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We continue with our series of papers concerning a self-field approach to quantum electrodynam-

ics that is not second quantized. We use the theory here to show that a detector with a uniform ac-

celeration a will respond to its own self-field as if immersed in a thermal photon bath at temperature

T, =Ra /2nkc. This is the celebrated Unruh effect, and it is closely related to the emission of Hawk-

ing radiation from the event horizon of a black hole. Our approach is novel in that the radiation

field is classical and not quantized; the vacuum field being identically zero with no zero-point ener-

gy. From our point of view, all radiative effects are accounted for when the self-field of the detector,
and not the hypothetical zero-point field of the vacuum, acts back on the detector in a quantum-

electrodynamic analog of the classical phenomenon of radiation reaction. When the detector is ac-

celerating, its transformed self-field induces a different back reaction than when it is moving iner-

tially. This process gives rise to the appearance of a photon bath, but the photons are not real in the

sense that the space surrounding the accelerating detector is truly empty of radiation, a fact that is

verified by the null response of an inertially moving detector in the same vicinity. The thermal pho-

tons are in this sense fictitious, and they have no independent existence outside the detector.

I. INTRODUCTION

In the wake of the discovery by Hawking of the ap-
parent thermal emission from the event horizon of a
black hole, ' there came a related calculation by Unruh
that indicated that a uniformly accelerating particle
detector would perceive a thermal bath of photons. If an
idealized point detector is accelerating at a rate a, then
the photon spectral distribution is Planckian at a temper-
ature T, =fia i2mck, where k is the Boltzmann constant.
This thermal radiation is not picked up by an inertially
moving detector, and the vacuum expectation of the nor-
mal ordered stress energy tensor T„, is identically zero in
both the inertial and accelerated or unprimed and primed
frames, respectively; ( ~0: „T,:~0)= (0~:T„',:IO) =0. In
what sense then can one say that these thermal photons
are physically real if they do not alter the above expecta-
tion values? Davies argues that these results are indica-
tive of a breakdown of the traditional quantum field
theoretical notion of a particle when space-time is
curved. The present authors contend that the problem is
not with the concept of particle but rather with the quan-
tum field treatment of the vacuum field. Boyer has given
an account of the Unruh effect in the framework of sto-
chastic electrodynamics, which lends credence to the
viewpoint that the acceleration somehow turns the virtu-
al quanta of the Minkowski vacuum into real quanta. In
stochastic electrodynamics the zero-point field is taken to
be a very real thing, responsible for many quantum-
electrodynamical phenomena. The idea is that a classical
vacuum with a spectrum proportional to —,'Ace per normal
mode is permissible on the grounds of Lorentz invari-
ance. If one chooses the proportionality constant ap-
propriately, one recovers a classical vacuum field that is
nearly identical to that predicted by the second quantiza-
tion procedure in field theory. Boyer then shows that un-
der acceleration, the zero-point term is deformed into a

zero-point plus Planckian spectrum at the Unruh temper-
ature T, =fia /2n. kc. The transformation is

1 1
Aco~fico —+

where we will from now on set A=c =a =1.
But are these thermal photons really real? Indeed, one

may ask if even the virtual Minkowski photons with the
spectrum of ,'fico have —any real existence apart from the
detector that appears to register them, say, as the ap-
parent "trigger" for spontaneous emission. In stochastic
electrodynamics the choice of a nonzero proportionality
constant for the spectrum proportional to —,'Au is permis-

sible, but not required. The other obvious choice is to set
the spectrum of the vacuum identically equal to zero as is
done in classical electrodynamics. Where then would ra-
diative effects such as spontaneous emission and the
Lamb shift originate if not driven by the vacuum fluctua-
tions, as is usually assumed in quantum electrodynamics
(QED)? In classical electrodynamics there are two per-
fectly respectable phenomena which should correspond
to the classical limit of spontaneous emission and the
Lamb shift in atoms; they are line breadth and level shift
in the energy, for instance, of a harmonically bound
charge. These radiative corrections to the otherwise un-
perturbed motion of the charge arise not from any in-
teraction with a zero-point field —the classical vacuum
field is identically zero —but rather from the radiation re-
action on the charge from its own self-field. The scale of
the electromagnetic field fluctuations is set by the con-
stant Ac, so in the classical limit of A~O, one would ex-
pect spontaneous emission and the Lamb shift to vanish
and to have no classical analog since the causative agent,
the zero-point field, has vanished. This is clearly not the
case in that we are actually left with the classical line
breadth and level shift of an oscillating charge. Barut
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and his co-workers have shown that it is possible to for-
mulate QED in terms of self-fields, so that such phenome-
na as spontaneous emission and the Lamb shift are
viewed as natural generalizations of their classical coun-
terparts in radiation reaction theory. This is the ap-
proach that we shall use in the present work.

In QED it is usual to renormalize the free elec-
tromagentic field through the normal ordering of the
operators in order that the zero-point energy of —,'Ace per
normal mode vanishes. This is done primarily because
the keeping of the —,'duo in the Hamiltonian would lead to
an infinite energy density of empty space since (0~ T„~O)
would diverge. The rationalization usually given for this
procedure is that only energy differences have physical
meaning, and hence a transfinite translation of the energy
scale cannot have physical consequences. But the energy
density T„does indeed have an absolute meaning when
coupled to the gravitational field, in the sense that it
determines the curvature of the metric via the Einstein
field equations. It is not possible to change the curvature
or to flatten out space-time simply by adjusting the ener-

gy scale. If we accept the electromagnetic zero-point en-

ergy as real, then by implication we must accept the
infinite energy density of empty space. This implies an
infinite curvature for the universe and infinite value for
the cosmological constant —unless we are saved in some
unforeseen fashion by a fortuitous cancellation of all the
vacuum fields in some unified field theory. The cosmo-
logical constant A is the most accurately determined
physical quantity in all of physics; the observations by
Sandage of distant galaxies puts ~A~ =0 with an upper
limit of ~A~ (10 cm '. It certainly is not infinite.

It is common to say that the vacuum fluctuations are
the physical cause of spontaneous emission, the Lamb
shift, the nonzero value of g —2, the Casimir effect, long-
range Casimir-Polder van der %'aals forces, apparatus
dependent contributions to these radiative effects, and
now the thermal response of an accelerating detector.
This view is perhaps that of the majority. It is not as well
appreciated that all of these effects may be equally well
explained at least to order a, in terms of the fields which
originate in the charged particles themselves. '

Jaynes has given a nice example of why the zero-point
fluctuation interpretation of radiative effects in QED
makes many of us uneasy. Suppose we believe that the
electromagnetic zero-point energy is physically real, right
up to the Compton cutoff frequency co=m, which is used
in nonrelativistic calculations of the Lamb shift to get the
correct Bethe logarithm. If one computes the turbulent
energy flow associated with the zero-point field at this
cutoff, one gets a Poynting vector of about 6X10
MWcm . (The total luminosity of the sun is about
2X 10 MW. } One feels that physically real radiation of
this intensity would have slightly more of an effect than
to shift the 2s level of hydrogen by 4 pV.

Much work has been done in the past few years to
show that there is a deep and fundamental connection be-
tween the vacuum fluctuation and the self-field ap-
proaches to QED. ' The duality between these two
methods of doing QED does not necessarily prove, how-
ever, that the zero-point field is real. It is possible that

self-field effects are the same as if vacuum fluctuations
were the causative agent. Jaynes has shown that the en-

ergy density of the radiation reaction field over the spec-
tral interval of the natural linewidth is exactly the same
as that of the vacuum field. In the present paper we will
support this idea that the vacuum field approach is a
mathematical subterfuge which gives the correct answer
some of the time.

Davies has emphasized that the meaning of the con-
cept of a particle and the codependent concept of the vac-
uum depends crucially on the state of motion and history
of the particle detector. This is a fact which is often
overlooked in Minkowski space, but which cannot be ig-
nored in curved space-time where the decomposition of
the field into positive and negative frequency normal
modes is not unique for all observers. In general,
different detectors will disagree on what constitutes the
vacuum. If one detector registers no particles, a different
detector on a different world line, in general, will register
particles. This is because a Bogoliubov transformation
between the two Fock spaces used to define the vacuum
for each detector will not give identical vacuums for the
two spaces. Davies concludes that because of this the
concept of a particle, say a photon in the electromagnetic
case, is not well defined. The present authors would like
to use the same evidence to support a different con-
clusion: It is the standard notion of the vacuum in quan-
tum field theory that is not well defined, a fact which
seems obvious when one begins to consider quantum
fields in curved space.

The stochastic electrodynamics theory of Boyer also
develops pathological problems in curved space-time.
Boyer chooses a classical zero-point spectrum propor-
tional to —,'fm per normal mode because this is the only
nonzero spectrum permitted on the grounds of Lorentz
invariance. This means that in Minkowski space the sto-
chastic electrodynamic vacuum is permitted since it is an
invariant of the Poincare group. The Poincare group is
not a symmetry group of a general curved space-time,
however, and apparently the most compelling reason for
choosing a stochastic zero-point spectrum proportional
to —,'A'co, rather than to zero, completely disappears. The
only choice of such a proportionality constant consistent
with the demands of a space-time of arbitrary curvature
is one that is zero. By Boyer's own reasoning we must
conclude the only allowable classical vacuum field in
curve space-time is the same as that used in classical
electrodynamics —namely, the vacuum field must be
chosen to be identically equal to zero in all its moments
of the Wightman correlation function.

In discussing quantum fields in curved space-time the
concept of a detector plays a central role: It is impossible
to discuss properties of the quantum vacuum field in the
absence of a detector to observe those properties. One
cannot speak of the absence or presence of a vacuum
without a detector to register deviations or nondeviations
from that vacuum state. The concept of a vacuum in the
absence of a detector is meaningless in both a philosophi-
cal and operational sense. But by the definition of a
detector, it must couple to the vacuum field whose pres-
ence or absence we are trying to measure, and hence in-
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troduce its own self-field into the measurement process.
In the present paper we shall show that the self-field of

a uniformly accelerating point detector responds to the
acceleration in such a way as to drive the detector, via a
quantum generalization of radiation reaction, into a su-

perposition of states which when thermodynamically ana-
lyzed yields the Planck spectrum given in Eq. (l). But
now the interpretation is different. The —,'fur corresponds
to the spectral distribution of the detector's own field
over the natural linewidth. For an inertially moving
detector this is the only term which occurs, and it is re-
sponsible for the usual free-space atomic spontaneous
emission as weH as for the Lamb shift. Transforming to
the Rindler coordinates of a uniformly accelerating
detector we obtain the full result of Eq. (l}. The interpre-
tation now is not that the detector is immersed in a bath
of thermal photons, but rather that the self-field of the
detector is responding to the work being done on it by the
accelerating agent in such a fashion so as to make it ap-
pear as if the detector were immersed in such a bath.
There are no physical photons present, a fact which
would be confirmed by a neighboring inertially moving
detector. The particle concept is hence rescued, but only
with the sacrifice of the notion of a dynamic vacuum
state in the absence of a detector. Since one cannot dis-
cuss the vacuum without the detector, it would seem
compelling to want to set the vacuum field identically
equal to zero for all observers and then to attribute
differences between detectors totally to the response of
the self-field of the detector to its own worldline.

Notice that by the Einstein equivalence principle, a
uniformly accelerating detector is equivalent to a detec-
tor at rest in a gravitational field. From the point of view
of general relativity the thermal radiation seen by the
detector seems to originate from a neighboring event hor-
izon; in our calculation it would be the event horizon of
Rindler coordinates. But this event horizon is related to
that of a black hole by a conformal transformation.
Hence Unruh and Hawking radiations are similar, and
froin the self-field point of view they are both equally in-
terpreted in the sense that the thermal radiation effects
are confined to within the detector, which is responding
to the gravitational field directly.

II. SELF-FIELD APPROACH TO QED

In classical electrodynamics one usually computes the
zeroth-order motion of the charges first and then adds on
the self-field or radiation reaction effects as a perturba-
tion to the original motion. (Although, in special cir-
cumstances, one may find exact solutions to the nonlinear
Lorentz-Dirac equation of motion. } The philosophy in
the self-field approach to QED is precisely the same.
Conceptually we may separate the electromagnetic four-
potential A„surrounding a point charge into and exter-
nal field A „,which is prescribed as part of the initial con-
ditions, and a self-field term A „, which originates from
the charge. The total field is then A„:=A'„+ A'„. (The
notation a:=b indicates that a is being defined as being
equal to b with the colon on the same side as the quantity
to be defined. ) With this separation, we shall assume that

F„„:=A[„„)
)+A

—.F„+F„„,
where [,] indicates commutation with respect to the in-

dices. Far from the source of the external field we have
Maxwell's equations as

(FP") =(FP ) =ej" (4)

where j„ is the usual Dirac current 4'y„%. The action
density w (x) can be written now as

w =V(i y"d& m)4+ e A—
&j

"+,'F&„F""—

=:wp+ w) +w2

where wp is the free particle density, w, the particle-field
coupling, and w2 the free electromagnetic (EM) field ac-
tion density. It is evident that wp and w& taken together
are equivalent to the canonical coupling iB„~i8„eA„—
At this point the external and self-electromagnetic field
have not yet been separated. We proceed now with an
analysis of w2,

wz = ,'(F„'g,""+F„—'g,"'+F'„gl'"+F„'gl'") .

The two middle terms can be converted into surface in-
tegrals under fdx, which vanish if A„ is sufficiently lo-

calized. The first term of this expression is the invariant

~ F~gP"= —& (E2 —g2)

which is an additive constant that does not effect the
equations of motion, and so we may drop it from the ac-
tion. We are left with the last term, which can be
transformed as

—'F' &" =—'A' F"
4 pv s 4 [v p) s

=—'( A 'g "") ——'A ' (F"')
4 f s, jM] 4 [v s,p]

e= ——A'j",

where we have used the inhomogeneous Maxwell equa-
tions (2). Equality here is with respect to integration by
parts and the vanishing of possible surface integrals un-
der the application of fdx. (Surface terms are, however,

the coupling of the Dirac spinor field 4 to A„' alone
determines the bulk, zeroth-order motion of the electron,
while the coupling to A„ is responsible for all radiative
corrections. As in previous work we find it convenient to
proceed from the standpoint of an action formalism, '

with the action given by

W= Jdx w[x;+;A], (2)

where W is the total action and w(x) is the correspond-
ing action density. Variation of Eq. (2) with respect to ql

yields the Dirac equation of motion, while variation with
respect to A„gives Maxwell's equations. The elec-
tromagnetic field tensor F„„is defined as usual as
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needed in the discussion of processes in which radiation
goes to infinity such as in bremsstrahlung, the Compton
effect, etc.) With these results the total density of expres-
sion (5) becomes

This single nonlinear addition to the usual action con-
tains information about all radiative effects, e.g., spon-
taneous emission, the Lamb shift, and the electron g —2
value. ' The interpretation here is, once again, that
these radiative corrections arise as an effect of the back
reaction of the self-field on the motion of the electron in a
manner analogous to the classical phenomenon of radia-
tion reaction.

To insure the boundary conditions that provide the
correct combination of retarded and advanced potentials,
we choose for the Green's function D„„(x—y) the causal
Feynmann propagator D„„(x—y}:= —ri„+„,(x —y),
where g„„is the Minkowski metric tensor with signature
(+ ———} and D„,(x —y) has the equivalent forms

D(x —y)= in5((x ——y) )
/ 1

4m (x —y)
(12a)

l 1

4n(x y). +ie—
1

—ik(x —y)
dk

(2m)" k +ie

(12b)

(12c)

in the Feynman gauge.
Now in order to further analyze W, in Eq. (11}we per-

form a Fourier expansion of the 4' in terms of quasi-
bound-state energies E„, which are to be determined,
since we anticipate using a bound electron as our Unruh
detector. The expansion is

4(x)= $f 4'„(x)e (13)

where the sum runs over positive and possibly negative
energy levels. To a first iteration we assume that the %'„
with associated eigenvalues E„exactly minimize the ac-
tion Wp+ W, . We are then using these zeroth-order
wave functions to evaluate the W, radiative correction

w =%(iy"c} —m )4+e A p"+—A p"
2

wp+ wi +ws

Together wo+w; are responsible for the zeroth-order
motion of the electron in the external field, while w, in-
duces radiative corrections to that motion.

One may formally solve Eq. (4) for A„' in terms of the
current j„through the use of an electromagentic Green's
function D„„via

A„'(x)=e f dy D„,(x —y)j "(y) . (10)

If we define W, :=f dxw, (x} as the contribution to the
total action W from the self-field correction, then inspec-
tion of expressions (9) and (10) yields immediately that

2

W, = f f dx dyj "(x)D„,(x y)j "(y)—. (11)

X 5(cv„~ +~~ ), (14)

where co„:=E„E—Th.e 5 function can be satisfied by
either of the two choices

n =m, p=q (15a)

n=q, m=p . (15b)

The condition (15a) leads to a vacuum polarization term,
and we shall not consider it here. The condition (15b)
leads to spontaneous emission and the Lamb shift, here
interpreted as quantum analogs of the classical radiation
reaction effects of line broadening and level shift. We
will consider in the present work how these phenomena
are effected by boosting the detector into an accelerating
frame.

III. RESPONSE OF AN INKRTIALLY MOVING
DETECTOR TO ITS SELF-FIELD

To illustrate the self-Qeld method of approach we will
now confirm that a pointlike detector on an inertial
worldline experiences at zero temperature only the effects
of the usual spontaneous emission and Lamb shift in free
space, which occur via the interaction of the detector
with its own field. (This is, of course, clear form the
Lorentz invariance of the theory, but it is instructive as
an illustrative example of how to apply the self-field ap-
proach to this kind of problem. )

The trajectory for an inertial detector can be written as

X =Xp+ Vt =Xp+ V$T

y=yp+vu =yp+vyv,
(16)

where v and v are the proper times which correspond to
the x„and the y„ time components t =y~ and u =yv,
respectively. The velocity v is constant, with v:=P(1
and y:=(1—P )

' as usual. The coordinates xo and yo
are those of the electron in a detector based system. For
a pointlike detector we may take xp —

yp =0 or
exp[k (xo—yo)] = 1 in the dipole approximation.

Inserting the expressions (16) into the Green's function
of (12b), we first notice that

(x y} +ie=(g+—ie} (17)

where we have defined g:=r v, and we have —absorbed a
positive function of g into the e. The self-field action of
Eq. (11)can now be written as

term in an iterative fashion. Inserting expression (12c)
for the Green's function into the expression (11) for W, ;
expanding each of the ql as per Eq. (13);and carrying out
the dxo, dyp, and dkp integrations yields

2

W, = — (2n. )~ g fffdx'dy'dk'[%„(x)y„iP (x)]
n, m, p, q

X [%1,(y)y~g, (y)]
ik (x —y)

X e

co'„—/k/'+ ie
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2 (n )ty„/m ) (m fy )n )Iv"'""'=— x f fdrdv "
z

Sn ()+i e)

@fat
I 6)

(18)

in the dipole approximation,

(x y—) +i a=4 sinh ~+i e
2

G„= g (n (y„[m &(m [y&[n &(-,'co„) .
2K

(19)

where we have adopted the Dirac bra ket notation, and
used the relation (15b) after expanding the 4 as per the
prescription of Eq. (13). The action W is formally
infinite, but it can be related to the transition probability
G„ for the nth energy level via '

W=2m5(co„~ )G„,
and the identification J fdr dv~ Id g gives us the finite

transition probability per unit time for this nth state as

= —4 sin 2 1

2
(21)

1 2 i
D(x —y) = — csc e-

16m.
(22)

Making use of the Laurent expansion for cosecant,
namely,

Once again we have absorbed a positive valued function
of g into the e. If we now insert expression (21) into Eq.
(12b) for the Green's function we get

In our units a=8 /4n, and the contour integral was car-
ried out on an infinite semicircle in the lower g plane. A
single pole of order 2 located at g= i@ c—ontributes

csc (z) =
„(z—np)

we can expand the Green's function of (22) as

(23)

' nm&

22&i res
(g+ie)

= —2n.( —,'a)„),

IV. RESPONSE OF A UNIFORMLY
ACCELERATING DETECTOR

TO ITS SELF-FIELD

In the self-field approach to QED spontaneous emis-
sion occurs as a back reaction of the field on the detector.
In curved space-time, such as in the Rindler coordinates
of a uniformly accelerating observer, one would expect
the self-field to become modified by the curvature and by
a non-Minkowskian event horizon. Any change in the
configuration of the self-field would be transmitted
through the radiation reaction effects and would surface
as a modification of the spontaneous emission rate, as
well as of other radiative effects. We now compute this,
the Unruh effect, from the self-field point of view.

Let us suppose that our detector is accelerating uni-
formly with acceleration a:=1. The worldline is hyper-
bolic and can be written in Rindler coordinates as

xo =:t=sinh(~), yo =.tt =sinh(v),

x3 cosh(r), y3 =cosh(v)

xi =x2=0, yi =&2=0,

(20)

with ~ and v the proper times as before. Hence we have,

where we note that if n is the ground state then co„&0.
A detailed analysis of (19) shows that this corresponds to
the usual spontaneous-emission transition rate and Lamb
shift in free space. Notice how the factor of —,'Ace„

enters here, not as a consequence of any electromagnetic
zero-point energy, but rather through the Fourier spec-
trum of the detector's self-field. Once again it looks as if
there is a vacuum field which is stimulating the spontane-
ous emission or Lamb shift; in reality it is the detector's
own field that is responsible.

D(x —y)= 1 1

4n z= „(g+2mip+ie)
(24)

(n
/ y„/ m &(m /

ylf n &

n, m

lN

X y I jd~dv
(g+2mip+i e)

(25)

with g:=r vas befo—re. Converting, as in the inertially
moving case, to the transition probability per unit time
per energy level n, and carrying out the integral on the
same contour as before, we get

6„= g (n ~y„~m ) (m ~y" ~n )

nm +1 nm
(26)

where we have summed a convergent geometric series

2&p QP

e
p=1 nm

which arises as the sum of the residues contributed from
the infinitude of poles enclosed by the contour and locat-
ed at g= 2nip for p—= 1,2, 3, . . . . (Recall that if n is the
ground state, then co„&0.) This is our primary result,
reinserting the constants into the expression in

parentheses on the last line of (26) yields for the contents
of these parentheses

1 &~nm

e
(27)

If we use this expression for the Green's function in th"
self-field action of (11)we eventually arrive at

pr accelerating
$
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which we see is the Planck blackbody spectral distribu-
tion, complete with the so-called zero-point term. How-
ever, as we saw in Sec. III, the —,'Rcu„does not corre-

spond to a vacuum spectrum but rather to the self-field

spectrum of an inertially moving detector. When we
boost into an accelerating frame we get back the inertial
term plus the Planckian term at a temperature of

Aa

2mkc

So then it appears as if the accelerating detector is ex-
posed to a thermal bath of photons at temperature T, ;
just as it appears as if it is also being exposed to a zero-
point field embodied in the —,'fuu. Neither set of photons
are physically real. Since any nearby inertially moving
detector would detect no photons, the accelerating detec-
tor cannot be detecting real photons either. By the
equivalence principle we can conclude the same thing
about a detector placed in a uniform gravitational field of
strength a. The field does not create a bath of photons,
rather the detector is responding directly to the local cur-
vature of space-time. The energy required to excite the
detector into a thermal superposition of states is tapped
directly from the metric without the intermediary of any
electromagnetic radiation.

If our results generalize to the case of black holes, then
we would conclude that although a black hole has the ca-
pability of directly exciting detectors in its neighborhood,
it does not necessarily do so by emitting a flood of
thermal radiation. If this is indeed the case, then black
holes do not radiate in the ordinary sense of that word,
i.e. they do not lose mass or energy via this mechanism
unless a detector is actually present.

V. CONCLUSION

We have shown that the Unruh effect can be calculated
within the context of a source-field theory; we conclude
that the thermal response of the detector arises not
through an interaction with real photons in the surround-
ing space, but from the spectrum of its self-field which
has become altered by the change to a noninertial frame.
This indicates that the detector is becoming excited
directly by changes in the metric tensor. If all such
responses of the detector can be attributed to
modifications of the self-field, as opposed to modifications
in a vacuum field, it would seem unlikely then that black
holes are emitting real, physical radiation.

Davies has argued that, in particular, the concept of
the photon is not well defined in curved space-time quan-
tum electrodynamics, since in a curved space-time
different detectors respond differently to the vacuum field

and "detect" different photon spectra. ' It is our conten-
tion that it is the vacuum field in QED that is not well
defined; if it were identically zero to begin with it would
not cause trouble in any space-time, curved or otherwise.
Davies has persistently pointed out that any discussion of
the vacuum field must always concern itself with the
worldline of the detector which registers departures from
that vacuum. Herein lies the key. Since in curved
space-time the concept of vacuum and detector cannot be
either conceptually or operationally separated, this is a
clue that they are really two sides of the same coin. The
fact that the source field and the vacuum field are closely
related is well documented but in the framework of
standard QED it appears as if both are always required
for the internal consistency of the theory. The fact that
the vacuum field is required in standard QED is a direct
consequence of the second quantization procedure. In
the present approach there is no quantization of the EM
field, and yet we obtain correct results at least to order a,
for radiative effects thought to require second quantiza-
tion for their explanation. ' So the question is as follows:
Can we always get the correct results without recourse to
some sort of vacuum fluctuation? If we can set the zero-
point field identically equal to zero for all moments in the
Wightman, two-point correlation function, then the con-
cept of photon might be rescued. There are no photons
in the Minkowski vacuum or any other vacuum to be
counted by any detector —regardless of its state of
motion or history.

The self-field approach to quantum electrodynamics as
presented in this work has been used successfully to first
order in a to account for nonrelativistic and relativistic
formulas for spontaneous emission, the Lamb shift, and

g —2, all in free space. ' This approach has also been
used to compute various apparatus dependent contribu-
tions to these effects; again to lowest order. By enlarging
the notion of boundary to include the effects of a non-
Minkowskian event horizon we have, in the present
work, accounted for the Unruh effect. Work is in pro-
gress to show that the Unruh effect is essentially a classi-
cal phenomenon, and to analyze the response of an atom
to Planck blackbody radiation in a more general setting
from the point of view of self-fields. (Since spontaneous
emission and the Lamb shift have the classical limits of
line broadening and level shift, the Unruh effect should
also have such a classical analog. ) The extension of the
self-field approach to higher orders of the fine-structure
constant has until now been hampered by delicate and
complicate calculations of the wave functions needed in
the general nth order iteration of the self-field contribu-
tion to the total action. Some progress is now being
made in this direction.
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