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Anomalous heat transport by the piston effect in supercritical fluids under zero gravity
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The response to a boundary heating of a very compressible, low-diffusivity, supercritical fluid
(CO3) under zero gravity is studied by solving numerically the full nonlinear one-dimensional
Navier-Stokes equations. Both short (acoustic) and long (diffusion) time scales are investigated.
A new mechanism of heat transport is seen, where the thermal energy is transformed into kinetic
energy in a hot expanding boundary layer (the piston), which in turn is transformed in the bulk
into internal energy. Steeply profiled waves are observed. In contrast to the “critical slowing
down” behavior, the enhancement of heat transport is so important that it is nearly completed

after 1% of the diffusion time.

Because of the increasing number of opportunities for
space experiments in material and fluid sciences, there is
now a growing interest in understanding the different
mechanisms that lead to the transport of heat in fluids un-
der weightlessness. In contrast with the incompressible
fluids, for which no driving force for motion can exist
when gravity is zero, compressible fluids may generate a
flow even in such conditions when they are submitted to a
thermal perturbation. This is because'-? the hot thermal
boundary created near a heated wall expands within the
short acoustic time scale and acts as a piston. This acous-
tic field generated in the bulk provides the initial condition
for the long diffusion time-scale equation. When the per-
turbation is strong and rapid enough, shock waves can be
ultimately generated in the bulk phase.’ This effect
should be all the more pronounced when the heat diffuses
slowly and the system is compressible, and should there-
fore become prominent near the critical point* of fluids.
Note that this effect is not expected to be visible on Earth,
because it is hidden in these systems by very strong effects
due to gravity.> The object of this paper is to investigate
the heat transport in a supercritical fluid (CO,), and to
compare it with ideal gases (IG).® For this purpose, the
fluid was initially set on the critical isobar and at 1 K from
the critical temperature (7.). A thermal perturbation
(which mimics a conduction measurement) is imposed at
one boundary, and the heat transport is analyzed by nu-
merically solving the Navier-Stokes (NS) equations. Be-
cause the classical numerical methods appropriate for
compressible flows fail in the low-Mach-number limit, a
novel method’ has been used called PISO for “pressure
implicit with splitting of operators.” The approximation
scheme allows the NS equations to be solved on both
acoustic and conduction time scales. A van der Waals
equation of state (vdW) has been assumed for the fluid;

41

although this equation fails to reproduce the details of the
divergence laws, it catches the essential features of a su-
percritical fluid. The numerical simulation has been per-
formed on a one-dimensional fluid confined between the
abscissa X =0 and X =L =2.5 mm. Our main findings
are very surprising and contrast with the current expecta-
tion of a critical slowing down for the heat transport. It is
observed that during the acoustic time a steep acoustic
wave propagates and induces flows in the system; then the
temperature evolves rapidly so that after a time of order
1% of the diffusion time thermal equilibration is nearly
completed.

The governing equations are the vdW equation of state
and the one-dimensional compressible unsteady NS equa-
tions. The initial conditions for CO; are (critical) pres-
sure Po=P.=73.8x10° Pa, and temperature To=7,.+1
K=305.2 K. All numerical data come from Ref. 8. The
density po=276.2 kgm ~3 is computed from the vdW
equation
_ T _ap;
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The pressure IT is normalized to the IG pressure under the
same density and temperature conditions, ie., I1=P/
poRTo (R is the IG constant). The decorated quantities
are reduced to their initial values (7 =T/T( and 5 =p/po)
and the subscript 1 refers to IG. The constants are
a=1.89%x10%2 Jm3kg ™% and »=9.75%10 "% m3kg~'?
The equation of continuity is written as

pi+(pia) =0, )

where @ =u/co is the fluid velocity normalized to the
sound velocity co. The subscripts ¢,x refer to the deriva-
tive versus time and space, where ¢ is normalized to the
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acoustic time ¢, defined as L/cy and x is normalized to L.
The momentum conservation is expressed as

c(%l 4 _~
51, + pitit, ™ — ——=T1, + ¥ €ilxy . 3)

yed

Here y=1.4 is the ratio of specific heats at constant pres-
|
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sure (Cp) and volume (Cy) for IG, and cq; is the sound
velocity for the equivalent IG (¢4, = yRT,). The param-
eter €, which is the scaling parameter of the thermal
boundary layer thickness in IG,$ is written as e =Pt,/t,.
P is the Prandtl number for the vdW gas and ¢ty =L?%/Dg
is the diffusion time, with Dy the heat diffusion coefficient.
The equation for the conservation of energy is

. N Cro. i s .
6T, +paTy=— (y—1)u,+e o T+ y(y—1)—-a?|. 4)
pT+p -
CVO Co1

This equation is a simplified form where the internal ener-
gy of the vdW gas is, in first approximation, supposed to
be only T dependent. When the exact form of the energy
is used, we have checked that, although the numerical
values are somewhat changed, this does not modify the in-
terpretation of our results. Moreover, since the system
remains far from the critical point, we neglect the varia-
tions of Cp, Cy, and P which are consequently kept to
their initial values Cpg, Cyo, and P and we consider only
the temporal evolution of u, P, T, and p. The initial con-
ditions correspond to the fluid at equilibrium at T, i.c.,
=0, [1=Po/poRTo, T =1, and g =1. The boundary con-
ditions [@#(X =0) =i (X =L) =0] are those of imperme-
able walls. The temperature is maintained constant at one
boundary: T(X =L)=0. It is varied linearly at the other
boundary (X=0), from Ty to To+13 mK in a time
to=1.3 ms, and is then kept constant. The time zo=1.3
ms has been chosen to be intermediate between the acous-
tic time (¢, =11.5 us, with co=216 ms~!) and the
diffusion time (17 =157 s, with Dy=4x10 "% m2s~!); it
appears to be a crucial parameter since it determines in
IG the scaling law in the initial boundary layer.® The
values of ? and ¢ are not very different from the IG case
(with vo=1x10"" m?s ! the initial kinematic viscosity,
?=3.1, and ¢=2.3x1077); one thus expects a bound-
ary-layer behavior similar to the IG case. However,
thermal diffusivity is ten times lower -and compressibility
fifteen times larger. The main differences in heat trans-

2'5Illl T 1T T T T T T T

0.5

oL 1 1 1

-0.01-006 -0020 0.5 1.0
X/L

FIG. 1. Velocity profiles for acoustic times. The numbers
refer to the ratio t/t,, with 1, =11.5 us. Negative distances cor-
respond to the magnification of the boundary layer.

r
port between vdW and IG gases lie essentially in these
values, as will be confirmed by the analysis below.

Two time scales present a priori interest; the acoustic
time scale, when temperature increases continuously and
a boundary layer forms (19> t~t,), and the scale inter-
mediate between 7o and ¢; once temperature is constant at
the boundaries (¢, =t > t).

Acoustic time scale

The velocity behavior is reported in Fig. 1. Near the
left wall a thin boundary layer develops in which the ve-
locity gradient is positive: thermal energy is transformed
into kinetic energy. The thickness of the layer appears to
be of the same order as in IG. This is not surprising since
the scaling parameter ¢ is similar to that of the IG case.
The pressure disturbance induced by this layer (Fig. 2)
exhibits a gradient, corresponding to a propagating wave
with a velocity slightly lower than co due to the effect of
dispersion. This wave is then reflected by the outer wall
(X=L), and mixes with other waves that are still gen-
erated by the evolution of the boundary layer. As a result,
pressure increases in the whole sample and its relative
variation decreases.

The fluid velocity increases in the bulk according to the
pressure wave; a steep gradient is observed which propa-
gates at the same velocity as the pressure disturbance.
The magnitude of the flow velocity, of the order of a few
pms ~',is 2 orders of magnitude larger than for the IG in
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FIG. 2. Pressure profiles for acoustic times (See Fig. 1 cap-
tion).
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FIG. 3. Temperature profiles for acoustic times (see Fig. 1
caption).

similar conditions. Temperature (Fig. 3) decreases from
the wall and goes to a minimum at the point where veloci-
ty exhibits a small peak (Fig. 1). Then, and this is re-
markable, the bulk increases in temperature during the
acoustic time. This is a phenomenon which has never
been detected in IG under the same conditions. We attri-
bute it to the flow produced by the expansion of the
thermal boundary layer that slows down in the bulk, caus-
ing the kinetic energy to be converted again into heat. It
corresponds to the work (~TITi,) of the pressure forces
that act as a source term everywhere in the bulk. This
mechanism of direct transfer of energy from the boundary
layer to the bulk via an expansion recompression lasts on
longer times and is responsible for a fast energy transfer.
(Density, not shown, progressively decreases in the bound-
ary layer according to the temperature increase.)
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FIG. 4. (a) Velocity profile for intermediate times. The
numbers refer to the ratio ¢/t4 (in percent), with 1, =157s. (b)
Maghification for short distances.

FIG. 5. Temperature increase (§7 =T — T,) for intermedi-
ate times (see Fig. 4 caption).

Intermediate time scale

Since the time-dependent thermal perturbation no
longer exists, velocity is seen to decrease with time (Fig.
4). There is a change of behavior for a time 7, ~10 "3t ;
this time determines a period 1 (¢ <t,), where the veloci-
ty gradient in the bulk is still negative and the boundary
layer is still expanding due to the momentum conserva-
tion, and a period 2 (¢ >t,), where the velocity gradient
becomes positive. One notes the birth, at small X [Fig.
4(b)], of a backward flow (u <0), due to the weakening
of the flow momentum which becomes too small to bal-
ance the low density in that region.

While pressure is homogeneous, the temperature (Fig.
5) is evolving again according to the same process as be-
fore. During period 1 thermal energy is still converted
into kinetic energy with time. Near the wall T increases
because, in that region, conduction by diffusion is more
important than the amount of energy that can be convert-
ed into kinetic energy. Deeper in the bulk, where conduc-
tion did not have time to occur, the slowing down of the
flow produces an homogeneous increase in temperature
through the source term Ili,. In period 2, the velocity
gradient becomes positive and temperature decreases on
the right-hand side of the slot, whereas on the left-hand
side this effect is balanced by conduction. This effect can
thus be visible only on the right-hand side of Fig. 5, where
the thermomechanical coupling enhances the transient to
equilibrium during this period. (The behavior of density
is not markedly different than what can be inferred from
temperature variations and is not reported.)

The final equilibrium state is reached by diffusion later
on. It must be emphasized, however, that the ther-
momechanical couplings are responsible for a nearly equi-
librium state in a time which represents only 1% of the
diffusion time. This acceleration of the heat transport
should be more pronounced when the system is close to its
critical point, in apparent contradiction to the classical
*“critical slowing down.” This is a surprising result which
deserves an experimental verification, presumably under
reduced gravity because of the very high instability of su-
percritical fluids to small temperature disturbances on
Earth.

After this work was completed, we received a copy of
recent work®!'® where a pure thermodynamic approach
very close to 7. (no flow), has led to a similar speeding up
of equilibration.
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