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Convergence of the Magnus expansion
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The convergence of the Magnus expansion in the Schrodinger representation is investigated with

the aid of two exactly solvable models. A bafBing observation regarding the dynamics of a spin-2

system driven by a superposition of a constant and a rotating magnetic field is elucidated. Perturba-

tion theory is applied to the exponential solution to the Schrodinger equation for a time-dependent

harmonic oscillator. The first terms of the perturbation expansion for the singularity of the ex-

ponent are exactly calculated. The scope and limitations of perturbation theory in obtaining the

range of validity of the Magnus expansion are discussed.

I. INTRODUCTION

where A(0) =0. If H is Hermitian, then A is also Hermi-
tian and U is unitary.

An approximation to A is obtained as follows. First,
gH, g being a dummy expansion parameter, is substituted
for H in Eq. (1). Second, A (g, t) is expanded in a power
series of g,

A (g, t) = A, (t)g+ A, (t)g'+ (3)

Finally, g is set equal to unity at the end of the calcula-
tion. Several terms of this series have been obtained"
and a recursive generation of higher-order terms has re-
cently been proposed. '

In order to obtain A, the ME (3) has to converge for
g= l. It has been shown that there is always a neighbor-

The Magnus expansion' (ME} has been widely applied
to many physical problems. Among them we mention
line broadening, nuclear magnetic resonance (NMR),
multiphoton absorption, energy transfer in molecular
collisions, ' differential equations in classical and quan-
turn mechanics, Born-Oppenheimer separation, and
scattering theory. This formulation is appealing for at
least two reasons. First, one can truncate the expansion
at any order and obtain a time-evolution operator that is
still unitary. Second, a representation can usually be
found in which results are free from divergences on reso-
nance. However, incorrect long-time behavior of spec-
troscopic properties obtained from the average Hamil-
tonian theory has been attributed to the failure of the ME
(see Ref. 10 and those cited therein).

In order to solve the time-evolution equation (units are
chosen so that 8=1)

U(t) = iH (t) U(t), —d
dt

where U(0) =I is the identity operator, Magnus' pro-
posed to write U(t) as

(2)

hood of t=0 in which the exponential form (2} exists and
the ME converges. ' Equation (2) is no longer valid when
the difference between two eigenvalues of A is a multiple
of 27T. If to is the smallest time value for which this con-
dition occurs, then the ME diverges for all t ~to. The
above-mentioned convergence criterion is not of much
practical utility because it is based on the eigenvalues of
the unknown operator A. Since a general statement that
only takes into account the properties of H has not been
given, except for some particular cases, ' many authors
have resorted to simple models to obtain information
about the range of validity of the ME. Among them
there are spin systems driven by magnetic fields and other
forces, ' harmonically and nonharmonically driven
harmonic oscillators, ' ' ' ' and damped harmonic oscil-
lators.

Examples of the form H =Ho+PV(t}, where Ho is the
Hamiltonian of the isolated system and V represents the
time-dependent driving forces, are amenable to perturba-
tion theory treatment, P being the perturbation parame-
ter. ' Perturbation theory appears to be an accept-
able way of estimating the range of validity of the ME
and has led to the striking result that the ME is divergent
when the driving frequency is smaller than or equal to the
frequency of the isolated system. ' For this reason
the ME would be useless in studying resonances. This
conclusion has also been drawn for the general case by
Maricq by means of a simple, approximate argument
which has recently been derived in a more rigorous
way. Theoretical results suggest that perturbation
theory' overestimates the range of validity of the
ME; in other words, to(TP)&to. This conclusion is
confirmed in Sec. II.

The exact treatment of the linearly driven harmonic
oscillator [Ho=too(p +q )l2, V(t)=f (t)q] (Ref. 21) re-
veals the actual cause for divergence of the ME predicted
by perturbation theory. ' ' For instance, when

f (t) =cos(cot), it follows from the results of Ref. 21 that
the ME converges provided that t (2~/coo and co&coo
are simultaneously obeyed. (A slightly more general
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model is discussed in Ref. 25.) However, the linearly
driven harmonic oscillator poses a trivial example in the
sense that the eigenvalues of A are independent of P and
the level spacing can be exactly obtained from the first
term of the ME. ' Besides, since first-order perturba-
tion theory yields the operator A exactly, ' this model is
not the most suitable one to test such an approach.

The purpose of this paper is to investigate other exact-
ly solvable models in order to obtain a better understand-
ing of the limitations of the ME. Two examples are con-
sidered in Sec. II, namely, a spin- —,

' system driven by a su-

perposition of a constant and a rotating magnetic field,
and a harmonic oscillator with a time-dependent quadra-
tic perturbation. The former is used to investigate what
may be called SaIzman's paradox, ' and the latter proves
to be valuable in checking perturbation theory results.
Further comments and conclusions are found in Sec. III.

can be written as P(t)e ",where S is time independent
and P(t+r)=P(t). ' Therefore P(r)=P(0)=I is the
identity operator and

U(r)=e

At times t =N~ the propagator is exactly given by
U(Nr)=U(r) and the system, when observed strobo-
scopically, appears to evolve under a time-independent
Hamiltonian. This is the basis of the average Hamiltoni-
an theory which has become a powerful method of
analysis of high-resolution NMR. ' The ME has been
widely used in obtaining approximations to S (see Ref. 10
and those cited therein).

On using well-known methods of the linear algebra,
it is not difficult to verify that for any operator of the
form (5) with X =s, j=1,2,3, one has

EI. EXAMPLES

It is considered here the case that H can be written

—iA

where

(9)

H = g f, (t)X, ,

where [X„X2,. . . , X„j are time-independent operators
spanning an n-dimensional Lie algebra ' and fj(t),
j =1,2, . . . , n, are continuous functions of time. Under
such conditions 3 is known to be of the form'

A = g a, (t)X

H coQ$3 +P[s
&
cos(cot ) +szsin(cot ) ]

where

(6)

where a (0)=0, j=1,2, . . . , n. There are remarkable
papers containing summaries of the most useful proper-
ties of finite-dimensional Lie algebras ' and for this
reason we do not discuss them here. In spite of the fact
that the global validity of the exponential form (2) for
several finite-dimensional Lie algebras has been extensive-
ly discussed, present results are believed to be a valu-
able contribution. Besides, a matrix representation has
recently been proposed which might facilitate the treat-
ment of the problem.

The first example is given by a spin- —,
' system driven by

a superposition of a constant and a rotating magnetic
field

u =cosa —ia3(sina)/(2a),

U = —(a2+ia, )(sina)/(2a),

a —(a2+a2+a2 )1/2/2,

(10a)

(10b)

(10c)

and the asterisk stands for complex conjugation.
The solution of the Schrodinger equation (1) with the

Hamiltonian (6) can be written

U(t) =exp( i cots3)exp[ —iPts, —i (too to)ts—3] . —

When t =r=2m/co it becomes'9

U(r) = —exp[ iPrs, i—(coo—co)rs3]—

=exp[ iPrs, —i (coo c—o)rs3+i rtI]—, (12)

where I is the 2 X 2 identity matrix. As noticed by Salz-
man' there is no apparent explanation for the
perturbation-theory results that predict the divergence of
the ME because the exponent in Eq. (12) has no singulari-
ty. The reason for this inconsistency is that while the ex-
ponent in Eq. (12) is not an element of the algebra
spanned by the Pauli matrices due to the occurrence of
the identity matrix, every term of the ME is known to be-
long to that algebra. ' Therefore, in order to understand
the cause for the divergence, one has to look for an
operator A belonging to the algebra.

It follows from Eqs. (9)—(11) that

0
S

z

0
S2 2 l

1 0
0

cosa =cos(cot /2)cos(b t /2)

—e sin(art /2)sin(ht /2)/b, ,

a, (sina)/a =2Pcos(cot/2)sin(bt/2)/6,

a 2(sina) /a = —2P sin(cot /2)sin( b t /2) /6,
a3(sina)/a =2[sin(cot/2)cos(ht/2)

(13a)

(13b)

(13c)

are proportional to the well-known Pauli spin matrices.
Since H is a periodic function of time with period

r=2m. /co, it follows from the Floquet theorem that U(t)

+e cos(cot /2)sin(b t /2)]/5, (13d)

where e=~o —co and 6=(e +P )' Aunitary expon. en-
tial propagator U(t) only exists for those t values that ad-
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mit real solutions a „a2, and a 3.
When t =r, Eqs. (13) yield the desired exponent A (r)

that belongs to the algebra

H =top(a a + ,' —)+,'—P[exp(2icopt)a

+exp( —2icopt)(a ) ], (16)

A (~)=2ea(~)(Ps, +as, )/(~e~h), (14)

where a ( r) =~+ear/(2
~
e

~
). Introducing the expansion

parameter g is equivalent to substituting /cop and gP for
top and P, respectively. Therefore a pair of coinplex-
conjugate singularities are obtained from the roots of
b, (g)=[(gcpp —co) +g P ]'~ =0, namely, /+=to(cop
+iP)/(cop+P ) C. onsequently, the ME converges when

~g+ ~
& 1, which can be rewritten

where a and Q are the creation and annihilation opera-
tors, respectively, satisfying [a,a ]=I. The operators
Xi=a a+ —,', X2= —,'a, and X3=—,'(a ) span a three-

dimensional Lie algebra and can be represented by two-
dimensional matrices that obey the same commutation
relations. These matrices are easily obtained from the
general method discussed in Ref. 25 and are given by

—1 0
Xi —+Mi =

~ & (2+p2)i/2 (15)

This result has been obtained by Fel'dman' in a difFerent
way and shows that the ME does not hold near reso-
nance.

The fist two perturbation terms given in Ref. 18 are ob-
tained by expanding Eq. (14} in a Taylor series around
P=O. Every term of this series is singular at to=cop,
which is a mere consequence of the fact that the pertur-
bation expansion converges for (P( & ~cop

—tp~. Besides, it
has been inferred from perturbation theory that the ME
converges provided tp&cop (Ref. 18), which is in fairly
good agreement with (15) when P « top. Clearly these re-
sults completely solve Salzman's paradox. ' In addition
to this, it is found that the exponent A (~) is not singular
at to=top and exhibits a factor 1/b, that reminds one of
the Lorentzian factor conjectured by Salzman' in the
case of the harmonically driven two-level system

[V =2(cos(tot)s i ].
It is worth noticing that although A (~) exists for all

real values of co, top, and P, the ME only converges when
the condition (15) is satisfied because of the complex
poles of 1/b, (g). This fact is closely related to the elegant
and more general argument developed by Maricq. ' Ac-
cording to the formula derived in Refs. 16 and 25 for an
arbitrary time-dependent two-level system, the ME for
the example above converges for all t &2n/(cpp2+P2)'~2,
which reduces to Eq. (15}when t =~. Although there is
loss of generality in the treatment of particular examples,
they allow one to investigate the cause for the divergence
of the ME in more detail. For instance, when to=cop, Eq.
(13a) becomes cosa =cos(copt/2)cos(~P~t/2) and a can-
not, in general, equal m. except for particular values of the
ratio ~P~/top. However, even when this ratio allows A to
exist for all t values, the ME is not globally valid as
shown before.

According to Eq. (11) the ME in the interaction picture
converges for all t values when co=coo since the series
reduces to just the first term. Unfortunately, in general,
the Hamiltonian in the interaction picture is no longer
periodic and the stroboscopic evolution mentioned before
does not apply. For this reason, alternative transforma-
tions have been proposed that preserve the period of the
Hamiltonian in the Schrodinger representation. ' '

The next example is given by the following harmonic
oscillator with a quadratic time-dependent perturbation:

0 1

X~~M~ = (17)

X3—+M3 = 0 0
—1 0

The time-evolution operator can be exactly written

U(t) =exp( itoptX—, )exp[ i pt (X2—+X3 )] . (18)

On arguing as in the previous example one immediately
finds

cosA, =cos( pipt)cosh(Pt),

a, (sinA, )/A, =sin(capt)cosh(Pt),

(19a)

(19b)

a2(sinA, )/A, =[i cos(copt) —sin(capt)]sinh(Pt), (19c)

Q3 =Qp (19d)

cos(coptp)cosh(Ptp }=—1 . (20)

When t~tp, A, —+n, and ~a2~=~a2~~~ from which it is
concluded that the ME diverges for all t ) to. This result
is not surprising. According to the argument in Ref. 25,
if the form of H is properly taken into account, the level
spacing to be considered in the Magnus condition' is in
the present case equal to 2A, , which leads to the con-
clusion above. However, as pointed out in Ref. 2S the
structure of H is usually overlooked.

The critical time value tp can be obtained in terms of P
from the smallest root of Eq. (20). In order to check the

where A, =(a, —
~a2~ )' . These equations hold for all t

values satisfying —1 &f (t) & 1, where
f (t) =cos(capt)cosh(Pt). When f (t) & 1, coshQ and
(sinhQ)/0 have to be substituted for cosA, and (sinA, )/A, ,
respectively. Because of the quadratic perturbation both
A (t) and its eigenvalues depend on P in such a way that
they cannot be exactly obtained from a finite number of
terms of the perturbation or the Magnus expansion as in
the trivial case of the linearly driven oscillator. ' ' '

It is clear that A (t} does not exist when f (t) & —1 be-
cause Eq. (19a) no longer holds. Since f(n/(2cop))=0
and f (m/cop) = —cosh. (Pn. /cop) & —1, then there exists tp,
w/(2top) & tp & 7T/cop so that
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perturbation theory predictions, this root is expanded in

a power series of P. The first terms are easily found to be

to=trcoo '[1—y+y +(~ /6 —1)y + . ],
(21)

driving systems near resonance.
Finally, it is worth mentioning that the ME in the in-

teraction picture converges for all t values because, as
shown in Eq. (18), such a series reduces to just the first
term.

to=(m/(2coo))[1+16coo/(n. 13 )+ ] . (22)

A more genera1 driven harmonic oscillator is given by

H =coo(a a +—,')+ —,'P[exp(2icot)a +exp( 2ico—t)(a ) ],
(23)

which can be treated exactly as the previous examples.
The main equations for this model can be obtained from
those for the spin system by substituting 2co, 2coo, and 2iP
for co, coo, and P, respectively. The factor I/b, in A (w),
~= trlco, is no longer a Lorentzian because
b =(e —P )' . For this reason it is found that the ME
converges if

As conjectured in Ref. 25, the first term in this series,
which is the only usually obtained, ' overestimates
the critical time value; i.e., m /coo & to.

Qn the other hand, when P—+ ao, then cooto~tr/2 and

to can also be written as a series in powers of I/P. In this
case we have

III. COMMENTS AND CONCLUSIONS

Although the models considered in this paper are ex-
actly solvable, they provide a good deal of information
about the convergence properties of the ME. Particular-
ly revealing is the conclusion that an exponential solution
to the Schrodinger equation may in some cases exist that
cannot be obtained by means of the ME [see Eq. (12) and
the discussion below]. Needless to say, this can only
occur outside the convergence interval of the ME. In ad-
dition to this, the examples in Sec. II reveal the scope and
limitations of perturbation theory which yields a reason-
able approximation to the range of validity of the ME
provided the perturbation is weak enough.

As a by-product they also confirm that the Baker-
Hausdorff theorem is not generally valid for Lie algebras
that are not free. As a result, whereas the time-
evolution operator written as a product of two exponen-
tial operators exists for all t values, the single exponential
is not globally valid.
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