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With multistep laser excitation via 4sn’s Rydberg states, doubly excited msns 'S° states (m =6,
9<n<20;, m=7,9<n=<20; m =10, 10=n <20 except n =11) of Ca atoms have been observed,
and their energy levels have been obtained. The large-scale configuration-interaction calculation for
Ca atoms has also been executed using a discrete two-electron basis set, in which a frozen Ca?* core
is assumed and the total number of the bases is 1714. The calculated energy levels are in good
agreement with the observed ones, including those of the 8sns and 9sns states observed in our previ-
ous studies [Phys. Rev. A 38, 551 (1988); J. Phys. B 21, 1.439 (1988)]. Based on the good agreement,
charge-density plots have been drawn for the nsns states (4 <n =< 10), using the calculated eigenvec-
tors. In all the nsns states investigated, a reasonably large part of the charge density has been seen
to be localized on the Wannier’s potential ridge and to show a fairly strong angular correlation. In
lower nsns states, the angular-correlation pattern has been found to support the moleculelike pic-
ture, although an unusual pattern has been seen in a smaller radial region. In higher states, two
types of unusual angular correlation have been seen. In particular, one of them is suggestive of a
bent structure of the charge-density distribution, in spite of the zero-angular-momentum states.
The cause of this correlation has been discussed from a viewpoint of configuration mixing, although
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its physical meaning is still unknown.

I. INTRODUCTION

For the past two decades, understanding of correlated
electronic motion in doubly excited atoms has greatly
been developed mainly through two approximate treat-
ments of the Schrodinger equation: one is the SO(4)
group theory' ~*® and the other the adiabatic approxima-
tion using the hyperspherical coordinate.*”® The group-
theoretical studies have shown that doubly excited states
can be well described by the “doubly excited symmetry
basis” (DESB) (Ref. 1) diagonalizing an SO(4) Hamiltoni-
an, which is an approximate form of the electron interac-
tion energy. It was also shown that an energy structure
described by the DESB of the intrashell states (n;=n,
where each n; is a principal quantum number of the elec-
tron) is very akin to a rovibronic structure of a linear
floppy X-Y-X molecule, where each X represents an elec-
tron and Y the nucleus. Charge-density plots drawn by
numerical calculations using the hyperspherical coordi-
nate have strongly supported the correctness of the mole-
culelike picture in specific doubly excited states including
the intrashell states. Similar results have been obtained
also by configuration-interaction (CI) calculations.® It is
also well known that a large part of the charge density in
those states lies upon a potential ridge described in the
Wannier theory®!® for two-electron breakup. Besides,
very recently, Iwai and Nakamura!! have more definitely
shown the correctness of the moleculelike picture by the
second quantization of the SO(4) Hamiltonian. They
have shown that the DESB can be reproduced by rotat-
ing and vibrating a symmetry-broken ‘“‘shape,” which is
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determined by a variational calculation without the sym-
metry requirement. This shape corresponds to a “mole-
cule,” localizing angularly to become a completely linear
charge in the limit of a large principal quantum number.

These studies have been developed so far with their
main interest focused on a He-like atom consisting of a
bare nucleus and of two electrons, i.e., He, H™, and so
on. In the He-like atom, a single-electron state is degen-
erate, so that, in the language of CI, the mixing among
the degenerate states of a given principal quantum num-
ber (intrashell mixing) is dominant over intershell mix-
ings even in higher excited states. The studies with the
SO(4) group theory is based on this fact and their discus-
sion is restricted within a condition in which each elec-
tron has a definite principal quantum number.

On the other hand, in a two-electron atom having an
ion core, such as an alkaline-earth atom, the degeneracy
of a single-electron state is absent, and a shell structure is
significantly broken, especially, in lower-angular-
momentum states. Therefore, correlated behaviors of
two valence electrons can no longer be described by the
SO(4) group theory, though some lowest states of
alkaline-earth atoms are found®!2~!* to be moleculelike
by inspecting the wave functions. In those lowest states,
in spite of the broken degeneracy, a simple config-
uration-mixing scheme, such as (nsns +npnp) in a 'S°®
state, is dominant because of wider energy separation of
the single-electron energy spectrum, so that those states
can be described approximately by the DESB-type wave
function having a smaller principal quantum number. In
higher states, however, such a simple description should
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break down because of significant intershell mixings.

It is known that a spherical frozen-core model is a
good approximation'>'>15~1° for alkaline-earth atoms
except in their ground states. Therefore, the treatment of
their doubly excited states may be interpreted as a natu-
ral generalization of a purely Coulombic central-field
problem into a non-Coulombic central-field problem.
There have, however, hardly been analytical theories suit-
able for such a more general situation, in which the prin-
cipal quantum number of each electron is not restricted
to a definite value. Therefore, there is still much room
for these atoms to be studied not only theoretically but
also experimentally, including a question of whether a
specific regularity alternative to the moleculelike picture
does exist.

Under these backgrounds, we have so far been investi-
gating doubly excited states of Ca atoms experimentally.
As for experimental observations, higher doubly excited
states of alkaline-earth atoms are much easier to observe
than those of He-like atoms, because laser spectroscopic
techniques can be applied to the former and a detailed
observation is possible with a sufficient frequency resolu-
tion. Among many doubly excited states, the most in-
teresting is a state in which the two electrons have a com-
mon principal quantum number at least in their dom-
inant configurations. This state is expected to be the
Wannier-ridge-type®2°~22 state and to have the strongest
electron correlation. Although a number of doubly excit-
ed states of alkaline-earth atoms have been observed with
a laser spectroscopic method mainly using the isolated-
core excitation scheme,?> ™33 it has been quite difficult to
observe a state in which a difference between the princi-
pal quantum numbers of the two electrons is less than 3.3
In Ca atoms, however, the present authors fortunately
observed®*? some msns !S® and mdns 'D° states in
which n is equal to or differs from m by less than 3,
though their assignment was only tentative.

After those works we have continued the observation
of doubly excited states of Ca atoms. Among the results
so far obtained, we concentrate our interest on those of
the msns S° states in this paper and will show the results
of more extended observation than the previous ones.
We have also carried out a large-scale CI calculation to
compare the calculated results with the experimental
data and to examine the correctness of the tentative as-
signment of the experimental data mentioned above.
Configuration-mixed eigenvectors and their eigenvalues
have been obtained by straightforward diagonalization of
the Hamiltonian composed of a discrete two-electron
basis. As a result, we have seen good agreement between
the calculated and observed energy levels, and, in particu-
lar, the assignment of some pure and near Wannier-
ridge-type states has satisfactorily been confirmed. Based
on this good agreement, charge density plots of the
Wannier-ridge-type states have also been drawn by using
the calculated eigenvectors. The plots have been found
to show definitely different correlation patterns from
those of a He-like atom, especially in the angular correla-
tion. Though the physical meaning of the unusual angu-
lar correlation is still unknown, its direct cause will be de-
tailed from a viewpoint of the configuration mixing.
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II. EXPERIMENTAL PROCEDURE AND RESULTS

The excitation method for the doubly excited states is
the same as that described in the previous papers,’"*? and
is called the ‘“‘isolated-core excitation” method, which is
developed by Cooke and co-workers.?*2* In brief, one of
the valence electrons of a Ca atom is first excited to an
n's Rydberg state via the 4p state by two pulsed blue
lasers with a 7-ns pulse width, and after 20 ns another
valence electron left in the 4s state is excited to an ms
state through two-photon absorption of a third uv laser.
The role of the first process, which is completely separat-
ed from the second one, is only a preparation of the ini-
tial state for the second one. The second process is an ex-
citation of the Ca™’ core when it is seen by the Rydberg
electron, and this process has little influence on the Ryd-
berg electron as long as the Rydberg state is much higher
than the final ms state of the core electron. This descrip-
tion is called the “isolated-core approximation.” It is an
origin of the name of this excitation method, and a spec-
trum observed with this method is called the *core-
excitation spectrum.” Doubly excited states thus created
quickly autoionize into some excited states of Ca™ ions,
which are further photoionized into Ca?*. We detect
these Ca** ions through a time-of-flight mass spectrome-
ter and measure their ion current as a function of the uv
laser wavelength.

We have so far observed the spectra of the doubly ex-
cited msns states in which m =6-10. The observed spec-
tra are shown in Fig. 1, in which only the spectra of the
6sns, 7sns, and 10sns states are presented because those of
the 8sns and 9sns states have already been published.’!"*?
Each of Figs. 1(a), 1(b), and 1(c) shows a group of two-
photon core-excitation spectra observed in a common
wavelength region, and each trace shows a spectrum ob-
tained when the initial state denoted at the left side of
each trace is populated by the blue lasers. A sharp
feature, denoted by A4, B, and C at the top of each spec-
trum group, is seen in every trace of each group. Those
features A, B, and C are the 4s—6s, 4s—7s, and
4s — 10s two-photon resonance lines of Ca™, respectively.
These resonance lines play important roles in assigning
doubly excited states observed. Similar sharp features
denoted by D, E, F, G, and H, being Ca™ resonances with
initial states other than the 4s state, have no more mean-
ing than frequency markers. Note that the Ca* reso-
nances appear because many Ca* ions are produced as
byproducts of the laser excitation. Broader features in
the vicinity of or overlapped with each 4s —ms resonance
of Ca"t are the 4sn’s —msns core-excitation resonances
of neutral calcium.

The spectra shown in Fig. 1 are all obtained using a
linearly polarized uv laser. Therefore, they contain some
resonances of the mdns'D® states. We have dis-
tinguished the !S° states from the !D¢ states through a
complementary observation using a circularly polarized
uv laser, with which a resonance of a $¢ state should
disappear while that of a ! D¢ state should remain. The
resonances of the !D¢ states thus confirmed are denoted
by x in Fig. 1.

Concerning the core-excitation spectrum, detailed ex-
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FIG. 1. Two-photon excitation spectra observed in the wavelength region around (a) 45— 6s, (b) 45s—7s, and (c) 45— 10s two-
photon resonances of Ca*: the abscissa is the uv laser wavelength and the ordinate is Ca’" ion current resulting from the laser exci-
tation. Each trace is obtained when the initial 4sn's state denoted at the left side of each trace is populated. The narrow features
denoted by 4, B, and C are the 45— 6s, 45— 7s, and 4s — 10s resonances of Ca*, respectively, and broader features around those
4s—ms Ca™ resonances are the 4sn’s — msns core-excitation resonances of neutral Ca. Other narrow features denoted by D -H, be-
ing also Ca™ resonances, have no importance in the present study. Small letters a—p, denoting specific broader resonances of the
doubly excited states, are written for the sake of the correspondence with the energy levels presented in Table I. Features denoted by

x are not resonances of msns states but of mdns states.

planations have been made by many authors.?*2830.33 [

brief, as long as the isolated-core approximation holds
good, the spectral intensity is proportional to
2
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corel2
(v —v)

I=|/,L

where u®" is the two-photon transition matrix element

of the 4s—ms transition of the Ca* core, v and v are
effective quantum numbers of the Rydberg electron in the
initial and final states, respectively, and 4 (v) is a spectral
density function of the final state. The energies of the ini-
tial and final states are given as

E(4sn's)=E(Ca™:4s)—R /v
=E(Cat4s)—R/(n'—8)?,

E(msns)=E(Ca*:ms)—R /v?
=(Ca*:ms)—R/(n—8)?,

respectively, where E(Ca%:ns) is the energy of the ns
state of Ca*, 8’ and § are quantum defects of the initial

and final states, respectively, and R is the Rydberg con-
stant. Then, the uv laser wavelength is expressed as

Ayw=2hc/[E(Cat:ms)—E(Ca*t:4s)—R /v*+R /v'?] .
()

As can be seen in Egs. (1) and (2), strong resonances of
the 4sn’s — msns core excitation appear only in the vicin-
ity of the 4s —ms resonance of Ca™, because this Ca™
resonance appears just at a wavelength in which v=»v'.
This formula holds quite good in the traces observed with
higher initial states, as is seen in Fig. 1. In fact, some
spectra can be just fitted to Eq. (1), as shown in the previ-
ous paper.’!

A frequency shift of the core-excitation resonance from
the Ca™ resonance reflects a fraction part of a difference
between 8’ and §, and we can determine the fraction part
from the observed spectra. In Figs. 1(b) and 1(c), each
core-excitation resonance almost overlaps with the corre-
sponding 4s —ms resonance of Ca*, and this means that
6 differs from &' approximately by an integer. For each
doubly excited msns state with m fixed, the fraction part
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of & is found to be roughly constant at least over the
states observed with higher initial states. An integer part
of 8 cannot be obtained through this treatment and thus
the principal quantum number n of the final state is un-
determined. A quantum defect primarily reflects a size of
the Ca™ core penetrated by the Rydberg electron, so that
it should become larger with the Ca™ core size increased,
that is, with m increased. As was tried by Bloomfield
et al.?” for Ba atoms, we can choose the integer part of &
so that § increases linearly depending on m. The 6 value
averaged over higher doubly excited states is plotted as a
function of m in Fig. 2. The slope of the increase is 0.32,
which is very close to the value obtained for Ba
atoms.?”28

The linear dependence of the quantum defect on m, in
fact, can be predicted by a simple theoretical calculation,
in which a wave function of the inner electron is calculat-
ed assuming a frozen Ca’* core with an empirical core-
polarization effect incorporated and then the energy of
the outer electron is calculated under an overall potential
produced by both the Ca’" core and the inner electron.
The frozen core used here is the same as that used in the
CI calculation in Sec. III. For each m fixed, the quantum
defect thus calculated for the msns states is almost con-
stant at least over n >14. The value averaged over
n =14-18 is plotted with triangles in Fig. 2, and it
definitely shows a linear dependence on m. The slope is,
however, 0.227, which is considerably smaller than the
experimental value. While the agreement between the
theoretical and experimental values is quite good for
m =4, the mutual deviation becomes larger with m in-

AVERAGED QUANTUM DEFECT

1 i A | L

4 5 6 7 8 9 10

PRINCIPAL QUANTUM NUMBER
of INNER ELECTRON

FIG. 2. Observed and calculated quantum defects as a func-
tion of the principal quantum number of the inner electron:
each quantum defect is averaged over higher Rydberg states.
Observed data are marked by solid circles and calculated ones
by triangles. Each straight line is fitted to the respective data
group.
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creased. This fact suggests that, even in the m <<n
states, the electron correlation is not negligible when both
electrons are highly excited. In spite of this disagree-
ment, our choice of the integer parts of the quantum de-
fects is considered reasonable, because the calculated
values are primarily correct enough to show an essential
tendency and it is quite unrealistic to shift each experi-
mental & value by a nonzero integer from the value
shown in Fig. 2. Moreover, as shown in Ref. 36, the
quantum defect values determined by our choice of the
integer values are in fairly good agreement with those de-
rived from a one-electron Rydberg formula incorporating
the electron correlation effect. This fact also supports the
correctness of the choice.

By the & values thus determined, we can assign the
principal quantum number n of the final doubly excited
state. In Fig. 1(a), the final state of each resonance at a
shorter wavelength side of the 4s—6s ionic line is the
6s(n’'+1)s state, and that of each resonance at a longer
wavelength side the 6sn’s state, where n’ is a principal
quantum number of the initial Rydberg state. In Fig.
1(b), the final state of each resonance overlapped with the
4s —7s ionic line is the 7s (n’+ 1)s state. Similarly in Fig.
1(c), that of each resonance almost overlapped with the
45 —10s line is the 10s(n’+2)s state, though the reso-
nances are significantly split into many peaks, especially
in lower traces. This splitting is due to an interference of
the wave function with other doubly excited Rydberg
series, and a similar feature is also seen in lower traces in
Fig. 1(b). The split features in the 7s11s and 7s12s states
are caused by the interference with the 5fnf and 5gng
Rydberg series, and those seen in the states from 10s13s
to 10s16s are due to the interference with the 9dnd and
8Inl (I =3-7) series. Moreover, an additional interfer-
ence pattern with the 9pnp series is overlapped with the
10s13s and 10s 14s states.

In exciting the n =m states, the isolated-core approxi-
mation must break down, so that Eq. (1) does not hold.
However, the excitation scheme itself, in which the elec-
trons are excited one by one, is considered still applic-
able, and those states are expected to be observed as long
as a cross section of the relevant transition is large
enough. In fact, we have successfully observed the 7sns
states in which n is down to 9. Furthermore, we have
also observed the 10s12s and 10s10s states, which are
denoted by n and p in Fig. 1(c), respectively, though the
10s11s has not been observed. Those resonances have
been confirmed not to be due to any transitions either
from the 4s4s ground state nor from the 4s4p intermedi-
ate state of the laser excitation. Moreover, by using a cir-
cularly polarized laser, the final states of those resonances
have been confirmed to be the 'S¢ states. The detection
sensitivity in this case is limited by the background Ca?*
current caused by various resonant or nonresonant pho-
toionization processes. In a wavelength region around
2235 A, in particular, there is a very broad resonance of a
two-photon transition starting from the ground state. It
considerably diminishes the sensitivity in the observation
of the 10sns series. For the 6sns series, we have not been
able to observe any state below the 6s9s state because of
the limitation of the present detection scheme. That is
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all the 6sns states lying below the 65s9s state are so low in
energy that any Ca™ state produced by the autoioniza-
tion of those 6sns states cannot reach the double ioniza-
tion limit by absorbing a uv photon.

The energy levels of all doubly excited states thus ob-
served are listed in Table I. For the 6sns and 7sns states,
the energy has been obtained in most cases by fitting Eq.
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(1) to each trace, assuming the spectral density function
calculated by the two-channel quantum-defect
theory,>>** and assuming also that the quantum defect
and the autoionization width are both linearly dependent
on energy within the wavelength region of each trace.
An envelope form has been fitted for a state showing a
slight interference pattern, such as the 7s12s state. For

TABLE L. Observed and calculated energy levels of the doubly excited msns 'S¢ states of Ca. For the states corresponding to
more than one calculated eigenstate, all the calculated levels are written: Lower levels are denoted by only the last digits different
from those of the highest one. NO, not observed in the experiment; ND, not distinguished in the results of the CI calculation.

E(obs) El(calc) E(obs) E(calc)
n (a.u.) (a.u.) n (a.u.) (a.u.)
6sns 13 —0.05793( 1) —0.057 90,8
20 —0.11599( 3) ~0.11604 12 —0.05940( 2) —0.059 36,43
19 —0.11624( 1) —0.11620 11 —0.06171( 3) —0.061 64
18 —0.11648( 1) —0.11637 10 —0.065 00( 8) —0.064 59,87
17 —0.11679( 1) —0.116 67 9 —0.07018(14) —0.06943,7035
16 —0.11718( 1) —0.11706 8 NO —0.079 77,8006
15 —0.11768( 1) —0.11754
14 —0.11834( 1) —0.118 18
13 —0.11919( 1) —0.11896 9sns
12 —0.12037( 3) —0.12028 20 —0.04058( 1) —0.04057
11 —0.12201( 4) —0.12173 19 —0.04085( 1) —0.040381
10 —0.12407( 8) —0.12398 18 —0.04120( 1) —0.04107,27
9 —0.126 14(11) —0.12844 17 —0.04161( 1) —0.04159
g NO —0.13336 16 —0.04210( 1) —0.04208
7 NO —0.14089,751 15 —0.04274( 1) —0.04267
6 NO 017482 14 —0.043 64( 2) —0.043 58
13 —0.044 82( 5) —0.044 87,99
12 —0.046 58( 3) —0.046 39
Tsns 11 —0.04925( 6) —0.04905,29,36,51
20 —0.07609( 1) —0.07601
19 ~0.07632( 1) ~0.07620 10 —0.05566( 3) ND
18 —0.076 60( 1) —0.076 46,57,78 9 —0.06036( 4) —0.06024
17 —0.07700( 3) —0.07707
16 —0.07745( 1) —0.07741
15 —0.07797( 1) —0.077 85 10sns
14 —0.07869( 2) —0.07838,76 20 —0.03181( 2) —0.03179,80
13 —0.07964( 2) —0.07957 19 —0.03208( 2) —0.03206
12 —0.08105( 5) —0.08112,6 18 —0.03244( 2) —0.03229,48
1 —0.08284( 4) —0.08259 17 —0.03289( 2) —0.03290,1
10 —0.08537( 5)° —0.08529 16 —-0.03332( 1)° —0.03338
—0.08596(10)° —0.086 08 —0.03346( 3)° —0.03343
—0.090 14(11) —0.09021 —0.03370( 1) —0.033 84
8 NO —0.09777 15 —0.03415( 1) —0.034 12
7 NO —0.11302 —0.03437( 1) —0.034 28,44
—0.034 73( 3)" —0.03479
Sons 14 —0.03510( 3)' —0.03507,11
—0.03527( 1y —0.03527
20 —0.05405( 1) —0.05402 —0.03543( 2) —0.03551
19 —0.05430( 1) —0.05426 13 —0.03682( 1) —0.03672
18 —0.05460( 1) —0.054 48,58,66 —0.03711( 3)™ —0.03699
17 —0.05498( 1) —0.05494,7 12 —0.03848( 2)" —0.038 14,900
16 —0.05544( 1) —0.05543
15 —0.05609( 1) ~0.05605 1 NO —0.04127
14 —0.05686( 1) —0.056 82 10 —0.046 61( 4)° —0.046 12,39

2-PEnergy level obtained from a specific resonance denoted by the same small letter in Fig. 1.
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the 6s18s and 7s1ls states as well as the highest four
10sns states, the fitting has not been executed because of
their severely split feature or of their heavy overlapping
with the ion resonances, but the wavelength of only the
highest peak has been directly measured. Similarly, for
all the 10sns states below 10s17s, because of their strong-
ly split form and of the varying background level, the
fitting has not been executed, but the wavelength of each
peak has been directly measured.

III. CI CALCULATION

The present CI calculation is executed using a discrete
two-electron basis. Configuration-mixed wave functions
and their energy levels are obtained by straightforward
diagonalization of a Hamiltonian matrix composed of the
two-electron basis.

Each single-electron wave function of the basis is cal-
culated under an e-Ca’”" interaction potential and under
the usual boundary condition (zero amplitude at r — «).
A good description of the e-Ca’" interaction is very im-
portant in order to obtain a proper two-electron basis.
We use the same e-Ca’" interaction potential as that used
by Kim and Greene'® in their R-matrix calculation. The
potential consists of a screening term and of an empirical
core-polarization term

ac
u,(r)=u,'*s(r)——2r—'j{1—exp[—(r/rc, 1) . 3)

The screening term v/'3(r) is determined by executing a
Hartree-Slater-type calculation of Cat. The core polar-
ization a, and the /-dependent cutoff radius r, is deter-
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mined to obtain optimum agreement with the known
spectrum of Ca™. Because of a wider energy range of the
present CI calculation than that in Ref. 19, the v/’S(7)
term as well as 7, are determined to be dependent on / up
to 4, and the core-polarization parameters are optimized
by fitting the lowest four states for each /. The final
values obtained are a.,,=6.76, r,=2.16, r,=2.81,
r.,=1.832, r,;=5.35, and for / 24, r,=8.64. The last
two values indicate that the core-polarization effect is al-
most negligible for states with />3. For the sake of a
later estimation of the accuracy of the CI calculation, the
calculated energy levels of Ca™ and their residual errors
are listed together with the observed levels in Table II.

Each two-electron base is an antisymmetric LS-
coupled minl 1S¢ base, in which the quantum numbers, /,
m, and n are chosen as 0=/<1,,4<m <mg for / =0 and
1,3=m=my—1 for I=2,I+1<m=my—2 for [ 23,
and m <n <n,. The maximum values /,, m,, and n, are
determined to obtain a good convergence of the eigenval-
ues corresponding to the states observed experimentally.
When [, is varied from 9 to 11 with m;,=17 and n,=24
fixed, only a negligible change is seen in the eigenvalues.
Similarly, when mg is varied from 12 to 17 with /,=9
and n,=24 fixed, the change is also negligible. Finally,
when n, is varied up to 38 with /, and m, fixed to 9 and
12, respectively, a reasonable convergence is seen as n
approaches 38. Thus, all results below are obtained using
the basis set in which /=9, my=12, n;=38, and the
number of the bases is 1714.

The accuracy of numerical integrals in the calculation
of the Hamiltonian-matrix elements is so satisfactory that

TABLE II. Calculated and observed energy levels of Ca* and their mutual differences.

E(calc) E(obs) E(calc)— E(obs) E(calc) E(obs) E(calc)— E(obs)
States (a.u.) (a.u.) (a.u.) States (a.u.) (a.u.) (a.u.)
4s —0.43637 —0.43628 —0.00008 9d —0.028 65 —0.028 54 —0.00011
Ss —0.198 38 —0.198 59 0.00021 10d —0.022 85 —0.02277 —0.00008
6s —0.114 12 —0.11425 0.000 13
Ts —0.074 21 —0.07429 0.00007 4f —0.12627 —0.126 19 —0.00008
8s —0.05213 —0.052 18 0.000 04 5f —0.080 65 —0.08073 0.00008
9s —0.038 63 —0.038 66 0.00003 6f —0.05594 —0.056 02 0.00007
10s —0.02977 —0.02979 0.00002 1f —0.04107 —0.041 12 0.000 05
8f —0.03142 —0.03146 0.000 04
4p —0.32097 —0.32082 —0.000 14 Sf —0.024 81 —0.024 84 0.00003
5p —0.15992 —0.16023 0.00031 10f —0.02009 —0.020 11 0.000 02
6p —0.096 60 —0.09679 0.000 19
Tp —0.064 77 —0.064 89 0.000 12 5g —0.08015 —0.08013 —0.00002
8p —0.046 47 6g —0.05563 —0.055 64 0.00001
9p —0.03497 78 —0.040 86 —0.04087 0.00002
10p —0.02727 8g —0.03128 —0.03129 0.00001
9g —0.02471 —0.024 72 0.00001
3d —0.373 65 —0.37392 0.00027 108 0.02001
4d —0.178 57 —0.17725 —0.001 32 6h —0.05561
5d —0.10561 —0.10491 —0.00070 Th —0.040 85
6d —0.069 78 —0.069 38 —0.00040 8h —0.03127 —0.03126 —0.00001
7d —0.049 53 —0.04928 —0.00025 9h —0.024 71
8d —0.03697 —0.036 81 —0.000 16 10h —0.02001 —0.02001 —0.00000
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an overlap integral of any two wave functions having a
common | is typically as small as an order of 10~ ', The
accuracy of the diagonalization is examined by compar-
ing every vector element between both sides of the eigen-
value equation after each eigenvalue and its eigenvector
are substituted into the equation. As a result, it is found
that both sides of the equation agrees with each other
typically within a relative difference of 1072,

It is generally difficult to assign the eigenstates ob-
tained from the CI calculation. High-lying doubly excit-
ed states in particular are very difficult to assign, because
in the language of the multichannel quantum-defect
theory,** many channels interact with each other. Highly
excited Rydberg states, however, can easily be dis-
tinguished by inspecting their eigenvectors. In those
states, the independent-electron picture holds good, so
that the configuration-mixed eigenvector is expected to
have a dominant contribution from the msns bases having
a constant m (m <<n). In fact, a calculated eigenstate,
which is finally assigned to the 6s20s state, has a more
than 83% contribution from the 6sns bases. This charac-
teristic becomes less remarkable in a Rydberg state in
which the inner electron is more highly excited. For ex-
ample, an eigenstate, which is finally assigned to the
9s520s state, has only a 65% contribution from the 9sns
bases. The residual 35% part occupied by other min/
bases partly contributes to both radial and angular corre-
lations and results in lowering the energy. This tendency
is consistent with that shown in Fig. 2, in which, as the
inner electron is more highly excited, the observed quan-
tum defects tend to become larger than those calculated
assuming the complete independent-electron picture.

Each highly excited Rydberg state observed is assigned
to a single calculated eigenstate in most cases, while in
some cases a group of a few eigenstates corresponds to an
observed state. In both cases, the calculated energy levels
of highly excited Rydberg states are in good agreement
with the observed ones. Furthermore, energy spacings of
the calculated levels also agree well with those observed.
We can thus continue easily to assign the calculated
eigenstates to the observed states from a higher Rydberg
state down to nearly the lowest state of the Rydberg
series. In fact, the easiness in this assignment holds ap-
proximately down to a state in which a difference be-
tween the principal quantum numbers of the two elec-
trons is 3. Below this state, the mixing among many
bases becomes so remarkable that it is more difficult to
distinguish the objective eigenstate. It is interesting to
note that the difficulty in the experimental observation
also occurs below this state,*° as was mentioned in Sec. I.
This correspondence might mean the difficulty of exciting
a highly correlated state from a less correlated 4sns Ryd-
berg state, as is pointed out by Rau,’® because a high de-
gree of configuration mixing generally corresponds to a
strong correlation. Those, however, which mix into the
objective eigenstate and obscure the assignment are dom-
inantly Rydberg-type (minl:m <<n) bases of lower-lying
Rydberg series. The mixing of a number of those
Rydberg-type bases smears the objective state. This
means that the difficulty in the observation may result
rather from this smearing than from the electron correla-
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tion. In spite of this difficulty, it is still possible to assign
these lower states with a reasonable certainty. For the
lowest state of a Rydberg series, the correctness of the as-
signment is also confirmed by the fact that its charge-
density distribution is of the Wannier-ridge-type, as will
be shown in Sec. IV.

The calculated energy levels thus assigned are listed in
Table I. As is seen in Table I, the difference from each
observed energy level is roughly equal to or less than
1X 10 * a.u. in higher states of each Rydberg series, and
is about 2X 10™% a.u. in lower states except in a few par-
ticular states. Considering the accuracy of the calculated
Ca* energy levels, this agreement is quite satisfactory.
The agreement is generally better in higher Rydberg
series than in lower series. This directly reflects the fact
that the accuracy of the Ca™ energy levels is better in
higher states. It is, in fact, found that in many eigen-
states the calculated energy levels tend to be improved
when they are shifted by a value of the error of a Ca™ en-
ergy level corresponding to the ionization limit of each
Rydberg series.

The worst agreement is seen in the 6s9s state. As is
seen in the lowest trace of Fig. 1(a), this resonance is con-
siderably shifted toward higher energy than expected if
the usual Rydberg formula E =—1/[2(n —8)*] with a
constant quantum defect 8 were assumed. Although this
unusual shift is probably due to an interaction with other
channels, it is not reproduced in the calculated results.
This disagreement is also likely to result from worse ac-
curacy of lower energy levels of Ca™, in particular, in the
md states.

One of the purposes of the present calculation is to
confirm the tentative assignment of the observed states in
which a difference of two electrons’ principal quantum
numbers is less than 3, because those states have never
been observed clearly in any alkaline-earth atom before
our observation. As seen in Table I, though differences
between the calculated and observed energy levels tend to
be somewhat larger in those states than in higher Ryd-
berg states, the differences are generally small enough to
conclude that the assignment is satisfactorily confirmed
in most of those states. In the state for which more than
one calculated levels are presented in Table I, at least one
of those values is close to the observed energy. The other
eigenstates are likely to have been missed in the observa-
tion because of the low intensity of their resonances. In
the 9s11s state, which is shown in Ref. 31, its resonance
observed is remarkably split into many peaks, and this
split feature is well reproduced by the calculated result
through the presence of many calculated eigenstates cor-
responding to this state. The most queer is the 9510s
state. As is shown in Ref. 31, the observed resonance is
unusually shifted toward lower energy, and we cannot as-
sign this resonance to any calculated eigenstate. Far
from that, we cannot distinguish any eigenstate corre-
sponding to the 9s10s state. In the energy region where
the 9s510s eigenstate is expected to exist, the 9sns bases
are very dispersively distributed over many eigenstates,
and these bases make only a small contribution to any
eigenstate around there. In this region, the 8sns, 8pnp,
7dnd, and 6Inl (I =3, 4, and 5) Rydberg-type bases are
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prevailing and smearing the 9s10s eigenstate. Thus, the
assignment of the observed resonance still remains un-
determined.

As for the 9s59s state, good agreement is seen between
the calculated and observed energy levels. The observed
resonance of this state is very strong for a Wannier-
ridge-type state, while other states of this type are not ob-
served or very weak. On the other hand, for an unknown
reason, the calculated eigenstate assigned to the 9s9s
state has a considerably large contribution (about 20%)
from the 9s9s base, while any other Wannier-ridge-type
eigenstate has only a small contribution from the corre-
sponding msms base. This coincidence between the in-
tensity of the observed resonance and the characteristics
of the calculated eigenvector is similar to that described
before. The large contribution from the 9s9s base might
result in the observed large transition cross section from
the initial 4s8s state being less correlated. This, however,
does not necessarily mean a weaker electron correlation
in this state than in other Wannier-ridge-type states, as
will be shown in the charge-density plot.

As for the 10s10s state, there are two eigenstates corre-
sponding to this state. The one with an energy of
—0.046 39 is the same eigenstate as that assigned to the
9s12s state. In fact, the observed energy of the 10s10s
state is equal to that of the 9s12s state within the experi-
mental error. However, the resonance assigned to the
10s10s state, which is shown in the lowest trace in Fig.
1(c), is not the one resulting from the 4s—9s core-
excitation process, because no neighboring resonances,
such as the 9s11s and 9s13s states, are seen in the same
trace. It is, therefore, more reasonable to consider that
this resonance is due to the 4s — 10s core excitation. It is
confirmed by the charge-density plot that this eigenstate
is Wannier-ridge-type, though it has also a characteristic
of the 9512s state. We note that the other eigenstate has,
somewhat more clearly, the characteristic of the
Wannier-ridge-type state. In any case, a difference be-
tween these two calculated levels is not so large, and they
are both in reasonable agreement with the observed ener-
gy level.

For only the nsns states, Aymar® has very recently ex-
ecuted a moderate-size CI calculation using wave func-
tions with their amplitudes forced to vanish at »=100
a.u. Our calculated energy levels of the nsns states ap-
proximately equal to those calculated in Ref. 36. There
are, however, still definite differences between both re-
sults; for example, our calculated energy level of the 9s9s
state (—0.06024 a.u.) is different by roughly 0.001 a.u.
from that in Ref. 36 (—0.0611 a.u.). Though a difference
between the above two calculated levels might be too
small to be appreciated, it would be important if it results
from a difference in the boundary condition of the wave
functions used. Before executing the present calculation,
however, we have also executed another CI calculation
using wave functions with a boundary condition similar
to that in Ref. 36, that is, with their amplitudes forced to
vanish at » =130 a.u., and using 1340 two-electron bases.
As a result, for all the nsns states, we have obtained al-
most the same energy values as those of the present cal-
culation. Therefore, we can conclude that the difference
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between the results in Ref. 36 and in the present study is
not caused by the difference in the boundary condition.
It is possible that a size of the basis set used in Ref. 36,
which is much smaller than ours, results in the difference
of the energy values.

It is interesting to test the applicability of a two-
electron Rydberg formula?® %2 to Ca nsns levels. Some
different types of the formula have so far been proposed
and tested. As for the Ca nsns levels, Aymar has shown>¢
that Wang’s formula’’ is good enough to describe the en-
ergy levels obtained by the CI calculation. In the present
study, we try to test another formula proposed by Rau.?!
The test of this formula has been demonstrated for the
nsnp 'P° Wannier-ridge-type states by Kim and Greene.'
This formula is given as (in a.u.)

__MZ-1/4=0) @
(n+3/2—p)?
where Z is the charge of the residual Ca’" ion core, o is
an effective screening parameter, and p is the quantum
defect resulting from specific interactions between the
electron pair and the Ca?" core. The principal quantum
number n takes on positive integer values. For the sake
of direct comparison with the result in Ref. 19, the same
representation as theirs is applied to our result; that is,
when the energy level is scaled on an effective quantum
number v, Eq. (4) is transformed as

n+%—p
VT VAZ—1/4—-0)

(5)

so that a linear dependence of v on n is expected. In fact,
the calculated energy levels in Fig. 3 clearly show the
linear dependence. The straight line is calculated by Eq.
(5) using the same Z dependence of ¢ as that used in Ref.
19. Note that this Z dependence is the one obtained for
an electron pair moving in the field of a point nucleus.
The slope of the calculated energy levels is 0.402, and

0 T T T
4 5 6 7 8 9 10N
n

FIG. 3. Effective quantum numbers v of nsns energy levels of
Ca. Solid circles denote the results of the CI calculation. The
straight line is calculated by the two-electron Rydberg formula
[Eq. (5)]: the quantum defect u is adjusted so that both results
agree with each other at n =7.
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differs from that of the straight line by about 9%. This
difference is comparable to that seen in the nsmp 'P°
states. The correctness of our calculated energy levels
are supported by the experimentally observed results at
least for the 9s9s and 10s10s states, and there is no ques-
tion on the 4s4s state. Therefore, it is reasonable to con-
sider the above difference as a fundamental difference be-
tween calcium and helium, such as the nondegeneracy of
Ca™ levels. On the other hand each effective quantum
number is uniformly smaller than that of the !P° state.
This is quite reasonable, considering the usual idea on the
quantum defect, that is, for a fixed core, an s electron has
a larger quantum defect than a p electron, because a
larger part of an s electron is overlapped with the core
than a p electron.

IV. CHARGE-DENSITY PLOTS

In this section, based on the good agreement between
the observed spectra and the results of the CI calculation,
charge-density plots of the doubly excited states of Ca are
drawn using the calculated eigenfunctions, and behaviors
of the electron correlation are investigated. In the
present work, we concentrate our interest on the
Wannier-ridge-type states because they are expected to
show most strongly correlated behaviors.

There may be various choices of independent
variables for drawing the plot.>%%!%1% We use in this
work the usual hyperspherical-coordinate variables
a=tan"!(r,/r,) and 8=cos~ ![r,r,/(r,r,)], though it is
not necessarily meaningful to use them in the present
case because of the significant breakdown of the adiabatic
approximation in Ca. This choice is because it is impor-
tant and interesting to compare the present results direct-
ly with a number of a-6 plots so far drawn for He-like
atoms. We also draw another type of charge-density
plots as a function of r; and r, in order to compensate in-
formation lost in the a-6 plots.

These two expressions P(a,0;R) and Q(r;,r,) of
charge density are defined as follows:

P(a,6;R)=p(R cosa,R sina,6) , (6)
Q(rl,rz)zfo"p(rl,rz,e)sinade, %)
where
8mirir: L
p(r,,rz,t9)=—2L—_i_1I‘JZE_I‘I\I/I_MI2 , (8)

R =(r?+r3)!"? is a hyperradius, and W, is an eigen-
function composed of the calculated CI coefficients and
of the antisymmetric LS-coupled two-electron basis func-
tions used in the CI calculation. Note that the charge
densities P and Q satisfy

1= [ P(a,6;R )sin0dO Rda dR = [ Q(ry,r;)dr dr, .

In Eq. (8), though ¥, \ is a function of four angular vari-
ables of two independent electrons, 3, |W; \|?/(2L +1)
is transformed to a function of only one angular variable
6 by recoupling the single-electron angular momenta, and
the integrals over the residual three angular variables re-
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sult in the factor 872. The explicit form of p and the de-
tailed explanation for its derivation are described in Ref.
9.

The states investigated here are the nsns states shown
in Table I. For the 8s8s and 10s10s states, for each of
which two energy levels are presented in Table I, we draw
the plots for the one with —0.079 77 a.u. and the one
with —0.046 12 a.u., respectively. The charge-density
plots are shown in Figs. 4-10. In each figure, the upper-
most drawing is an r,-r, plot of the charge density, and
the next one is its contour map. One or more a-6 plots of
the charge density are shown below the contour map, and
the hyperradius R at which each a-0 plot is drawn is in-
dicated by an arc in the contour map. Note that the a-0

(b)

. ‘
@\«——)
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FIG. 4. Charge-density plots of the 4s4s state of Ca: (a) as a
function of r, and r,, (b) contour map of (a), and (c) as a func-
tion of the hyperspherical-coordinate variables a and 6 with a
fixed hyperradius (R =4.8 a.u.) equal to the radius of the arc
drawn in (b).
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plot is interpreted as a charge-density distribution ob-
tained when the cross section along the arc is decom-
posed on 6.

In every r, —r, plot, we can see a reasonably large part
of the charge density to be localized at a location of the
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FIG. 5. Similar to Fig. 4 except for the 5s5s state: the plots
as a function of a and 6 are drawn with two differently fixed hy-
perradii, (c) R =12.0 a.u. and (d) R =9.0 a.u., equal to the radii
of the arcs A4 and B in (b), respectively.
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Wannier potential ridge,*?°~ %2 that is, a large mountain
lies at a place in which r,=r,, though many smaller
peaks are dispersively distributed in the plots of higher
states. The presence of this large mountain confirms that
all the states presented here definitely possess a charac-
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FIG. 6. Similar to Fig. 4 except for the 6s6s state: the plots
as a function of a and 0 are drawn with two differently fixed hy-
perradii, (c) R =21.3 a.u. and (d) R =16.0 a.u., equal to the ra-
dii of the arcs 4 and B in (b), respectively.
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teristic of the Wannier-ridge-type state. Smaller peaks
seen in the plots of higher states are mainly due to lower-
lying Rydberg series. The presence of these peaks is una-
voidable in the states higher than the 5s5s state, because
one or more low-lying Rydberg series necessarily overlap
in energy with those states. Because we are not interested
in the components of the Rydberg states, our investiga-
tion is to be concentrated on the large mountain lying on
the potential ridge. Thus, for each state, at least one a-6
plot is drawn with R fixed to the value at the peak of the
mountain.

As seen in Fig. 4(c), the charge-density distribution in
the a-0 plot of the 4s4s state is equivalent to that in the
r;-0 plot drawn by Krause and Berry,'* and is similar to
that of the 2s2s state of helium,®®° supporting the
correctness of the moleculelike picture in the 4s4s state.
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FIG. 7. Similar to Fig. 4 except for the 7s7s state: the plot
(c) is drawn as a function of a and 6 with a fixed hyperradius
(R =33.6 a.u.) equal to the radius of the arc in (b).
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It is clearly found by inspecting the eigenvector that this
distribution is dominantly due to a simple (4s4s +4p4p)
configuration mixing.

In the 5s5s state, as seen in Fig. 5(c), the a-6 plot
shows a charge-density distribution similar to that of the
4s4s state, though it is slightly more localized around
6=1. This distribution is also likely to support the appli-
cability of the moleculelike picture to the 5s5s state. As
seen in Fig. 5(d), however, a characteristic, which is
unusual in helium, begins to appear in this state; that is,
the 6 dependence at the inner foot of the mountain does
not have a peak at 6=, but at 6 =7 /2. This means that
the two electrons’ charge densities in a comparable dis-
tance from the core show a “bent” structure with respect
to the core when the distance is smaller, while the densi-
ties show a normal linear-molecule-type structure when
the distance is larger. It is found by inspecting the eigen-
vector that, in a viewpoint of configuration mixing, the
peak around 8= /2 in Fig. 5(d) results from a contribu-
tion of the 4d4d base. In Ca™, the (n —1)d state is com-
parable to or slightly smaller than the ns and np states
not only in energy but also in the radius at which their
radial wave functions have the largest amplitude. There-
fore, the (n —1)d (n —1)d base is expected to play a role
similar to the ndnd base in helium. Although the 4d4d
base indeed makes an appreciable contribution to the
5s5s state of Ca, the way of the contribution tends to be
different from that in helium. In helium, the intrashell-
type bases (rnlnl) mix with each other so as to sharpen the
correlation peak at 6=m. In fact, as shown in Fig. 11(b),
the lowest 'S¢ state of n =9, which corresponds to the
9(8,0)%9 state in the notation developed by Lin,® shows
an extremely sharp correlation at 6=m. If we call this
manner of mixing the in-phase manner, the 4d4d base of
Ca is mixed in the out-of-phase manner with the funda-
mental (5s5s+5p5p) configuration-mixed state. It is, in
fact, found that the CI coefficient of the 4d4d base has a
sign opposite to those of the 5555 and 5p5p bases,*® while
in helium all the CI coefficients of the intrashell-type
bases with a fixed n have a common sign. The effect of
this out-of-phase mixing of the 4d4d base is not remark-
able at the peak of the mountain, because the mountain is
dominantly composed of the 5s5s and 5p5p bases and the
CI coefficient of the 4d4d base is much smaller than those
of the former bases. At the inner foot of the mountain,
however, the effect of the 4d4d base becomes remarkable
because of the slightly smaller radius at which the 4d ra-
dial wave function has the largest amplitude. Conse-
quently, as is seen in Fig. 5(d), the 6= correlation peak
composed of the 5555 and 5p5p bases is greatly lowered
by the out-of-phase superposition of the 4d4d base and,
instead, the 6= /2 peak peculiar to the 4d4d base be-
comes remakable.

This out-of-phase mixing of the (n —1)d (n —1)d base
is seen also in the eigenvector of the 4s4s state. In this
case, however, the CI coefficient of the 3d 3d base is too
small for any apparent characteristic to appear in the
charge-density plots. On the other hand, as shown in
Fig. 6, the same feature as that described above for the
S5s5s state is seen also in the 6s6s state, though the role of
the 4d4d base is played by the 5d 5d base in this case.
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FIG. 8. Similar to Fig. 4 except for the 8s8s state: the plots as a function of a and 6 are drawn with three differently fixed hyperra-
dii, (c) R =49.1 a.u,, (d) R =45.0 a.u., and (¢) R =33.9 a.u., equal to the radii of the arcs 4, B, and C in (b), respectively.

The out-of-phase mixing causes much more remark-
able effects on higher Wannier-ridge-type states. In those
states, however, the (n —2)/(n —2)I bases (I = 3) play im-
portant roles instead of the (n —1)d (n —1)d base. Note
that in Ca™, similar to the (n —1)d state, the (n —2)!
state (I 2 3) is comparable to or slightly smaller than the
ns and np states not only in energy but also in radius at
which their radial wave functions have the largest ampli-
tude. A typical example of the remarkable out-of-phase
mixing is seen in the 8s8s state, as shown in Fig. 8. As
mentioned before, the r,-r, plots of higher states show
more complicated correlation patterns because of lower-
lying Rydberg series. In Fig. 8(a), we can see two highest

peaks at the potential-ridge location. The outer one is
mainly composed of the 8s8s and 8p8p bases, while the
inner one is mainly due to a contribution of the 7sns
Rydberg-type bases. Moreover, the 6g6g base consider-
ably contributes to the composition of both peaks, while
the 7d7d base no longer makes an appreciable contribu-
tion to any correlation pattern. Figure 8(c) shows the a-0
correlation along the arc passing through the outer
highest peak of the r,-r, plot. The 6 dependence of the
ridge component (which means the charge density along
a=1/4) in Fig. 8(c) shows a strange correlation, which is
somewhat similar to that shown in Fig. 5(d) and does not
have a peak at 6=, but has a large peak at 6=0.787.
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This correlation pattern is also likely to suggest a “bent”
structure of the charge-density distribution. It is found
by inspecting the eigenvector that this correlation pattern
results from the out-of-phase mixing of the 6g6g base and
is explained in the same manner as that described before
concerning Fig. 5(d). In contrast with the case of the
5s5s state, the CI coefficient of the 6g6g base is so large
that the highest peak, not the foot, of the mountain
shows the bent structure.

The ridge component in Fig. 8(c) has also a small sub-
peak at 6=0.397, and this subpeak becomes more en-
larged in Fig. 8(d), which shows the -8 correlation
along the arc passing slightly inside the outer highest
peak in Fig. 8(a). This is because of a larger contribution
from the 6g6g base at this radius than at the highest

N

iy

[

N

:,m,‘, \\\\\\- A

e
[}

(b)

SR>

<

— gy

Oy

.

)

@

;::A;! S
Vol
'/QA% (@& &
pelsg
gﬁﬁa{(f;‘}z}“.

9)
R

NORIO MORITA AND TOSHIFUMI SUZUKI 41

peak. This double-peak structure might be associated
with a bending vibrational motion. The structure, how-
ever, is not what is attributed to the vibration, because it
does not have a complete node but shows only a saddle-
like form. At the inner highest peak, as seen in Fig. 8(e),
the 6 dependence of the ridge component becomes more
wavy, and approaches a bare feature of the 6g6g base it-
self, though it is still deformed by other bases. This vari-
ation of the 8 dependence with decreasing R shows that
the 6g 6g base plays a dominant role in the angular corre-
lation of the ridge component.

A very similar a-0 correlation pattern is seen in the
10s10s state, as shown in Fig. 10(c). In this case, the
out-of-phase mixing of the 8428k and 8h9h bases dom-
inantly causes the bent-type correlation pattern. It is also
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FIG. 9. Similar to Fig. 4 except for the 9s9s state: the plot
(c) is drawn as a function of a and 6 with a fixed hyperradius
(R =68.6 a.u.) equal to the radius of the arc in (b).

FIG. 10. Similar to Fig. 4 except for the 10s10s state: the
plot (c) is drawn as a function of a and 0 with a fixed hyperra-
dius (R =91.8 a.u.) equal to the radius of the arc in (b).



41 LASER SPECTROSCOPIC OBSERVATION AND LARGE-SCALE. ..

]
R
IR
1)

0

FIG. 11. Charge-density plots of the 9(8,0)*9 'S¢ state of He:
(a) as a function of r; and r,, and (b) as a function of the
hyperspherical-coordinate variables a and 6 with a fixed hyper-
radius R =102.0 a.u.

found by a detailed investigation that a variation of the
angular correlation pattern at each smaller R is similar to
that seen in the 8s8s state.

In contrast with the states investigated above, the in-
phase mixing of the (n —2)I(n —2)I bases (I = 3) is dom-
inant in the 7s7s and 9s9s states. In Fig. 7(c) and Fig.
9(c), we can see a 0 dependence quite different from that
seen in the 8s8s and 10s10s states. In fact, the CI
coefficients of the 7g7g, 7Th7h, and 7i7i bases, which
make a relatively large contribution to the 9s9s state,
have the same sign as the 959s and 9p9p bases.’® In the
7s7s state, though a contribution from the
(n —2)I(n —2)I bases (I =3) is very small, the 5f6f and
5f7f bases, instead, appreciably contribute. Their CI
coefficients also have the same sign as the 7s7s and 7p7p
bases.’® Note that, though the correlation pattern seen in
Fig. 7(c) is somewhat similar to that in Fig. 6(c), the
characteristic is essentially different; that is, in the 7s7s
state, the 8 dependence of the ridge component keeps to
have its largest peak at 6= even in the inner foot of the
large mountain. This characteristic is also seen in the
9s9s state, and is peculiar to a correlation pattern result-
ing from the in-phase mixing.

Because of the in-phase mixing, the 8 dependence of
the ridge component in Fig. 9(c) is similar to that seen in
a specific 'S® Wannier-ridge-state of helium; that is, the
correlation pattern in Fig. 9(c) is similar to, for example,
that shown in Fig. 12, in which the a-6 plot of the
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FIG. 12. Charge-density plot of the 9(6,0)*9 !S® state of He
as a function of the hyperspherical-coordinate variables a and 6
with a fixed hyperradius R =96.9 a.u.

9(6,0)791S¢ state of helium is drawn. In the molecule-
like picture, the latter state is interpreted as the lowest
excited state of the bending-vibration mode with any ro-
tation mode unexcited. In spite of the similarity, howev-
er, the correlation pattern seen in Fig. 9(c) is not attribut-
ed to the bending vibration. This is understood by the
fact that the correlation pattern does not have a complete
node but shows only a saddle-like form.

As described above, in spite of the nondegeneracy in
the Ca™t energy levels, higher Wannier-ridge-type states
of calcium show a fairly strong angular correlation in
their ridge components, although they do not necessarily
show an extremely sharp correlation as seen in helium.
The angular correlation patterns of Ca result from a rath-
er simple configuration-mixing scheme. They are funda-
mentally dominated by the (nsns +npnp) configuration
mixing. This fact results in a less sharp pattern of the
overall angular correlation. This fundamental pattern,
having a broad peak at 0=, is then deformed by higher
angular momentum bases, such as (n —1)d(n —1)d and
(n —2)I(n —2)I for 1 Z 3, forming unusual angular corre-
lation patterns. There are two types of deformation; one
is to sharpen the peak at 0=, as is similar to that in
helium, and the other is to destroy the peak at 6= and,
instead, to form another peak at 6 <. In the latter case,
the resulting correlation pattern is suggestive of a bent
structure of the charge-density distribution. It may be in-
teresting that, in higher states, these two types of correla-
tion patterns alternately appear with n increasing. With
only the examples presented here, however, it is undeni-
able that this alternation is only accidental.

V. DISCUSSION

In Sec. IV we concentrated our interest only on the
main ridge component (large mountain), because every
state investigated has a well-defined ridge component, in
which a reasonably large amount of charge density is lo-
calized. In higher states, however, a considerable amount
of charge density is distributed also at the nonridge loca-
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tion. This distribution is mainly due to lower-lying Ryd-
berg series. The strong mixing of the Rydberg states is,
of course, because of the nondegeneracy in Ca™’ energy
levels. Moreover, the manner of this mixing looks rather
irregular, as seen in the r -r, plots. This irregularity
presents a striking contrast to the beautiful correlation
pattern of helium shown in Fig. 11(a). Considering this
irregularity together with the unusual angular correlation
of the ridge component, the applicability of the usual
moleculelike picture to calcium is likely to be negative at
least in higher states. Though the presence of an alterna-
tive collective motion is not necessarily impossible, it can-
not be known from only the present results. To obtain in-
formation on this point, we need extensively investigate
many states other than 'S°. We would note that, in our
preliminary calculation, some *P° states show a bent-type
correlation very similar to that seen in the 8s8s and
10s 10s states. This fact might suggest the presence of a
collective motion.

Whether or not a collective motion exists, however, the
bent structure itself is interesting, because this structure
means the breakdown of the axial symmetry of the
charge-density distribution. A helium atom also shows a
bent-type correlation pattern, which is attributed to a
moleculelike state with the vibrational rotation excited.
The bent structure of Ca, however, is seen in the .S°¢
state, which has no total angular momentum. Therefore,
this bent structure cannot be attributed to the vibrational
rotation. Instead, the bent structure might be attributed
to the bending vibration. However, as seen in compar-
ison with the pattern shown in Fig. 12, the bent-type
correlation pattern of Ca is completely different from that
attributed to the bending vibration in the usual molecule-
like picture for helium. Thus, this bent-type correlation
pattern is quite peculiar to calcium atoms or, probably, to
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alkaline-earth atoms.

An alternative structure® responsible for the bent-type
correlation pattern is something like a “twisted bow tie”
or a linear-type ‘“‘propeller,” which is also twisted be-
tween its wings. Also in this type of shape, a correlation
function is expected to have a minimum at 8= and a
maximum at 6 < 7, and the axial symmetry is broken. To
obtain information on such a higher-order deformation, a
higher-order angular correlation function must be inves-
tigated. It would be an interesting future work.

The essential configuration-mixing scheme causing this
unusual correlation pattern is well understood, as de-
tailed in the previous section. It is, however, still un-
known what causes this manner of configuration mixing
and what its physical meaning is. With only an analysis
through a configuration-mixing scheme, it is difficult to
gain a physical insight. Thus, the development of analyt-
ical treatments is strongly looked forward to.
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