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The direct solution of the Schrodinger equation for the ground state of the ppp, ddt, , and ttp
molecular ions is obtained with the help of the correlation-function hyperspherical harmonic
method. Given the proper correlation function, chosen from physical considerations, the method
generates wave functions, accurate in the whole range of interparticle distances, which leads in turn
to precise estimates of the expectation values of the Hamiltonian and of different functions of inter-
particle distances. Our results are compared with those obtained in other precision calculations.

The recent experimental observation' of muon stick-
ing, resulting from the capture of a muon by a 3He or n
particle produced in dt or dd muon-catalyzed fusion reac-
tions, calls for a better understanding of this process.
This muon-sticking probability co is of paramount impor-
tance since the average number of fusion cycles equals
cu '. The current experimental and theoretical uncer-
tainty, at least for the dt fusion process, brackets the
difference between possibility or impossibility of building
and operating muon-catalyzed fusion reactors efficiently.

A precise prediction of m requires an accurate
knowledge of the three-body mesomolecular wave func-
tion. The usually employed adiabatic approaches, '
which assume an instant muonic response to nuclear
motion, are not extremely precise, since the mass of the
muon is not very small compared to the masses of nu-
cleons. Variational wave functions, ' on the other hand,
are accurate only in the region where the probability den-
sity is high, and not necessarily around the nuclear
coalescence point (where fusing nuclei are on top of each
other), which determines the sticking probability. The
Green's-function Monte Carlo calculations for ground
states do not have these limitations, but their extension to
the excited mesomolecular states, which are expected to
be the most important in the fusion process, is difficult
due to the fact that any however small admixture of the
ground state in the importance function will eventually
dominate the numerical simulation. In view of the
difficulties of the above-mentioned approaches, we pro-
pose applying the correlation-function hyperspherical
harmonic (CFHH} method, ' which, in principle, can
generate accurate ground- and excited-state wave func-
tions for all interparticle distances, including coalescence
points, to mesomolecular systems.

To date, the accuracy of this method has been verified
for systems consisting of one heavy and two light parti-
cles, and of particles of equal masses. Direct solution of
the Schrodinger equation by the CFHH method for

where y is the "correlation function" and P is expanded
in the usual hyperspherical harmonic (HH) functions. If
the correlation function y is chosen to describe the singu-
lar features of g (like cusps), the HH expansion for P
should be rapid. The solution for P proceeds as in the
usual HH method, except the potential V is replaced by
an effective velocity dependent potential V'

V'= V —— —(V lng)V,
l ~'X
2 X

where V is the six-dimensional gradient operator. For
xxp systems (x =p, d, t) we employ correlation functions
g =exp(f) of the simple spatially symmetric form

f = —y(r, 3+r23) —5r,z, (3)

bound three-body atomic systems has yielded pre-
cision ' comparable to that obtained previously only
by elaborate variational calculations. For maximum glo-
bal momentum K =48, up to nine-significant-figure pre-
cision has been obtained for the energy of the helium
atom " and seven significant figures for the positroni-
um ion' e e e+ (also denoted Ps }. The wave func-
tions for the whole range of the interparticle distances
and different expectation values for these systems have
about six- and five-significant-figure precision, respective-
ly.

In this paper we extend our study of the CFHH
method to the ground S states of the pp p„dd p, and t tp
molecular ions. This is our first test of the method for
heavy-heavy-light systems. This is also a prelude to in-

vestigating P states of the ddp, and dtp, molecular ions
whose properties are of most relevance for muon-
catalyzed fusion research.

In the CFHH method ' we write the wave function
as a production of two factors
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TABLE l. Calculated ground-state binding energy E, its expectation value (h ), and different func-

tions of interparticle distances, in eV and absolute muonic atomic units a„=2.559 277 10 "m, respec-

tively. The index 3 indicates a muon. K is the maximum global angular momentum and N is the

number of included hyperspherical functions. The number of digits indicates the numerical precision

of calculated values. The correlation parameters @=0 and 5=0 correspond to the standard hyper-

spherical harmonic method.

K

12
16
20

16
25
36

0.26
0.24
0.23

0.48
0.46
0.45

106(5(r,~) )

538.0
46.9
10.0

2.33
2.40
2.47

5.96
6.32
6.65

—119'
21.5

112.5

12
16
20

16
25
36

0.81
0.87
0.92

0.69
0.71
0.72

&5(r„)&

0.052
0.061
0.070

1.98
1.97
1.97

(r]3)

4.94
4.90
4.99

'Unbound.

m„=206.769m„m =1836.1515m, ,

md =3670.481me~ m, =5496.918m' s

R = 13.605 804 1 eV .

(4)

This set of values is one of the most commonly used in
muonic molecule binding energy calculations.

The choice y =5=0 in Table I corresponds to the usu-

where particle 3 is the unlike mass.
Tables I—III show the results for different choices of y

and 5 for the ddt molecular ion. The binding energies
are given in eV and expectation values in rnuonic atomic
units' a„=2.559277 10 ' m. Tables IV and V give the
results for the ppp and ttp molecular ions. Also included
are the results of calculations for the binding ener-
gies' ' and available expectation values' ' obtained
by other methods. In our calculations the following
values of proton, deuteron, tritium, and muon masses and
of the Rydberg constant A were used:

al HH method. Another choice, displayed in Table II, is
the "uncorrelated variational" choice 5=0,
y= 1 1M/[16(M+1)]. This value of y corresponds' to
the correlation function g giving the minimum energy
with the restriction 5=0. A third choice of parameters y
and 5 is employed in Tables III-V. Here the parameter
y=M/(M+1) builds in the pd cusps and 5 is chosen
to be such that for E =0, the full wave function l(

asymptotically has the correct cluster structure. This
means (i) g decays exponentially for any r, going to"
infinity; and (ii} for r, 3 (or rz3 ) going to infinity P decays
at a rate appropriate for particle 1 (or 2) bound loosely to
the ground state of the particles 2 and 3 (or 1 and 3), i.e.,

1(-expI —[(2M+2}(IE„„I IE„„I)/(m+2)]'~ r,3I,
where E„„and E„„„arethe two and three particle ener-
gies, respectively. Of course, the exact value of 5 then de-
pends on E„„„,which is what we are trying to calculate.
We do know however, that IE„„„I) IE„„I,and also that
the parameter 5 has to be chosen only approximately
equal to its correct value. The choices of 5 we actually

TABLE II. Same as in Table I. The correlation parameters in absolute muonic atomic units a„are
y =0.6508 and 5=0 (uncorrelated variational parametrization).

12
16
20
24
28

16
25
36
49
64

0.20
0.20
0.20
0.19
0.19

0.408
0.420
0.417
0.414
0.411

4.81
4.72
4.27
3.91
3.67

2.64
2.65
2.67
2.69
2.71

7.93
7.71
7.83
7.95
8.05

194.34
205.76
235.43
259.28
274.23

12
16
20
24
28

16
25
36
49
64

&res )

0.98
1.03
1.06
1.08
1.09

0.710
0.722
0.726
0.729
0.730

(5(r„))

0.106
0.116
0.122
0.127
0.130

2.03
2.03
2.05
2.05
2.06

5.36
5.36
5.44
5.50
5.54

273.2
290.21
303.10
309.48
313.14
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TABLE III. Same as in Table I. The correlation parameters are y=0.9467 and 5=4.172 (IMd cusp parametrization). The last

lines of the table contain the results of precision calculations obtained by other methods.

12
16
20
24
28
32
40
48

16
25
36
49
64
81

121
169

0.21
0.168
0.173
0.175
0.176 32
0.176 815
0.177 209
0.177 458

0.436
0.3843
0.3895
0.3918
0.393 197
0.393 754
0.394 211
0.394 502

19
3.8
3.30
3.25
3.212
3.147 83
3.0}170
2.91940

2.5
2.92
2.88
2.86
2.8465
2.842 38
2.838 82
2.836 45

7.0
9.47
9.17
9.03
8.9554
8.9291
8.9058
8.8900

309.793 98
355.893 54
341.387 80
334.410 52
329.800 16
327.623 14
326.333 80
325.605 94

12
16
20
24
28
32
40
48

Reference

13
14

16
25
36
49
64
81

121
169

1.24
1.11
1.148
1.146
1.145 913
1.145 460
1.145 744
1 ~ 145 502

0.394

0.7725
0.7210
0.7273
0.7278
0.728 079
0.728 157
0.728 312
0.728 400

&5(r») &

0.175
0.157
0.1599
0.1594
0.159 103 6
0.158 961 3
0.158 952 7
0.158 8394

2.834
2.834

2.0
2.15
2.14
2.13
2.1246
2.123 18
2.121 82
2.120 82

8.876
8.877

5.1

6.12
6.08
6.01
5.9774
5.968 11
5.958 98
5.952 23

297.8
319.8
323.9
324.66
324.8450
324.966 65
325.029 41
325.054 88

Reference

13,15
14,16

17
18
19
20

0.7285
2.12
2.12

5.945
5.946

325.0735
325.0735
319.2
322
318
306

TABLE IV. Same as in Table III, but for ppp molecular ion. The correlation parameters are y =0.8988 and 5=2.220.

12
16
20
24
28
32
40
48

16
25
36
49
64
81

121
169

0.149
0.145
0.147 70
0.148 017
0.148 241
0.148 432 85
0.148 593 12
0.148 661 87

0.353
0.346
0.3506
0.350 926
0.351 212 9
0.351 457 59
0.351 662 37
0.351 751 70

5.9
5.36
5.26
5.080
4.930 396
4.817 149
4.652 784
4.542 995

3.26
3.37
3.312
3.3095
3.306 37
3.303 684
3.301 436
3.300421

12.0
13.1
12.5
12.47
12.447
12.425
12.406 719
12.398 301

272.062 60
264.541 98
257.379 31
255.289 74
254.579 03
253.966 92
253.476 63
253.294 76

Reference

13
14 0.351

3.298
3.299

12.38
12.39

12
16
20
24
28
32
40
48

16
25
36
49
64
81

121
169

0.9882
0.9868
0.996 59
0.996 110
0.996 167 88
0.995 980 67
0.996007 50
0.995 935 46

0.672
0.668
0.6700
0.669 999
0.670 1110
0.670 17997
0.670 242 71
0.670 272 62

(5(r„))

0.1318
0.1321
0.131 78
0.131 685
0.131 687 45
0.131612 39
0.131 568 24
0.131 535 70

2.35
2.42
2.390
2.3901
2.388 73
2.387 534
2.386 562 16
2.386 098 56

7.4
8.1

7.80
7.8061
7.7950
7.785 05
7.777 020 7
7.773 144 9

229
252.6
252.940
253.0712
253.104 18
253.124 68
253.143 08
253.148 24
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TABLE IV. (Continued)

Reference

13
14
17
18
19
20

0.6703
2.385
2.386

7.769
7.769

253.1523
253.1524
252.9
242
249
230

employ are appropriate for IE„„„Iabout 5% higher than
IE.„I.

As one can see from the Tables I-III this ")Md cusp"
parametrization gives the best results for binding energies
e= (E E»—), the —expectation value of binding energy
(h &, h = (H E„„)—, —and for all other expectation
values. (As described in our previous work, E, the ei-
genvalue of the effective Schrodinger equation, differs
from (H ), the expectation value of the Hamiltonian, be-
cause, with a finite K, V is non-Hermitian. They are

both estimates of the energy, but approach each other
only for infinite K, with (H ) (not E) having the varia-
tional property).

The results in Table III clearly illustrate the utility of
the CFHH method in ddt computations. Indeed, values
presented here are better than those obtained by adiabat-
ic method' or in variational calculations' with the
Hylleraas-type variational wave functions. They agree
with the most sophisticated variational calculations using
the Slater-type geminals' ' ' ' and the generator-

K

TABLE V. Same as in Table III, but for ttp molecular ion. The correlation parameters are y =0.9637 and 5=6.115.

10'(5(r„))

12
16
20
24
28
32
40
48

16
25
36
49
64
81

121
169

0.337
0.182
0.185 23
0.186 69
0.188 22
0.18922
0.19028
0.19068

0.ss6
0.402
0.407 75
0.409 33
0.411 11
0.41201
0.413 36
0.413 82

45.0
2.7
0.41
0.387
0.424
0.307

1.91
2.78
2.696
2.687
2.674
2.6669
2.659 23
2.655 72

3.86
8.62
7.91
7.87
7.78
7.745
7.7006
7.6780

251.535 95
409.413 36
390.783 00
380.269 44
374.062 90
369.597 71
365.209 84
364.143 20

12
16
20
24
28
32
40
48

Reference

13
14

16
25
36
49
64
81

121
169

1.536
1 ~ 159
1.210
1.212
1.2116
1.21043
1.209 79
1.209 96

0.414

0.890
0.744
0.7518
0.7524
0.752 88
0.753 007
0.753 195
0.753 395

10'(5(r„))

0.297 93

(5(r„))

0.222
0.169
0.1711
0.1716
0.171 33
0.170931
0.170 589
0.170601

2.652 82
2.653

1.59
2.06
2.031
2.0301
2.0251
2.022 66
2.01997
2.018 52

7.662 14
7.662

3.26
5.59
5.39
5.40
5.360
5.3455
5.3288
5.3192

129.0
367.98
361.06
361.90
362.257
362.566
362.812
362.856

Reference

13,15,21
14,16

22
23

0.7535
2.017 37
2.017

5.312 90
5.313

362.910304
362.909 45
362.904
362.91029



CORRELATION-FUNCTION HYPERSPHERICAL HARMONIC. . . 2343

coordinate method, ' ' with the precision of our calcula-
tions converged, for example, for the expectation values
of binding energy up to an error in the fifth significant
figure. The results of ppp and ttp calculations, obtained
with the same kind of parametrization and displayed in
Tables IV and V, confirm the utility of the method.

Improvements in the CFHH method are nevertheless
desirable for the ddt and other heavy-heavy-light parti-
cle systems. It is impossible to build in both a satisfacto-
ry asymptotic behavior and xx cusp behavior with the
symmetric linear correlation factor f we have chosen.
This situation becomes worse with increasing mass of the
particle x. The reason is that the x-x cusp parameters
5= —0.5 in the units m„= 1 becomes —4.442, —8.878,
and —13.298 in p atomic units for x =p, d and t, respec-
tively, whereas the 5, actually used, given in Tables
III—V and chosen, as discussed earlier, on the basis of
asymptotic considerations, become increasingly positive
with m„. Correspondingly, the discrepancy in binding
energies with the very accurate variational calcula-

tions' ' are 4, 19, and 60 meV, respectively, and conver-
gence of (5(r,2) ) becomes progressively worse. Also, an
additional numerical diSculty" in extracting the asymp-
totic wave function leads to not being able to obtain pre-
cision in expectation values better than the number of
significant figures shown in the table for the uncorrelated
variational or pd cusp parametrizations of f.

As previously mentioned, the inability with current
correlation factors to include the xx cusp leads to some-
what slow convergence of (5(r,2)). However, a matrix
element of the 5(r,z) operator is directly connected with
the muon-sticking probability in the sudden approxima-
tion. For this reason we plan to consider more general
nonsymmetric nonlinear correlation functions for ppp,
dd)tt, ttp, , and dtp, molecular ions, which will properly de-
scribe both xx and dt cusps and asymptotic behavior.
That will allow a very precise estimate of wave functions
at xx and dt coalescence points, which is necessary for an
accurate calculation of the sticking probabilities.

'On leave from Racah Institute of Physics, Hebrew University,
Jerusalem 91904, Israel.
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