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Density-functional theory of atoms in strong magnetic fields
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A density-functional model of atoms in strong magnetic fields is proposed along lines parallel to
Hohenberg-Kohn-Sham density-functional theory. We derive a Thomas-Fermi-Weizacker-like
(TFW) functional by using the classical-path approximation to the relevant one-particle Green s

function. %'e also address the correlation effect between the effective potential and the magnetic
field. The TFW-like model provides a simple way of calculating ground-state energies and charge
densities of atoms in magnetic fields, and can be systematically improved.

I. INTRODUCTION

II. KOHN-SHAM DENSITY FUNCTIONAL

Subject to caveats concerning V representability, the
density-functional format, known mainly through the
work of Hohenberg and Kohn, can be regarded as
proceeding as follows. If we neglect the magnetic field
for the moment, then the ground-state energy of an atom
with fixed nucleus and associated external Coulomb po-
tential u (x) can be written as

F. =min+ u x p+ x dx+ T+4

where T is the kinetic energy operator, 4 the total
Coulomb interaction potential, and p+ the one-body den-
sity belonging to the N-Fermion wave function O'. Nor-
malization of 4 is equivalent to

fp+(x)dx=N . (2)

Now in (1), we may fix p~(x)=p(x), and then minimize
over p(x), subject to (2), yielding

Ordinary perturbation approaches fail in calculating
the properties of atoms in strong magnetic fields, objects
of obvious astrophysical importance. A variety of non-
perturbative approaches to ground-state energies and
charge densities of these systems have therefore been
developed in the past few decades, Thomas-Fermi-like
(TF) statistical models' ' among them. More detailed,
but still phenomenological, models of the Kohn-Sham-
type (KS) depend upon solving Hartree-Fock-like equa-
tions. This paper aims at providing a density-functional
framework for such problems via the Feynman path in-
tegral formulation of quantum mechanics. Even the
lowest order of this theory leads to a Thomas-Fermi-
Weizsacker-like (TFW) functional which can be easily an-
alyzed, and higher order can be incorporated with little
diSculty. For simplicity, we here consider electrons as
spinless particles, a supposition which becomes exact in
very intense magnetic fields.

where Q [p]—:min ( Q )~.
In the Kohn-Sham model, one makes the separation

ansatz (atomic units throughout)

1 p(xl )p(x2)
(T +4)[p]=T,[p]+ f — dx, dxz

2

+E.,[p] (4)

and associated nonrelativistic kinetic energy functional

T, [p]=f t, (x)dx,

t, (x) =
—,
' V„V„y(x, x')

i „
where

(HKs Et)f;=0—, HKs= —
—,'V +uEF(x),

p(x'), & xcuE„(x)=u(x)+ i, , dx'+
x —x'i 5p(x)

III. TFW-LIKE FUNCTIONAL

Application of a magnetic field 8 in the z direction has
the sole effect of replacing V by [V+i A(x)], i.e., now

Hzs= ——V +—I, + (x +y )+uEF(x),
1 p 8 8

but our approach to T [p] will avoid the use of the KS or-
bitals g, . For this purpose, we write instead

y(x, x') = (x~6(p H— (9)

where 6 is the Heaviside step function and p the Fermi
energy. Expressing the step function as an inverse La-
place transform relates (9) to the one-body Green's func-
tion

with E„,[p] an appropriate exchange-correlation func-
tional. Minimization of (3) then results in a one-body
density matrix

N

y(x, x')= g l(;(x)l(, (x'),

E=min E[p]

=min u x p x dx+ T+4 p (3)

y(x, x') = f dT(2mi T) 'e't'TG (x, x', T),
QO iQ

G(x, x', T)=(xie ' "' ix'),
(10)
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Here, S(x(t)) is the classical action
T

S(x(t))=f L( x(t), i(t), t ) dt,

with the corresponding KS Lagrangian

(12)

Lxs= —(x +y +z ) ——(xy —yx) —uzi(x) . (13}

It is well known that the path integral (11) is dominat-
ed by classical paths in the classical limit T~0. Further-

which in turn can be evaluated as a Feynman path in-
tegral

G(x, x';T)= f e' ""'Dx(t),

with x(0)=x', x(T) =x . (11)

G(x x' T) = G (x x'T)(e' '"'"') (14)

where the path average designated by subscript zero em-

ploys the probability weight expiSO(x(t))/Go(x, x', T).
Let us choose the reference Lagrangian Lo as (13) in the
absence of uE&(x). The Green's function for an electron
in a constant magnetic field is one of the few known ex-

actly in closed form'

more, it turns out that every Green's function that has
been evaluated exactly in closed form is a sum over classi-
cal paths alone. ' These facts encourage us to use the
classical path of some nearby reference system to approx-
imate the Green's function (11). For this purpose, we

first make the separation S =So+A,S, and rewrite (11)
as"

Go(x, x', T)= . exp (z —z') +—cot(aT)[(x —x') +(y —y') ]+ia(xy' —yx')1 aT i, 2 ia 2 ~ 2

(2~jT) ~ sin(aT} 2T 2
(15)

where a =B/2. Equation (14) then becomes

T
G (x, x', T) =Go(x, x', T)e ' u E„(x,i(t) )dt,

0
(16)

where x,i(t} is the classical path of an electron in the
magnetic field, a helix satisfying the boundary conditions
(11)

y, i(t) =y'+ (y —y')sinBT —(x —x')(1 cosBT—)
2(1 cosBT)—

X sinBt

+ (x —x')sinBT + (y —y')(1 cosBT)—
2(1 —cosBT}

X (1—cosBt),

z„(t)=z'+ Z —Z'

(18)

(19)

x,i(t) =x'+ (x —x')(1 cosBT) (y——y' }sinB—T
2(1 cosBT)—

X (1 cosBt)—

+ (x —x')sinBT+ (y —y')(1 cosBT)—
2(1 —cosBT}

Xsin8t,

The basic semiclassical approximation that we now make
is valid for (T~0). This is to restrict the average in (16)
to the straight-line free-particle path from x' to x,

X Xx„(t}=x'+ t . (20)

We therefore can expand x,i(t) and y, i(t) about T=0.
As a matter of fact, for sufficiently small T, any classical
path satisfying the boundary conditions (11) can be ap-
proximated by a straight line if the field is not singular.
Corresponding to the small T approximation (18), retain-
ing terms only through 0 ( T) in the exponent of (15) re-
sults in the semiclassical Green's function

G~(x, x'; T)=e"'"~ 1 aT
(2~tT)3~2 sinaT

i(x —x') . i, , iT zXexp iT u (x'+—(x—x')t)dt — a [(x —x') +(y —y') ]EF (21)

p(x)=(1/6ir )k~(x)e(k~(x)}, (22)

The combination of (21), (10}, and (6) then leads, after
some computation, to the density and the kinetic func-
tional

k~(x }=2[p —u Ep(x)], (23)

8 1
t, (x)=t~„(x)+ tii, (x)+ — p'~ (x) . (24)

(6~2)2/3
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In the derivation, we have replaced V' in Eq. (6) by
%+i A, and kept only the leading orders in T. t~F and

t~ denote the usual Thomas-Fermi and Weizsacker ex-
pressions

t (x)= (6m ) /p /(x)=3
F 10

1 ~P'p(x}~

8 p(x)

(25)

Hence combining (24) and (25) with (3), (4), and (6), we
obtain the density functional

g2
E [p]= T~F [p]+ T„,[—p]+ fp' (x}dx

(6+2)2/3

+ f u (x)p(x)dx+ —f dx, dx2
2

Yang' to construct an integral formulation of the
Hohenberg-Kohn-Sham (HKS) density functional theory
for atoms. This formation makes full use of the advan-
tages given by density functional theory (DFT) because it
does not invoke the self-consistent orbitals. The multidi-
mensional integration formulas offer the possibility of ab
initio calculations for systems with a very large number
of electrons. We now use the same method to develop
formulations for atoms in magnetic fields. The one-body
Green's function 6 can be expressed in the form

G (x,x'; T) = & x f(e "' ")"/x')

~ ~ ~

n —1

dx„, g &x „~e '""'""~x ),

where

+E„[p] (26)
(29)

T~F[p]=f t„(x)dx, T~[p)= f t~(x)dx . (27)

On minimizing (26) with respect to p, with the Fermi en-

ergy p as Lagrange multiplier for the condition
jp(x)dx=N, we have as well the corrected profile equa-

tion

1
( 6~2 )2/3 2/3

2 18 1/2 48 (6 2)2/3 2/3+

+u (x)+f, dx'+ =p .p(x'), ~E..[ ]
[x—x'i 5p

(28)

IV. DISCRKTIZED PROPAGATOR
REPRESENTATION

The discretized propagator approach, developed by
Handler, ' Harris and Pratt, ' has recently been used by

The density functional (26), with its nontrivial p' 8
dependence, ' and the associated profile equation (28) are
simple and practical tools for dealing with magnetic
fields. But the range of validity of 8 in the above func-
tional needs to be checked even though the magnetic field
is not necessarily weak in the short-time (ST) approxima-
tion. Furthermore, even at the stage represented by Eqs.
(17)—(19}(classical path approximation), a direct correla-
tion effect between the effective potential and the magnet-
ic field still exists. Unfortunately, this effect cannot be in-
corporated in the ST approximation. We will discuss
these topics in future articles.

G(x +„x;Tln)
r

ibo[m +1,n)
3/2

ln 2 ET
Xexp (x +, —x ) — u(m+1, m)

b (m+1, m)
ET

n
(31)

where u(m+1, m), bo(m+1, m), and b&(m+1, m) are
defined by

1u(m+I, m)= uF„(x +(x +,—x )t)dt,

bo(m + l, m) =a (x +,y —y +~x ),
Q

b, (m+1, m)= [(x +, —x ) +(y +,—y ) ] .
6

Substituting Eq. (30) into Eq. (29), we have

where xo=x', xn =x, and the KS Hamiltonian is defined

by Eq. (8). From the previous discussion, we know that
Green's function G takes the form given by Eq. (21) at
the zero time limit. Therefore the discretized propagator
in the integrand can be approximated by

&x +, /e
' "' "/x

=G(x +„x;Tln)+O[(T/n) ], (30)

G„(x,x'; T) =
27TE T

'3n /2
n —1

~ ~ ~dx& dx„&exp i g bo(m + l, m)

~

Z
n —1

Xexp g (x +&
—x ) — g u(m + l, m) — g b&(m + l, m) . (32)

m =0 m=0 m=0
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From Eq. (30), it is obvious that

G(x, x';T)=G, (x,x';T)+O(T In) . (33)

is given by the differential relation (6),

t„(x)= —,'(V„+i A) ~ (V, +i A')y„(x, x') ~„

3n /2

X Js yz(k l )e(k
2~1„

(34)

Thus G„converges to 6 as n goes to infinity. The corre-
sponding density matrix is given by

n —1

y„(x,x'}=f dx& . dx„&exp i g bo(m + l, m}

=t„(uEF(x);x B) (38)

The calculation of t„ is elementary but very tedious.
Combining Eqs. (2), (3), (4), (7), (37), and (38), the

ground-state energy of atoms in the magnetic field can be
calculated, provided the exchange-correlation functional
is given. The above integral formulation approaches the
KS orbital method as n goes to infinity.

where J3 /2 is the Bessel function and

n —1 n —1

k„=2 p ——g u(m+1, m) ——g b, (m+1, m)
n n

n —
1

lz=n g (x +,—x )
m=0

(35)

(36)

p„(x)=p„(uEF(x);x,B), (37}

which is an explicit functional of uE&(x) with the mag-
netic field B as a parameter. The kinetic functional t„(x}

The convergence of y„ is ensured by that of G„.' The
diagonal elements of y„yield the electron density

V. CONCLUDING REMARKS

A TFW-like density functional model for atoms in
magnetic fields has been obtained through the path in-
tegral formulation of the one-body Green's function. The
integral formulation of DFT proposed in Sec. IV is ex-
pected to provide a more efficient way for accurate calcu-
lation of ground-state energies and charge densities for
atoms with very many electrons in intense magnetic
fields.
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