Hamiltonian (SRH)
theory'2 a crucial step is the evaluation of traces of prod-
ucts of replacement operators. In these traces the sum-
mation is performed over the basis of a subspace
H "(N,K,S,M ) defined as the antisymmetric and spin-
adapted part of the N fold tens-orial product of one-
electron space

H "(N,K,S,M)=( V~@ )sst,

where A stands for antisymmetric, S and M refer to the
eigenvalues of the ¹lectron spin operators, and K is the
dimension of the orbital space. Evaluating this kind or
closely related traces is a general problem occurring in
different theoretical developments, in particular, in atom-
ic and nuclear spectral density distribution analysis.

When approaching the building of high-order SRH
matrices or Hamiltonian moments a very powerful tool
has to be devised from the very starting point, otherwise
the task becomes so complicated that it cannot be at-
tempted. To build such a tool is the aim of this work.
We will show that the generalized reduced-density opera-
tors (RDO) whose general properties have been recently
reviewed' have a series of other properties which render
them very adequate for our purpose. It will also be
shown here that the product of these operators, which is
known to be equal to a sum of higher-order RDO's (Refs.
11 and 12},can be carried out in a very effective way by
using a new graphical technique which can be easily ap-
plied and programmed for a computer. Finally, an ex-
tremely fast technique is described for evaluating traces
of any RDO's. This technique renders feasible the task of
building high-order Hamiltonian moments and SRH ma-
trices.

As our interest lies mainly in obtaining close form ex-

II. NOTATION AND BASIC RELATIONS
AMONG GENERALIZED OPERATORS

A. p-electron creation B~,

and annihilation B, operators

We denote a p-electron creator B~ and annihilator B as

bt bt . . . bt
(I(,l2, . . . , I ), 0&, o&, . . . , cr —

l&o'& F202 l 0

where (i, , . . . , i ) are orbitals and o „o2, . . . , o are
spin functions.

This notation can be further generalized as

BT--, c
q

(2)

where (ii, . . . , ir ) denotes the spatial function of the p-
electron state and j„j2,. . . ,j define the spin coupling.

If 8 represents a p-electron eigenstate of S and 0„
the total spin quantum number S and its projection M are

pressions for the matrix elements of the fourth-order
SRH (4-SRH}, we focus our attention on examples of
traces appearing in this particular case, but all the tech-
niques are general and cover all the possibilities that may
appear in an atomic or molecular problem.

In the following section we describe the notation and
basic relations used. By using a graphical procedure we
show in Sec. III how to transform a product of p-RDO's
into a sum of single t-RDO's. Then, in Sec. IV and V we

give a closed-form procedure for obtaining the value of
the trace for any single t-RDO in terms of traces of prod-
ucts of p occupation number operators. ' ' Products of
occupation number operators are referred to as diagonal
RDO's.
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among the indices j&, ~ . . , j~.

B. p-order reduced-density operators {p-RDO)

Hp y I ~
kl

~ ( 2Eik 4Eprtw )
1

i,j,k, l

(10)

The I-RDO, also called in the literature replacement
operator, ' ' is

E;—= Qb; bj (3)

The p-order operator is written as

E,',d' —= g b, b bk . .
bd b, b,

0 ]r ~ ~ ~ y
0'

(4)

These operators generate the p-order reduced-density ma-
trix (p-RDM) elements of any given ¹lectron state ~X )
as

ijk, . . .;. . ., acd =
I

C. p-RDO written in terms of spin-adapted 8 ~

and B operators

It is known that

(ijki)SM(j j ) 2 (S~J)J2~J l~ lJ2~2 )
ml, m2

(ij )j I
m

&

~ ( kl )j2 m 2

(6)

In what follows the superscript p will be omitted unless it
is needed for clarity.

where the angular brackets ( ) are a shorthand notation

for gA(A~ ~A) where ~A) are eigenfunctions of S and
S, in the ¹lectron space. They define a spin-adapted
subspace of the N-fold tensorial product of a 2K-
dimensional one-electron space.

The values of traces such as those appearing in (10) de-
pend only upon J(l (number of electrons), lt' (number of
orbitals), and S (total spin). In the next section we will
consider how to transform a product of RDO's to a sum
of single RDO's.

III. A GRAPHICAL REPRESENTATION OF PRODUCTS
OF RDOos

A product of RDO s yields a linear combination of sin-
gle RDO's. "' Except for the highest-order term, every
other RDO is multiplied by one or more Kronecker 5's.
The indices labeling these 5's and the RDO's have
different ordering in each term. This is what renders it
too complex to be applied when many indices appear. In
this section a simple graphical technique is described to
overcome this difficulty.

We start by representing the RDO's by the following
graphs:

v
'Ey

and that, in general,

t (i), . . . , i )tr), . . . , tr ) t tr). . . , trit ,) t (i(, . . . , i )SMA, I

2Eyx
ZW

3Eyxt
ZWU

y X

y x t

Z %V V

where {C "
I is a unitary matrix. Thus

Eab, . . . = ~ ~ (ij, . . . )SMA,~(ab, . . . )SMk
SMA,

X ~(ij, . . )a), . . . , tr ~(ab, .. . . )tr), . . . , tr
0']r ~ ~ ~ r CT~

where A, labels different spin functions corresponding to a
given S and M.

and so on. Now, by a diagonal line we mean a Kronecker
5 involving the two indices linked by this line. Thus

Z W

(12)

Let us see how this works in the simplest example of
RDO's products:

D. Spin-independent many-body Hamiltonian and the 4-SRH
matrix s ritten in terms of these operators

The many-body Hamiltonian operator 0 takes the fol-
lowing form when written in terms of 2-RDO operators:

A=Ey E"=Ey"+5 Eyz w zw xz w

Z W Z W

y x y x
A=

f

.
f

= +
(13)

i,j,k, l
Iij lkl I Eii",

where the symbol (ij ~kl) represent generalized two-
electron integrals, defined previously, which are referred
to hereafter as electronic integrals.

Following the rules given previously, ' ' the 4-SRH
elements take the form

Let us now see a series of examples which will give the
general rule. The indices are obviously not needed be-
cause their places in the diagrams are always the same.
Thus we omit them:

(14)



41 SYMMETRIC-GROUP APPROACH TO THE STUDY OF THE. . . 2393

(15}

is the same; (ii} all the indices appearing simultaneously
in the creator and annihilator sets are different and the
ordering of indices in both sets is difFerent; (iii) a silnilar
case to (ii) but when some of the indices are repeated.

Case (i) has been satisfactorily solved previously.
Therefore in the next two sections we will study cases (ii)
and (iii), respectively.

IV. TRACES OF OPERATORS HAVING INDICES
WITHOUT ANY REPETITION

~+ H~ +

(16)

Note that as no index appears simultaneously in more
than one 5, all graphs can be superimposed into a single
one. We will show it in two steps. Thus

Eq. (14)=

Here we will describe an efficient technique to obtain
the value of traces of any RDO without repetition of in-
dices, while in Sec. V we will describe the last case. Let
us start by enumerating a series of general properties that
the spin-dependent RDO's and state operators, or their
traces, possess.

A. A,-independent relation

A property of traces is that

and since one E and two E 5 terms must appear, it can
be further contracted into

(B B )(1, . . . , n)P{o &, . . . , o„) (1, . . . , n)P(o &, . . . , cr„)

=(Bt - B - ),(1, . . . , n ~ o'1' ' ' ' ' o'n (1, . . . , n {2 o'1' ' ' ' ' ~n
(18}

In the same way,

Eq. (15}=

where P, QES„. (Note that the ordering of the orbital
labels does not need to be the same in the creator and in
the annihilator. ) Equation (18) implies that

(B(,. . . ,.)p,. )B(, . . . , ) (

(gf
(I, . . . , )Q(SMA, , ) (I, . . . , n)g(SMk, . )

) (19)

Eq. (16)= +

+ gH+ HH+
Now, bearing in mind that for a pair of quantum num-
bers S and M the set of ~SMA. , ) spin functions is a basis
of an irreducible representation of S„,we get

p~sMx;)= gr(p); ~SMx &.
I

(pgijk, . . . , r)—:(pEjk, . . . , ri ) (pgikr, . . . ,j).. .
tux, . . . , s = vx, . . . , st = txs, . . . , u (17)

(b) As a whole, the set of creator indices [i,j,k, . . . , r ]
must be the same as the annihilators one It, v, x, . . . , s],
otherwise the trace will be zero. In what follows, this is
always assumed. Because of these properties only three
main cases appear: (i} the RDO is a diagonal operator,
i.e., the order of the creator and of the annihilator indices

Thus all the terms are created by linking annihilator ver-
tices of the operator on the left to the different creators of
the operator on the right with zero, one, two, etc. 5 lines.
Each Kronecker 5 reduces by 1 the order of the RDO.
The annihilator index below the creator one, which
disappears by contraction, takes the place of the annihila-
tor, which also disappears [see, for instance, Eq. (13)]. In
this way the multiplication of RDO's becomes a routine
and it may easily be programmed.

Once the products of RDO's are converted into a sum
of single RDO's, the next step is to evaluate their traces.
Let us start by recalling the following properties of these
traces: (a)

+r(Q)„&B„„„„,B„„„,), (20)

where 1 (Q )11+I (Q })&=1. It can be rewritten as
~t( B(1,. . . , n)SMA&B(1, . . . , n )SMk) )

—lut~B(1,. . . , n) SM&kB(l, . . . , n)SMX& ~ (21)

The previous proof is not a particular case. Indeed, it
can be repeated for any given pair (A, „j(3), (A, „A4), . . . ,
etc. Therefore Eq. (21) says that the trace is A, indepen-
dent.

Let us now rewrite, as an example, Eq. (19) for the partic-
ular values i = 1; P is the identity; operator Q is an opera-
tion such that all the elements of its matrix representa-
tion of a), type are zero for j%1,2 (as, for instance,

g
= (34) for [3,1] irreducible representation of S4,

Q =(13) for [2, 1 ] of S~, Q =(45) for [4,1] of S5, etc. ' ).
With this choice, Eq. (19) becomes

~B(l, . . . , n)SMX& (I, . . . , n)SMk) ~

=r(Q }(II(B, . I. . n)s M, k(B, . I. . , n )SM, ~k)

2
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8. Freezing relation count the relation

Let us consider a trace

(B]2;O,OO(3, 4, 5, . . . )B]2;0,0 ~N K (22)

(jnk, . . . )SMA, P(j, k, . . . , n)SMA,

= ( —1 PB(j., k, . . . , n)P(SMk]) (2g)

where N is the number of electrons of the states over
which the trace is performed, K is the number of orbitals
from which these states are built, and 0(3 4 5 ) is any
operator involving 3,4, 5, . . . indices. It can easily be
proved that

E12E21 (E]1 E22 )E]1

=(E]] 1)E]]+2B]2;O,P]2;0,0

Therefore, because of Eq. (19) and Eq. (49) in (Ref. 3),

(B]2;0,0 12;OOO(345. . . ) ~

=-'&E] «11—1}o(345 )) ' (24}

But E
& ] E

& ] means that orbital 1 is doubly occupied.
Therefore the right-hand side of Eq. (24}becomes

—,'(E„(E]]—1)O(3 4 5 ) ) (O(3 4 5 ) )N —2 K ]

which is due to the fact that except for the factor (
—1),

it is equivalent to interchange the spin or the orbital la-
bels. (This is a consequence of the duality of the irreduc-
ible representations of which the spin and the space parts
of a fermion function constitute a basis. )

Then we may write Eq. (27) as

(
~ n~~ ~ (ij k, . . . )SMA. &~(kli, . . . )SMA,

&

/ut
~B(ijk, . . )SM]k]B. (ijk, . . )SM.X&

~

A fA

(29)

Note that the traces do not depend on A, , but they vanish
unless A, ]=A,2. Hence we have Eq. (29) identically equal
to

Hence

f A.
( B]2;,000(34 . . )B]2;O,0 IN, K (O(3 4. . . ) )N 2, K —1 —.

(25)

(26)

1 } (B(ijk, . . . )SMk B(ijk, . . )SMA ~ .X ~ (p }k k

which gives the important character g relation

(
~ nt~ ~ (ijk, . . . )SMj)],l~(kli, . . . )SMA.

&

(30)

C. A useful character relation

Let us consider a trace

~ut~ ~ (ijk, . . . )SMA, &~(kli, . . . )SMA,
1

(27)

1 } X (~ ) ( B (ijk, . . )SMk B(i.jk, . . . )SMk

V. TRACES OF THE q-ORDER
REDUCED-DENSITY OPERATORS

(31)

where the spin part is the same in both operators, but the
space indices have different ordering, and the sum does
not run over S and M but just A, . Let us also take into ac-

%'e shall now apply these relations to evaluating traces
of an arbitrary q-RDO

~1{k,. . . ( ~ll i l) kkX tijk)SMk P(kk. . )SMk), , .
SMA,

1 ~ 2+ ( } X B(ijk, . . )SMAOBijk,. . . . , SMk0
S IMI &S

As we know how to evaluate the trace of ~E when it is diagonal, "' let us write

x (~)=x «)+[X (~)—1 «)],
where j](E) is the character of the identity operator. Then,

Eljkj. . ~ ( , .} ( Eijk, . . + g tX (~. } X (E 1( (ijk, . . . )SM]koB(ijk, . . . )SMXO ~

S,M

(32)

(33)

(34)

For the maximum value of S the spin functions are totally symmetric and hence all the characters are equal to 1. So the
contribution to Eq. (34) ofS,„ is null.

What we shall do now is to use, in an alternate and systematic way, relations Eqs. (21), (26), and (31). Thus, denoting

c, =y(P) y(E), —

we rewrite Eq. (34}as

(35)
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ElIt ' ) ( 1) ( Ei~k~ )N K+ X cq X ~(ijk, . ..)sMp0 (ijk, . .. )sMp&
S M

The first trace is

( EJl
' '' )'—( n ] n2n3 ' ' '

nq )N K

This relation has been obtained previously. '

Now let us consider

(36)

(37)

ST] X q X (ijk, . . )S.M@0 (ijk, . . . )SMpo
S M

Because the term S,„does not exist, we may always express T, as

(38)

s
1 P q ~ij;00 P ~(kl, . . )SMy . (kl, . . . )SMy&~ij;0, 0

S M

and because of the freezing relation Eq. (26),

max
ST] p cq X~ (kl, )sMy&~(kl, )sMyo

S M N —2, K —1

(39)

I.et us now multiply and divide this term by the cq
'" . In this way, when S=S,„—1, the coefficient in front of the

trace becomes 1. Then we apply again Eq. (33) and we get

c~
max +4'( E )

max
Cq

(40)

and we can see how a new sum T2 appears. This pro-
cedure can be pursued up to the last term, which is al-

ways either (E;; ) or (I ). The trace of unity is equal to
the dimension of the space.

A11 this process seems to be complicated. However, by
using Table I in which all these steps have been summa-
rized, it becomes a trivial task. Table I is built up to S6,
which is what is needed for the construction of the 4-
HRS, but it can be easily expanded for higher orders. We
have used in the first column of Table I the standard no-
tation for the group classes. ' In order to learn how to

n 2 n —4

TABLE I. Linear combination coeScients linking traces of
the diagonal RDO's with the traces of nondiagonal RDO's.

use this table, let us calculate the trace ( E2314 ) as an ex-
ample. The ordering of annihilators can be written as

2314= (123)1234,

where (123) is the simultaneous permutation of three in-
dices and belongs to class [3]. Therefore from Table I we
know that 1 and —3 are the coeScients multiplying the
traces of Eand E, respectively. Consequently,

E2314 ) ( E]234 )N, K (E]2 )N 2, K —I—
=(n]n2n3n4)N, K 3( ln2)N —2, K —1

.

This example shows clearly how trivial the calculation of
RDO's traces becomes when all indices are diFerent. In
the next section we will show how to transform the case
of repeated indices into this one.

[1]
[2]
[3]
[2']
[4]
[2»]
[5]
[2'l
[2,4]
[&']
[~]

1
—1

1

1
—1
—1

1
—1

1

1
—1

2
—3
—4

4
5

—5

6
—6
—6

6

—2
—6

5
—12

10
9

—9

8
—4

0
2

VI. TRACES OF RDO'S WITH REPEATED
INDICES

In what follows we show how to express a trace of a
RDO having one or several equal index labels in terms of
traces of RDO's without repeated labels. For clarity this
section is subdivided into two subsections.

A. Description of graphs

It is well known that due to the Pauli principle a given
orbital index cannot appear more than twice in the crea-
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tor or annihilator set of a RDO. A label that appears
twice in the set of annihilator (or creator) indices corre-
sponds to a doubly occupied orbital. We also know that
RDO's with nonzero traces must have the same sets of
the creator and annihilator indices.

Another property of the RDO's that we apply is

following kind of pictures for the RDO (it reminds a
crenel}:

closed loop

opposite open loop

ij kl,E.b,d', (4l) parallel open loop

I I ~ ~ ~

~ ~ ~ i (42)

where every creator repeated index has as a partner an
annihilator index which is also repeated even if it is not
the same label Anoth. er illustration of this type of RDO
and corresponding graph might be, for instance,

That is, we may change simultaneously the positions of a
creator and its corresponding annihilator in the double
string of indices.

All these properties are at the basis of the graphic tech-
nique described in the three following paragraphs.

(a) The first type of RDO that will be considered is of
the type E,' . We represent this operator by the graph

B. Computing the traces of these RDO's

Closed loops

The closed loop
11.~

J o ~ ~

]o ~ ~

1 1

gb, b, gb; bk~ b, b,
0' (72

E iigkkj, . . .
ij kikj, . . . 11 1j'

I

(43)
and its trace is

We call this kind of graph a closed loop and it is charac-
terized by having no loose ends.

(b) The second type will have two ioose ends corre-
sponding to an annihilator and to a creator appearing
only once in the string but whose partners are repeated
indices. The simplest example of this type of RDO is

1100 1100 kl, . . . )

( Ekl, . . . ~N —2, K —I

Let us consider another example of this kind of loop:

(49)

iil, . . .
Eking', . . .

I I ~ ~ ~

A more complex example of this kind is

(44) 2 2. .
I
—ij . . .

, k 1".
2

~iijj k, . . .
lijsj, . . .

~ ~ ~

I
~ ~ ~

I l

(45}
a CT2

ii kl
Pvl i (46)

We call this type of graph open opposite loop and it has
two loose ends, one corresponding to the creator string
and the other one to the annihilator string.

(c) The last type of RDO considered is

/J, . . .=2B II.p oB22.p 0(Ekl' '
)( —B2p.p pBII.p p) .

Consequently, the trace is

=2( —1)'(Ekl' )N 4 K

(50)

(5l)

Clearly here we have four loose ends. Two of them corre-
spond to the creator string and the two others to the an-
nihilator string. We call this kind of graph parallel open
loop. Another more complex example is

Note that the power of (
—1) in these formulas coincides

with the number of transpositions needed to get the or-
dering of the creator labels of the loop consistent with
that of their annihilation labels.

g iijj kklm, . . .
~tiijj vkk, . . . (47) 2. Opposite open loop

All the RDO's that may occur are combination of
these three types. Therefore what we need now is to
learn how to evaluate quickly these three kinds of traces.

Finally, by using Eq. (41) it becomes obvious that all
loops belonging to the same type (closed, opposite, or
parallel open) and having the same number of indices
represent the same RDO. So, we can choose always the

Let us consider
1 1 iE11i,. . .

j 11,. . .

=gb, b, b;

=B»00 XK~ X
a

b1 b1 b

BII;o,o} i (52)
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positions needed to get the same order of the creator and
annihilator labels in the loop: P»(j1 1 ) = 1 1j.

1) (Ej,' . . .III 2.—Ic —1 . (53)

The power of ( —1) is again equal to the number of trans-

3. Parallel open loop

A suSciently general example for this last case is

z 112233ij~k 1122133

1 1 2 2 3 3 i j
~ ~ ~

~ ~ ~

k & 1. 22 83 3

t t= g B~~p QB22p pB33 p p(btob oB33p p b~obto—B33p p)btv
—B22 p p)( —B&]p p)bk~

B 11;Q,Q 11;QQB 22;Q, Q 22;QQB 33;Q,Q 33;Q,p gbiobjo( [o ka+bko lcr )

=B~~.pp
' ' 'B33~ QQ g b; b, (bi bk +bg bi )

0'lcTP

(54)

Then we get into traces of other RDO's containing only nonrepeated
labels (but computed in a subspace of the original spin
adapted Hilbert space).

—
( 1)4(Eij, . . +Et'. ,

~N 6, IC —3— (55)

The power of ( —1) is now 4 because
P6sP&7P35Pt3(k1122l33)=1122331k and four transposi-
tions are needed.

In summary, this diagramatic technique transforms
irnrnediately the traces of RDO's with repeated labels
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