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We discuss the Legendre conjugate of the Hohenberg-Kohn energy-density functional, i.e., the to-
tal energy of an inhomogeneous many-electron system, considered as a functional of the external
Coulomb potential (the nuclear Coulomb skeleton of a molecule, for instance) as the starting point
of an alternative formulation of a theory of electronic correlations. We then relate this functional to
the nonrelativistic or relativistic microscopic many-body theory. The essential bridge between the
two theories is many-body perturbation theory perturbing around a mean field. We then point out
that a particular choice for the latter, the g-Hartree mean field, leads to a transparent physical pic-
ture: The relevant functional of the external field, g, — 1, representing electronic correlations, is in-
terpreted as a polarization charge density induced by the latter. This picture, in turn, leads to a
Clausius-Mosotti type of equation for this correlation functional. Applications to atomic- and

molecular-structure calculations are discussed.

I. INTRODUCTION

Coulomb correlations in inhomogeneous many-
electron systems, atoms, and molecules, for instance, are
usually accounted for theoretically by one of the follow-
ing approaches. The first alternative is based on a micro-
scopic theory starting from the quantum-mechanical
equation of motion, e.g., the Schrodinger equation for
nonrelativistic systems. After invoking the Born-
Oppenheimer approximation for molecules, which
effectively decouples electronic degrees of freedom and
those of the nuclear skeleton, the first level of theory is
conveniently chosen to provide an effective single-particle
description of the electronic structure, and usually the
Hartree-Fock approximation is chosen for this purpose.
The underlying physical picture is an assembly of quasi-
particles moving independently in the mean field fur-
nished by the electrons and the external field caused by
the nuclei. Deviations of the values of observables in the
Hartree-Fock mean-field theory from those of the exact
theory are termed correlations in a more restricted sense.
They are in turn calculable by various methods developed
in the past few decades,! which may be classified as either
perturbative or variational, the latter often in the form of
configuration-interaction (CI) treatments, which in the
case of a “full CI” yields an exact solution of the many-
particle problem in a model space defined by a suitable
tensor product of one-particle spaces of finite dimensions.

Common to both methods is the problem of conver-
gence of the corresponding expansions of which only the
first few terms can be calculated, practically speaking.
Parallel to the question of practicality another problem
also common to both methods emerges: A physical inter-
pretation of correlations is counterintuitive and cumber-
some, since the latter are parametrized by millions of CI
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expansion coefficients or individual diagrams in the per-
turbation series.

The second alternative for an attempt to solve the
problem of correlations is based on the Hohenberg-Kohn
theorem, which tells us that the exact electron density
n (x) determines the total energy by means of a universal,
albeit unknown, functional of n (x). In the framework of
density-functional theory? practical applications are com-
monly carried out in form of a local-density approxima-
tion. A Kohn-Sham-type equation® defines an effective
single-particle picture that includes the correlations from
the beginning; the unknown density functional is approxi-
mated by an educated guess based on results known from
the homogeneous electron gas.

One of the goals of the present paper is to provide a
link between density-functional theory and the quantum
theories of the first type sketched above, i.e., to develop a
method to parametrize Coulomb correlations by means of
a function of spatial coordinates which is, of course, func-
tionally dependent on the external nuclear Coulomb po-
tential p(x) since changing the latter implies altering
correlations. The ensuing functional gy[u(x)](x) is
linked to the microscopic theory by virtue of its oc-
currence as an effective coupling constant in a mean-field
equation (namely the g-Hartree equation) for the quan-
tum system under investigation.

It turns out that for a given configuration the function-
al derivative of go[p(x)] with respect to u(x) can be inter-
preted as a polarization charge density, whereas suitable
integrals over higher functional derivatives describe a
correlation charge density. The sum of the quasiparticle
charge density 3 ,n,|¥,(x)|? and the polarization density
equals the static charge density n(x), which is the source
of the static electric field [the ¥, (x) denote g-Hartree
single-particle orbitals]; the electric field seen by an elec-
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tron bound in the many-electron system under considera-
tion (and, hence, the force acting on it), on the other
hand, results from the charge distribution which is com-
posed of n(x) and, in addition, of the correlation charge
density. The construction of the latter remotely follows
in spirit the derivation of the Clausius-Mosotti’> and
Lorenz-Lorentz® formulas. These notions together with
the above-mentioned interpretation of gy[u](x) as an
effective coupling constant lead to a functional
differential equation for go[u ](x).

We then develop a formalism for the calculation of the
response of a correlated charge density to external per-
turbations. In quantum chemistry, the same goal is ac-
complished by considering the derivatives of the parame-
ters of the correlations treatment (e.g., the CI coefficients
and the single-particle orbitals used for the CI expansion)
with respect to an external perturbation.*

The equations for derivatives of, e.g., g-Hartree orbit-
als with respect to the external field, are comparable to
the coupled perturbed Hartree-Fock equations.® Our ap-
proach is, however, more general in that (i) we consider
arbitrary variations of the external field by means of the
technique of functional derivation, and (ii) we calculate
the response of a correlated charge density. We thus have
additional terms in the coupled perturbed equations,
referring to (functional) derivatives of the aforementioned
functional g,[u(x)] which is to be determined from its
functional differential equation.

We do not touch questions like the precise
specifications of the domain on which gy[u] is defined
nor do we try to set up an algorithm for an explicit con-
struction of the Legendre transform of the Hohenberg-
Kohn functional to a functional of the external potential
u(x).® The scenario we have in mind is a different one:
an ansatz for the functional g,[u] which is stringently
constrained by our Clausius-Mosotti type of equation is
tested by many-body perturbation theory—in the ideal
case it should sum up to zero by the very definition of
goln]. Having thus found a reliable parametrization for
correlations in terms of g, we proceed to calculate fur-
ther physical observables by computing higher-order
response to variations of the external potential u(x) and,
if required, by many-body perturbation theory in the cor-
responding g-Hartree basis. Numerical studies of this
scheme are deferred to a planned subsequent paper.

The paper is organized as follows. After an analysis of
the energy functional for atoms and molecules, we
present the mean-field construction of this energy func-
tional using gy[u(x)] and the g-Hartree equation. A dis-
cussion also addressing lines of further development and
generalizations concludes the paper. Technical details of
the derivations in Secs. II and III are given in an Appen-
dix.

II. THE ENERGY FUNCTIONAL
FOR ATOMS AND MOLECULES

The total energy E,, of an inhomogeneous many-
electron system certainly depends on the external field
producing the inhomogeneity. We express this depen-
dence by writing E,, as a functional of the external field
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u(x),

E =E . [ux)]. (2.1)

For atoms and molecules the external field u(x) is
identified, of course, with the Coulomb potential of the
nucleus and the nuclear skeleton, respectively. (We shall
adopt in the following the Born-Oppenheimer approxi-
mation and consider the nuclear skeleton of molecules as
adiabatically quasistatic.) Another important case which
we simply point out for the sake of illustration without
treating it any further is the interaction of strong maser
or laser fields with atoms and molecules; in a radiation
gauge u(x) is identified with the vector potential corre-
sponding to whatever maser or laser modes interact.

The total energy of an electronic configuration of an
atom or a molecule depends, of course, also on other vari-
ables. Within the Born-Oppenheimer approximation the
following procedure for labeling an interacting many-
electron state, all correlations included, is assumed to be
viable: we start from an (antisymmetric) product state ¥
of single-particle orbitals |a) labeled by quantum num-
bers a,

Yo=TI®(a))", (2.2)
a
where
1, occupied
n o=

@™ 10, unoccupied

indicates whether |a) is occupied or unoccupied, and
build up the interacting many-electron state by including
correlations perturbatively

Yo—>V[{n,}], (2.3)

thus obtaining a labeling of a fully correlated state ¥ by a
set of occupation numbers {n,} of single-electron states.
We confine our discussion to cases that admit a descrip-
tion by means of a single string of occupation numbers
{n,}, although it can be extended to a multiconfiguration
procedure parametrized by a set of occupation number
strings together with their mixing coefficients. Needless
to say, as in all Born-Oppenheimer-type structure calcu-
lations the question remains whether these parameters
describing the quantum state in question change adiabati-
cally when the external potential is varied. We assume
this to be the case, although the existence and viability of
such an adiabatic change is far from being proven in any
rigorous sense.

It is with this understanding that we now label the to-
tal energy of an electronic configuration as

E o =E o [u(x);{n,}] . 2.4)

A transition characterized by states long before and after
the interaction

W[ n | ] W (]

a

then induces a change of energy in the electronic
configuration
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AE =Etm['uﬁna1(x); {n gnal } ]_Etm['uinitial(x); {n gnilial ] ] .
(2.5)

It is important to observe that the functional (2.1) or,
specified for atoms and molecules, (2.4) is nothing but a
grand-canonical version of the energy-density functional
originally introduced and elaborated by Hohenberg,
Kohn, and Sham.? Indeed, since p(x) as the fourth com-
ponent of the gauge four-potential can be viewed as a
space-dependent chemical potential, the space depen-
dence reflecting the inhomogeneity of the many-electron
system under consideration, we obtain via thermodynam-
ical analogy the electronic charge density as

(x)= 8Etot
R a0

The charge density n(x) and the potential u(x) appear as
Legendre conjugates; inverting (2.6) in order to obtain the
energy-density functional involves in practical cases the
local-density approximation.’

Our point of view, which we shall expand in the follow-
ing, is that the use of the nuclear Coulomb skeleton po-
tential as an external variable u(x) to express functional
dependencies of the total energy has considerable practi-
cal advantages for the theoretical description of mole-
cules. In particular, we shall describe a construction of
the functional (2.4) in which all correlations due to the
electron-electron interaction are parametrized by a func-
tional

(2.6

8o=8golu(x);{n, 1. (2.7)

Our construction is close in spirit to the one originally
proposed by Kohn and Sham:® as the underlying concept
we also employ the notion of a mean field. However, in
our case the mean field is constructed such that, the
correlation functional (2.7) given, the total energy E,,
the charge density (2.6), all higher charge-charge correla-
tions [ (x) is the charge-density operator]

(A(xA(X,) - Ailx,)) =L YE o
! 2 " n! du(x,)8u(x,) - - - dulx,)

(2.8)

’

etc., are exactly the ones predicted by the theory of inho-
mogeneous many-electron systems (i.e., nonrelativistic or
relativistic quantum electrodynamics). Of course, strictly
speaking, this statement, taken literally as it stands is just
a tautology; we simply shifted the problem of determin-
ing the functional E,,, to the determination of the func-
tional g,. From the point of view of perturbation theory
this is not quite as trivial as it sounds since 1—g, is of the
order of the strength of the electron-electron interaction
and all single-particle contributions to (2.4), (2.6), and
(2.8) are taken into account (as in every Kohn-Sham-type
construction).

Furthermore, as we shall see in the following our mean
field incorporates indirect knowledge of correlations via
the functional g,. Hence, even if we do not know the
functional g, exactly we can nonetheless develop phe-
nomenologically guided Ansatze for g,: the closer we get
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to the exact form the more rapidly many-body perturba-
tion theory® (MBPT) will converge since, by construction,
all perturbative contributions vanish for the exact g.

In the following we shall develop this mean-field theory
for E,,, the charge density, and density-density correla-
tions. We shall put particular emphasis on deriving gen-
eral constraints on the functional g, which will prove
useful in the search for efficient parametrizations.

III. MEAN-FIELD CONSTRUCTION
OF THE ENERGY FUNCTIONAL

The g-Hartree mean-field theory provides an efficient
scheme for the construction of the functional (2.4) which
allows for a transparent physical interpretation and, thus,
for a parametrization which follows simple physical
guidelines directly interpretable in terms of observable
physical parameters.

At the center is the g-Hartree mean-field potential

‘Vg(x)=fd3x’V(x,x')2na[g|¢a(x’)\2

—(1=g)i(x P (x)*],
(3.1)

where

eZ

V(x,x )=m

(3.2)
is the electron-electron Coulomb interaction and =*
denotes the usual exchange convolution operation; the
sum involves occupied states. This potential was derived
from a stationarity condition!® and a variational pro-
cedure;!! the important point to note is that this potential
is not unique but rather a one-parameter set parametrized
by g which, for the sake of generality, we take as space
dependent,

g=g(x), (3.3)

in Eq. (3.1).
The single-particle orbitals are to be determined self-
consistently from the g-Hartree equations

[D 4V, (x)]¢a(x)=¢e,(x), (3.4)
the single-particle dispersion can be taken as
.
D= om A+p(x) (3.5
or
D=—ia-d+mpB+u(x) (3.6)

for the nonrelativistic and the relativistic case, respective-
ly, u(x) is the external potential seen by the particle at x
and constitutes the functional variable described in Sec.
II.

The parameter g will now be chosen'? such that

E,=E

e—nlg=g, > (3.7

i.e., that the total energy (2.4) is exactly equal to the g-
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Hartree single-particle energy E, 4
Eyy=3n.e,—3InpVef
a B
where

ca=1 [dx Pex IV (x y(x') . (3.9)
Of course, Eq. (3.7) determines g, as a functional of u(x)
and the configuration {n,} once the space dependence
(3.3) is prescribed:

8o=8olu(x);{n,}], (3.10)
or, denoting the x dependence explicitly,
=golu; {ng}1(x) . (3.11)

This construction might appear confusing; we shall try to

be more precise by using mathematical icons. Let the
map (3.3)

g:R’*>R
be parametrized by parameters ¥,v, ..., Yx. Equation

(3.7) then fixes one parameter, Y, say, as a functional of
u(x)and {n,},ie., as a map

Yo{uw(x)} X {n,} >R, (3.12)

where {p(x)} denotes the set of admissible potentials. In-
serting this map into the chosen parametrization for g we
obtain the functional (3.10) or (3.11). The remaining pa-
rameters v, ..., Y are not fixed by (3.7) and play the
role of dummy parameters: as long as they are chosen
within physically reasonable boundaries the results
presented below, in principle, do not depend on their
choice. On the other hand, a physically viable ansatz for
the function (3.3) will certainly increase the speed of con-
vergence of MBPT which we shall use to compensate the
practically unavoidable incompleteness of the construc-
tion of the functional (3.12) and (3.10) or (3.11). Anyway,
we should remember that the choice (3.3) for g(x) is
essentially arbitrary and can be restricted by condition
(3.7). In the following we shall show that this restriction
leads to a physically intriguing picture of correlations in
atoms and especially in molecules.

To this end we calculate the charge density n(x)
defined in (2.6) (for details we refer to the Appendix)

— 8Etot — 2 g0
0= Gy el Yelx)] (5 = > (3.13)
where
o8, n .
< du(x) >po,_7§"awpola (3.14)
and

W= fd’x’l/:a(x) [#,[ o} 1)V (X ) x")

(3.15)
with
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‘Vpol(x)=2nafd3x’V(x,x')

X[ (X2 HY2(x W (x)x] . (3.16)

This equation has a natural physical interpretation:
n(x), defined in (2.6) and, hence, originating from the
equation of motion has to be considered as the source of
the electric field exerting a mechanical force on the elec-
trons building up the atom or molecule. Thus,

V-E=4mn(x) ; (3.17)
defining now
V-D=4mp(x), V-P=p,,(x), (3.18)
where
880
the relation (3.13) then translates into
D=E-+47P (3.19)

and correlations, expressed in terms of the functional
(3.10) or (3.11) which is obtained by the requirement (3.7),
are pictured as the polarization of a polarizable “medi-
m” built up by independent single-particle states. This
polarization makes up for the difference of the electric
field E and the displacement D which accounts for the to-
tal charge Ze in a Z-electron system. This picture leads
to nontrivial relations for g, which we now derive.
In the equation of motion (3.4) the source of E appears
as (we neglect exchange for a moment)

ﬁV-E=go(x)§nal¢a(x)|2 ; (3.20)
Egs. (3.13) and (3.17) then lead to the relation
[1—go(x)]13n,l¢.(x)]?

= Ppoi(X)

=3 Jdxpaan— %olx )) Voot K (X'

(3.21)

which is a functional-differential relation for the correla-
tion functional g,.

To include the exchange potential, a purely quantum-
mechanical effect, into this line of argumentation which
is essentially classical we proceed as follows. The source
of the electric field in (3.4) is the operator acting as the
exchange convolution

1
EV-E]QM=2na{go(x)h//a(x)lz

—[1—go(X) PR ()P (x" )%} .

We employ essentially the same idea as above if we now
equate

(3.22)
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1 _
<<EV-E|QM(x)>>—n(x) , (3.23)

where the average ({ - - - )) is obtained by calculating

: »=%nﬁfd3x'¢§(x JEERE'7¢ S (3.24)
Equation (3.23) leads to
[1—go(x lzn [ ha(x)>= Z+1pp°|(x) . (3.25)

As is clear from its derivation this relation pertains to
rigid charge distributions, dynamical effects resulting
from nonlinear feedback are not included.

In the context of quantum field theory which is the
common background of all our discussions such effects
are expressed in terms of correlation functions. (The
term ‘“‘correlation” is used here in a context slightly
different from the one employed above; however, we do
not think that this should cause any imminent confusion.)
Charge density-density correlations are given by

8’IE‘tot
Su(x)du(x,) -

_L
Pn(XXy oo, X,) oy

o 8u(x,)

(3.26)
1
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It is intuitively clear that [(3.26)

xl,...,x]
fdx

is symmetric in

Peore( X fd X —1Pn (XX, ooy Xy )

(3.27)

represents the charge density induced by dynamic effects.
The consistency condition (3.25) then becomes

[l—gO(X)]Ena1¢a(x)|2= Z+1 [Ppol x)—}.pcorr( x)],
(3.28)

and is an extension of the Clausius-Mosotti® and Lorenz-
Lorentz® relations in the spirit of the identifications
(3.17-(3.19).

If we calculate p_, . (x) from (3.7) and the equations of
motion (3.4) we obtain the remarkable result that the
correlation charge density is entirely determined by the
correlation functional g,. More precisely speaking, cal-
culating p_.(x) by performing the appropriate functional
derivatives on the total energy of the atom or molecule
given in terms of g-Hartree orbitals and the functional g,
by (3.7) we find

NS S W < 8"go > 129
Pcorr(x) n§2n! fd X1 fd Xp—1 8,u(x)8,u(x1) .. 'Sﬂ(xn—l) pol ’ (3.29)
where
S"go , . 8ng0(xi)
= Yalx Vpot(X (X’ 3.30)
<6‘u(x) e Sp’(xn—l) >p0] gna fd x Ipa(x )Sp(x) A S’U,(xn_l) pol(x )¢a(x ) (

i.e., peor:(X) does not contain any MBPT loops representing quantum fluctuations although, as a closer analysis shows,

8"gy

RN S T 3 <
pn(x): n!fd X fd Xn—1 Su(x)du(xy) - - -

is of nth order of the electron-electron potential ¥V (x’,x"’)
[see (3.2)],

P, (x)=0(V"),

and, hence, is given by MBPT graphs with at least n
loops if any but the g-Hartree, g =g,, single-particle
basis is used to set up the usual Goldstone graphical ex-
pansion. Employing the g-Hartree basis for g =g, deter-
mined from (3.7) lumps all these at least nth-order loop
graphs into an expectation value p,(x) of the nth-order
derivative of the one functional (3.10). Therefore, we
shall call, henceforth, g, the correlation functional: the
original Hamiltonian, i.e., the Hamiltonian of nonrela-
tivistic or relativistic quantum electrodynamics in
Coulomb gauge, used to derive the equations of motion
(3.4) for electrons interacting in atomic or molecular
configurations contains only the Coulomb interactions of
electronic charge distributions; the correlation charge
thus stands for essential dynamic manifestation of the in-

8l-l'(xn—l) >pol

(3.31)

[
teraction.

We end this section with an example.
function of one real variable. We set

Let f be a real

=f[Sngla(x)]? (3.32)

where 9,(x) are g-Hartree orbitals calculated for g =g:
(3.32) is, hence, an implicit representation for the func-
tional g, which is, u(x) given, also a function of x. The
function f might be thought of as given in terms of pa-
rameters ¥, ..., 7Y, in the discussion following (3.11).
By explicit calculation we now show (see the Appendix
for details) that

ppol fd f'

Snglv(x)? |F(x',x), (3.33)

where f' denotes the derivative of f and F(x,x’) is given
in terms of the electron-electron interaction (3.2) and g-
Hartree single-particle orbitals and is, hence, considered
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as an explicitly known function once a real function f is
prescribed. Important constraints on the choice of f
then follow from (3.31). We should emphasize, however,
that at least one constant is not fixed: (3.31) is homogene-
ous in (1—g,) and, hence, an overall normalization is left
undetermined. Finally, we remark that there is no total
polarization and no correlation charge, i.e.,

[ % p,o(x)=0 (3.34)
and

[ d°% peori(x)=0 (3.35)
or, even stronger,

[d*xp,(x)=0, n=1,2,3,.... (3.36)

These equations follow from relations [see (A24) and
(A31)] reflecting very general properties of quantum field
theory which should be traced back to gauge invariance
as prima causa. At a less ambitious level the relations in
question can be explicitly understood in MBPT.

For the choice (3.32) of the correlation functional g,
explicit expressions for p,(x) in terms of the electron-
electron Coulomb potential ¥ (x’,x”’) and the g-Hartree
single-particle orbitals {1,(x)} can be derived which au-
tomatically obey (A24) and (A31).

IV. CONCLUSIONS

Our goal was to establish a perturbative approach for
the calculation of observables of inhomogeneous many-
electron systems which incorporates an algorithm for the
choice of an optimized zeroth-order approximation in the
sense that higher-order perturbations converge rapidly
and in a controlled manner; at the same time the scheme
should be constructed such that it holds for nonrelativis-
tic as well as relativistic systems.

The starting point of our construction was the g-
Hartree mean field which contrary to other adaptions'® of
the Hartree-Fock mean field has the advantage of being
derived from a variational principle'! and/or the method
of stationary phases applied to the partition function of
an inhomogeneous many-electron system.

The next step was to adapt the parameter g such that
the total energy is exactly given by the g-Hartree energy
[Eq. (3.7)], i.e., such that the sum of perturbative loop
contributions vanishes. This condition yields a functional
go of the external nuclear Coulomb potential u(x) [Egs.
(3.10) or (3.11)] which is, of course, a very complicated
entity.

The correlation functional go[u] not only determines
the total energy, the charge density and the correlation
charge are equally fixed: the given functional gy[u]
determines a set of g-Hartree orbitals {¢,(x)} via the g-
Hartree equations (3.4); the total energy, the charge den-
sity, and the correlation charge density are given as ex-
pectation values of g, its first-order and higher-order
derivatives, respectively, [Egs. (3.7), (3.13), and (3.29)];
all loop contributions representing higher-order perturba-
tive contributions vanish.

KLAUS DIETZ AND BERND A. HESS 41

For many problems the choice of the external Coulomb
potential p(x) as the functional variable is a particularly
convenient one. The stable configuration of Born-
Oppenheimer molecules, for instance, is determined pre-
cisely as the configuration in which the first-order
response to a variation in the external Coulomb potential
vanishes; the second order then yields the harmonic vi-
brational spectrum. External fields as functional vari-
ables prove equally useful in the description of phenome-
na connected with atoms or molecules caught in solid-
state matrices, in ionic lattices, etc.

Theoretically speaking, u(x) is conjugate to the ob-
served electron density 7 (x)

. 8Etot
n(x)=—_——
Su(x)
in the sense of a Legendre transform. Hence, our ap-
proach is dual to the energy-density functional theory
developed by Hohenberg-Kohn-Sham, the g-Hartree
equations playing a role remotely reminiscent to the
Kohn-Sham equations. Formally, our approach has the
advantage of not employing the local-density approxima-
tion (LDA) necessary to construct the inverse’ of (4.1) in
a manner which can be exploited in practical terms. Not
taking recourse to the LDA and parametrizing correla-
tions in terms of the correlation functional g,[x] means
that all approximation schemes invented within the scope
set by g-Hartree theory retain a close connection to the
original microscopic equation of motion, the many-body
Schrodinger equation.

The g-Hartree correlation functional theory can be ex-
tended to encompass the description of inhomogeneous
many-electron systems in thermodynamic equilibrium:
let # be the Hamiltonian, the grand-canonical potential

4.1)

9[w;Bl=—B 'InZ ,

” 4.2)
Z =tr(e PH) |

is a functional of 4 and a function of the inverse tempera-
ture B and plays now, at finite temperatures, the role of
the total energy; at vanishing temperature we have

Glu; o J=E 1] 4.3)
The central Eq. (3.7) generalizes to

Slw;B1= G, —ulwsBlly =, » (4.4)
where now, instead of (3.10) and (3.11),

80=8olm:B] 4.5)

or
8o=8olu;B](x) .

Physically speaking, this means that the grand canoni-
cal potential for an (inhomogeneous) system of interact-
ing electrons is exactly represented (up to an obvious
term representing the mean-field contribution) by an ideal
gas of g-Hartree single-particle excitations.!?

The charge density in thermal equilibrium and its
correlations are again given by the functional derivatives
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8"9[u;B]
Su(xy) - -+ dulx,)
5”( gg—H[:u';B]lgzgo)

= y 4-6
Su(x,) - - - dulx,) 4.6

Pn(Xy .., X,)=

and the discussion of atomic and molecular properties at
finite temperatures follows the one developed above in a
straightforwardly analogous manner.

It should be clear from (4.3) that our derivations above
can be phrased as a thermodynamical description of an
equilibrium state at zero temperature. In a subsequent
publication we plan to study implications of our ap-
proach numerically and show that the speed of conver-
gence of MBPT can be greatly improved by a judicious
choice of the correlation functional g.

APPENDIX

We shall discuss in this section the formal aspects of

the theory developed above and derive explicitly the for-
J

b,
Su( x)

3.7.0% ! o) '
[ ypx) [8(x—x)+ Mx)wgm Po(x
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mulas referred to in Secs. II, III, and IV. We shall do
this in a way which we think is particularly suitable for a
numerical evaluation. In particular we shall refrain from
establishing a graphical representation of resulting in-
tegral equations and not present perturbation series in
terms of Feynman graphs but rather employ finally a con-
sequent matrix notation adapted to the use of finite basis
sets approximating Hilbert spaces of physical states.

We start by differentiating the g-Hartree equation (3.4)

2 D4V, (x) =y ldulx)

du(x)
B(x—x)+ —2 ¥, ()~ |y (x)
X Su(x) e X du(x) X
D+, (x)— e 2 ®) (A1)
[ g X Ea] S,IJ.(X) -
Multiplying by ¥/3(x’) and integrating we find
SY,(x")
_ 3% 1
(eg—ep) [ dx Yh(x ) (A2)

This equation contains two separate bits of information: for a3 we obtain an integral equation for the derivative of

the orbital ¥,(x

(X"

* 1% "
Su(x) YEx(x)+ [ dx"Pi(x")

2'“('

y%a V

for a=p3 an equation for the derivative of ¢,

Vg (x")
du(x)

1/}a( " )

(A4)

8¢, )
3 " II
B |¢'a(x)lz+fd Yr(x'")

Although the first terms in (A3) and (A4) simply are the
well-known results of first-order perturbation theory we
stress that these expressions for the derivatives of ¥, and
€, contain all the information carried by the g-Hartree
equations (3.4). Clearly, similiar expressions for similar
equations, e.g., the Hartree or Hartree-Fock equations,
have been derived in the literature*® by parametrizing
the general variation 8u(x) (see above) by a few physically
relevant constants and thus replacing the Frechét deriva-
tives by partial derivatives with respect to these con-
stants. We shall employ the general formalism of func-
tional analysis since it allow a compact and versatile for-
mulation of our equations.

Physically speaking the new concept is that through
Egs. (3.7) and (3.10) or (3.11) the parameter g becomes a
functional g, accounting for all Coulomb correlations
predicted by nonrelativistic or relativistic quantum elec-
trodynamics; functional derivatives of g, will play an im-
portant role which we shall try to elicuidate in the follow-
ing.

Again it is clear that correlations have been taken into
account in calculating first-, second-, and higher-order
responses of atomic and molecular observables and that

') with respect to the functional variable u(x)
8V, (x")
Su(x)

Pu(x") } , (A3)

[
an extensive literature can be found on the subject.

However, in introducing the functional g, we obtained a
compact and completely general formulation of the prob-
lem of correlations in many-electron systems, which has a
transparent physical interpretation and, hence, is amen-
able to physically motivated approximations.

We now use (AS) to derive an integral equation for the
derivative of the g-Hartree potential. Taking into ac-
count the functional dependence of g, we have in obvious

notation
5,
+2< 8o > ,
g=gg dp(x) [ por

8‘Vg0(x’) B
where we defined [repeating (3.14) and (3.16) for the sake
of clarity]

14,15

acyg (x' )( part)
Su(x)

(AS)

du(x)

88 1
<5,ux)>po.*?§ Wpotalx (A6
and
(x’) ’ ’
Wooj(x)= [d’x S(x) Vool X)Pp(x') (A7)
with

‘Vpol( x’

): deXHV(X/’xu)Ena[h/}a(xu)|2

TP (XY (x)*] ;

(A8)
on the other hand, we find from the definition of ‘Vg
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8V, (x')par BYg(x’’)  SYE(x")
8 — R ’ " * " B B "
—_—= d°x"V(x', x'’) (x"")
du(x) %nﬁf x"VIxLx") g |45 Su(x) du(x) Ys
dzB(x ) SyYp(x")
—(1— ") | * (A9)
& |50t Toum
r
Inserting (A3) the desired integral equation obtains. In  Both quantities are obviously related by
order to write this equation in a manner which does not G oy (part) .
obscure its simple structure by a bulky notation and, at AL (x:80) =AL(X:80) P+ (W g S5 (x) . (A13)

the same time, to cast it in a form suitable for numerical
analysis we employ matrix notation and introduce the
following quantities.

(1) The potential matrix is

D (xo) = § Bty 7108y *
‘Wp(x,g):——z —[gV — —g)V]m, 7 (X)Pg(x)
=y €8T &y
=:2Wﬁ;’¢;(x)¢ﬂ(x) (A10)
By
with

W‘,’;;‘,”:O for all a ,
veP= [ [ dx ysx )p(x
X V(x,x" ), (x W, (x")

(i) Derivatives of the g-Hartree potential in matrix
form

This integral equation implicitly given by (AS5), (A9), and

(A3) then reads

AL (x380) =W (x;80)+ (Wpo )5 () +WHLAL(x;80) ;
(A14)

it admits a unique solution
AL (x;80)=(1—W) "B WE(x;80) + (W0 h(x)]
(A15)

as long as det(1—W )70. It should be pointed out that
the potential matrix W contains the factor

nB —n y
EB_ E},

(typical for first-order contributions) which is symmetric

' 8V (x') in the indices 3,y thus guaranteeing the hermiticity of W
.%lg (x;8):= fd3x’¢;'(x’)-€%—)—¢p(x’) , (A1l) and which, due to the factor (ng—n,), selects transitions
Hix (occupied orbitals =2virtual orbitals) as should be expect-
» paro), s, 8‘Vg(x')(pa"' ) ed from the Pauli principle.
Ap(x';g fd x'Yp(x 8u(x) ho(x') We are now in the position to calculate the physical
charge density and charge density-density correlations.
(A12) Equations (2.6) and (3.7) yield
J
SE
n(x)=——-
w(x)
=2 s, [ea— 1 [d3xwax)V, (x)p,x) (A16)
du(x) (<o 2 a &0 a ’
(A4) and (AS) then lead to
sV (X’ )(part) 5
8o g0
X)=Sn, v, (x)|*+3n, [ d*x'Pp(x) —————— (x’)+2< >
§ v % "‘f Ya Su(x) Y du(x) [ por
YV (x' )(part) 8
—n1 ' * __go__ B _< 8o >
23 fd x %nad/a(x du(x) Yalx) du(x) [ por
880
=3n,l a(x)f2+< > . (A17)
% 1/} SM(X) pol
The second derivative of E,, is easily cast in the form
83 n |, (x,)[?
82E o, 2 etz 8%, . go(x') 8V o (x’)
= > +zn Jd*x'yix Do(x) . (A18)
op(x)0u(x,) ou(x,) Op(xy)du(x;) /.t(xz) du(x,)
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Clearly, this expression must be symmetric under the exchange x,<>X,; Frechét derivatives commute under very gen-
eral conditions. To analyze the consequences of this symmetry we cast (A18) in a more explicit form. Analogous to

(A10) and (A11) we define

. hg—hn — —
[Uz((xpxz);go)22%{(]‘9(]}551/};(&)!}'3(&): 2 ‘Zlgf(xz)lﬁ;(xl)llfﬂ(x]) (Alg)
By B 14 beta,y’
where
ULB(x))= [d’x’ [dx" ¢p( Y IV(X, X W, (X (X))
ULB(x,)=U"B(x,) , (A20)
7{ fd (x) ()6W()¢(,)
xl’x2’g0 d’p “(xl) 6“(XZ P X N
A derivation very similar to the one which led to (A14) now yields
(X1, %5380)=Ub (X, %5;80) + UL (x, A F(x1380) (A21)
Using
52"11'%(1‘2”2 ne—
a — B Y .
R —-% p—y VR (x ) Wp(x Y (%) +AE(X1380) 18, (x,) (A22)
which immediately derives from (A3) we get
o ___ M~ L (x ) [ p(x 03 (x )+ AKX 380 10, (x,)
Su(x)du(x,y) 4 gg—e, L2 TETIT eIy T2
+ 3 LU Ry X080+ T B x,MAR(K,; )]+<—&L~> (A23)
a%yna o\ X1,X%2;80 ay'\ 2 E 1:80 Bu(xl)ﬁp(xz) pol‘
f
In general, this expression is not symmetric; further 3 o8¢ _
structural elements implied by local quantum field theory fd x< Suu(x) )pol_ (A25)

must be introduced in order to guarantee symmetry of
charge density-density correlations. The matrix W, 5(x)
representing electron-electron correlations is thus en-
dowed with a hidden index structure

a My ns ay ,1,*
(Wpol )B(x)= 2 - Wﬁg(&y(x
y=8 &y &5

Ws(x),  (A24)

the matrix Wg{ has the same symmetry and reality prop-
erties as the matrices defined in (A10). It can be shown in
any order of perturbation theory that (W, )g(x) does
indeed have the form (A24), a more detailed analysis in
the framework of nonrelativistic or relativistic renormal-
ized MBPT is, however, beyond the scope of this paper.
Inserting now the explicit solution (A15) the symmetry of
(A23) is immediately inferred from the symmetry and
reality properties of W9 and W £
Equation (A24) implies that

Jaxwgm=o0,
and hence, |
83 n, v, (x)|?
5g0 —f 2" W’ _Ei__
w(x,) @ ] du(x,)

=f [%nai!/fa(x ],32

&y

¢B(x [l)bﬁ(xl d)y x1 )+ AL ]1/"}/

there is no polarization charge. Now using (A23) to com-
pute the correlation charge in second order

8? E
=1 _—
Pcorr(XZ fd *1 Sp(x,)du(x,) ’

we find
8280
P(ci)rr(xz)z%fd3x1<

_— ; A26
Su(x)du(x,) >p01 ( :

the first term in (A23) vanishes by orthogonality of the
orbitals {5 and 15, the terms containing A‘;(xz;go) do not
contribute because of the same reason and so does the
term U%(x,;X,;80) as can be read off the solution (A1S5)
for AY (xl,go) and the definition (A19). Higher deriva-
tives can be analyzed in the same manner and Eq. (3.30)
is thus proved.

Finally, we turn to the ansatz (3.32) for the functional
go and compute

(A27)
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We then construct (W, )(x,) [see (A7)] and obtain

po
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(W o1 )3(x1) EA [¢r;(x1)¢5(x1)+a4g(x];go)] (A28)
where 43 follows from (A27)

A= ':Z::: J 0200 (R (S 10612 |V oo (X)) (x (A29)
Inserting (A15) and solving for W, 5(x,) we arrive at

(W oo )3(x))= 1—Zl_lw _1A23[¢;(x,)¢5(x1)+(1—W)‘“Wg(x,)]. (A30)

This solution leads to an explicit expression for the polar-
ization density [see (A6) and (A7)] in terms of the
electron-electron potential V(x,x’) [see (3.2)] and the g-
Hartree single-particle orbitals symbolically written in
(3.33). From (A10) the reader will immediately recognize
that (W, )5(x,) derived from the ansatz (3.32) without

any further assumptions [apart from the merely technical
ones that det(1—W )70 and det(1— 4 —W)70] has the
required form (A24).

As far as higher derivatives are concerned this relation
generalizes to

3 kst Sgo(X') , , ad,
fd x'Pr(x )8/_L(x,) opx) (x")p(x ):s 25 Anﬁ},l oy ll’yl x5 (X)) -7 (X, (x (A31)
n l...
vy
which implies that the total correlation charge vanishes
8go(x")

J @ 1peore(x;)= 2 fd X, fd3xn§nafd3x PE(x )Mxl) oan) Vool X e X (A32)
This is because

A, =0 (A33)
if

S =vy forall k=1,...,n
Furthermore, we have

A"B...},‘.A‘},’;..._Anﬁ...y:‘“y' (A34)

and obvious symmetry properties guaranteeing reality of the correlation functions.
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