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We show how the extreme compressibility of a pure Quid near its critical point significantly

affects its bulk dynamic response to temperature changes through adiabatic processes. We devel-

op equations that describe the dynamics in the absence of gravity, and illustrate the magnitude of
the effect with numerical solutions in one dimension. The results are remarkable: 5 mm of criti-
cal xenon, quenched from 20 to 10 mK above its critical temperature, cools by over 99% in less

than 5 s. Moreover, adiabatic cooling is faster when the fluid is closer to the critical point.

A pure fluid near its liquid-vapor critical point exhibits
striking anomalies in its thermodynamic response func-
tions. Characterizing these anomalies has been a primary
concern of workers in critical phenomena. Until recently,
we have little appreciated the implications for the hydro-
dynamics of critical fluids. In particular, several experi-
ments have measured thermal equilibration times for a
fluid near its critical point which appear to be inconsistent
with hydrodynamic predictions. 2' In this Rapid Com-
munication, we reconcile experiment with hydrodynamics
by allowing for the consequences of extreme compressibil-
ity in applying the heat transfer equation.

The usual approach to estimating the time to equilibri-
um has been to apply the thermal diff'usion equations to
the geometry in question with some appropriate average
value of the thermodynamic parameters. The failure of
this approach to explain the short times observed is usual-

ly ascribed to the influence of convective eff'ects. s Given
the extreme compressibility of the fluid near its critical
point, simply estimating the likely magnitude of the con-
vective effect is difficult. Furthermore, the equilibrium
state in gravity has large density gradients whose effect on
the dynamics of equilibration is not known, although the
equilibrium density profile as a function of temperature is
known. s

Recent critical-point experiments in low gravity on the
U.S. Space Shuttle and Technologische Experimente
unter Schwerelosigkeit (TEXUS) sounding rockets,
rather than observing unambiguous critical-point behavior
with the influence of gravity removed, produced anoma-
lous results. Some of their problems may be traced to not
knowing how to predict the time the fluid takes to estab-
lish the equilibrium conditions of uniform density and
temperature.

In what follows we develop equations appropriate to de-
scribe the dynamics of equilibration for a compressible,
pure fluid contained in a fixed volume, excluding the
eNects of gravity and assuming that there is no velocity
field. The resulting equation for conservation of energy
has a term inducing temperature changes of the fluid
through adiabatic changes in the density, in addition to
the usual mechanism of thermal diffusion. That compres-
sible fluids are subject to this adiabatic eff'ect is known in
other contexts, but its vital importance to the equilibra-
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In solving the usual problem of heat conduction in an in-
compressible fiuid, changes in the internal energy are due
only to temperature variations which result from heat
flowing in the fluid. For a compressible fluid one must ac-
count for the adiabatic change of temperature and density
due to the variation of the pressure with time. In the criti-
cal fluid the compressibility is so large that the adiabatic
effect dominates the process of equilibration.

Combining Eqs. (1) and (2), we apply a Maxwellian re-

tion of fluids near the critical point was only recently
pointed out by Onuki at a workshop' studying this prob-
lein. To illustrate the considerable consequence of the
adiabatic effect, we present some results from numerical
solutions in one dimension for a one-phase critical fiuid
responding to temperature changes. We find short equili-
bration times, like those observed experimentally, without
the need to introduce convection. Indeed, the adiabatic
cooling effect is responsible for accomplishing most of the
temperature change in the fluid at a rate remarkably fas-
ter than that of thermal diff'usion.

Consider a closed cell containing a fluid of constant
average density p. There is no velocity field, hence no dis-
sipation, and the only source of heat is through the bound-
ary of the fluid. The equation

pT V ()L,VT) (1)
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expresses conservation of energy, ' where s is the entropy
per unit mass. The temperature field T is a function of
time and the spatial variables; the thermal conductivity A,

is allowed to vary with the temperature, hence also with
the spatial variables.

Local equilibrium is maintained across a distance L by
sound propagation provided that the time scales of interest
are larger than -L/v, where v is the velocity of sound.
Although v 0 at the critical temperature T„v is still
larger than 10 m/s for (T—T, )/T, ) 10 in a critical
fluid. " This implies that we can take the pressure P in-
dependent of the spatial variables. However, P is a func-
tion of time, and its value changes during the process of
equilibration. We write the change in entropy as
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lation and thermodynamic transformations to arrive at
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This equation shows that the pressure derivative is a
weighted average of the temperature derivative over the
sample volume. Together with an equation of state, Eqs.
(3) and (5) describe the time dependence of the tempera-
ture distribution in the enclosed fluid for times longer than
the period of the lowest acoustic resonance frequency.
These equations are general enough to describe the situa-
tion in critical fluids in which the local properties vary
greatly through their strong density and temperature
dependence. We show below that the pressure term in Eq.
(3) determines the transient thermal response of the
compressible fluid to temperature changes at its boundary,
leading to a response much faster than that from thermal
diffusion alone.

We present particular numerical solutions obtained for

where cp and ci are the specific heats at constant pressure
and volume. Approaching the critical point, the diver-
gence of ct diminishes the influence of the right-hand side
of the equation, confining thermal diffusion to the region
very near the fluid boundaries where the temperature gra-
dient is large, while on the left-hand side the ratio
ci /cp 0 and the adiabatic term governs the time depen-
dence of T. Thermal contraction (or expansion) of the
fluid at the boundary causes adiabatic decompression (or
compression) throughout the rest of the fluid large enough
to accomplish most of the temperature change.

The pressure derivative in Eq. (3) can be calculated
from the equation of state and conservation of mass.
Again assuming local equilibrium, we can write for the
change in density

ap ap az ap ap
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where the first coefficient is proportional to the isobaric
thermal expansion, ap—= —p '(ap/8T)p, and the second
coefficient to the isothermal compressibility, r~=p
x (ap/8P) r. Both of these coefficients diverge at the criti-
cal point. In fact, most of the thermodynamic parameters
that appear in the equations are strong functions of tem-
perature and density and it is not accurate to treat them
as constants in the solution. Instead, they must be allowed
to vary as the temperature and density of the sample
moves from its initial state, through its intermediate
states, to its final state.

Noting that the volume of the sample cell is fixed, we
integrate Eq. (4) over the volume of the cell to conserve
mass in the system, and the left-hand side of the equation
vanishes. Our assumption of mechanical equilibrium
means that the pressure and hence (8P/8t) is spatially
constant and so can be moved outside the integral. Rear-
ranging the result gives the pressure derivative,
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FIG. 1. Temperature profiles are shown near the boundaries,
zgI, +2.5 mm, of a one-dimensional sample of xenon im-
mediately following a temperature quench from T —T, 20
mK to T —T, 10 mK. Throughout the region 0.15 mm
~

~
z —z~~ [ ~ 2.5 mm the temperature is spatially constant

with the value given at (z —z~~~ 150 tim. The time in

seconds following the quench labels each profile.

two cases, a temperature quench and a continuous tem-
perature ramp, which demonstrate the magnitude of the
adiabatic effect in the temperature dynamics. In these ex-
amples the temperature changes are large enough so that
the fluid properties change signi6cantly, and we allow

them to vary with temperature and density. Both are
modeled using the critical parameters for xenon.

We solve the system of Eqs. (3) and (5) numerically in
one spatial dimension. The solution proceeds iteratively.
At each time step, the spatial dependence of the tempera-
ture field is used in Eq. (5) to obtain the increment in the
spatially constant pressure. Then, new values of the ther-
modynamic response functions are evaluated along the
cell by changing the variables T and P to the cubic-model
variables r and 8 and using relations given in Ref. 12. We
calculate background terms of transport coefficients fol-
lowing Swinney and Henry, 'i and the divergent part of X

following Sengers' with the shear viscosity taken con-
stant at its background value. With these, the increment
in the temperature at each point in the cell is obtained
from Eq. (3), the new temperature and density fields are
calculated, and the process repeats.

For the temperature quench example we model a xenon
sample, 5 mm long and at uniform critical density, whose
boundaries are suddenly cooled. Figures 1 and 2 show the
temperature and density fields near the fluid boundary at
times up to 32 s following a temperature quench from 20
to 10 mK above T,; the values are calculated at 10-pm in-
tervals. Surprisingly, most of the cooling happens via the
adiabatic effect and the center of the fluid accomplishes
99% of its temperature change 4.9 s after the quench.
Figure 2 shows how, immediately after the temperature
step is applied, the large thermal expansion coefficient
causes the density of the fluid near the boundary to in-
crease significantly, resulting in a sudden, adiabatic
decompression throughout the fluid, which cools the bulk
of the fluid. Although it is not visible at the scale used for
Fig. 2, the density is slightly less than p, at distances from



2262 BOUKARI, SHAUMEYER, BRIGGS, AND GAMMON

0.05

0.04

0.03

~ 0.02

0.01

0.00
I I I I I

0 50 100 150
i z —zedge i (p,m)

FIG. 2. Density profiles, in reduced units (p/p, ) —I, are
shown near the boundaries, zing, +2.5 mm, of a one-di-
mensional sample of xenon immediately following a temperature
quench from T —T, 20 mK to T —T, ~10 mK, The time in

seconds following the quench labels each profile.

the wall greater than 150 pm.
Figure 3 shows the pressure as a function of time for

three separate quenches; the final temperature of each
quench is half the initial temperature, and the sequence
approaches T, logarithmically. The pressure curves, cal-
culated with resolution varying between 2.5 and 10 pm,
also reflect the temperature at the center of the fluid. All
three quenches show two cooling regimes: a fast one due
to the adiabatic process, and a slow one which appears to
be due to thermal diffusion. 's The adiabatic process ex-
hibits two clear trends as the quenches are made closer to
T,. Not only does the fraction of the total pressure (or
temperature) change made by the adiabatic process in-

crease in size, but the process also speeds up near the criti-
cal point.

This example suggests that the short equilibration times
of less than 6 s observed in the one-phase region by Dahl

and Moldover in He, which differed greatly from relax-
ation times calculated from thermal diffusion alone, can
be accounted for by the adiabatic effect. Although con-
vection may have been present in their sample during tem-
perature changes, it is not needed to explain short equili-
bration times.

For the temperature-ramp example we model the same
xenon sample, 5 mm long, cooled at a constant rate of —1

mK/s at its boundary, starting 100 mK above T,. Initial-
ly, the sample is a uniform critical density. Figure 4
shows the temperature at the boundary and in the center
of the fluid during the temperature ramp. At this cooling
rate, the temperature at the center of the fluid decreases
at the same rate as the temperature at the boundaries. As
in the previous example there is no convection in the mod-
el; the adiabatic effect is sufficient to cool the fluid rapidly.
We can compare this result with the experiment of
Nitsche and Straub, 3 performed in a TEXUS sounding
rocket, in which a sample of SFs was continuously heated
from T, -0.4 K to T, +0.4 K at a rate of +2.6 mK/s
while the temperature at the center of the fluid was moni-
tored. They found that the temperature at the center of
the fluid followed the temperature at the boundary re-
gardless of the presence of gravity. In the earth-bound ex-
periment they observed strong convection which may ac-
count for the fast equilibration, but convection could not
be the agent in the TEXUS experiment.

A pure fluid in the one-phase state near its critical point
is extremely compressible, and this property significantly
alters its dynamic response to temperature changes.
Changes in temperature at the boundary of the critical
fluid are rapidly communicated to the interior of the fluid
through adiabatic pressure changes; since the pressure
changes are mediated by sound waves, the temperature
can change very quickly. In that Eq. (3) still retains a
long wavelength, thermal diffusion mode as its long-time
solution, the adiabatic response is transient. However, its
effect must not be neglected. Depending on the size of the
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FIG. 3. The pressure, scaled by its initial value P; and final

value Pf, is shown as a function of time after three separate tem-
perature quenches of a one-dimensional sample of xenon, 5 mm

long. Each curve is labeled by the initial and final temperature
of the corresponding quench, given as differences in mK from
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FIG. 4. The temperature, as difference in mK from T„at the
center of a one-dimensional sample of xenon is shown as a func-
tion of time as the boundaries of the sample are cooled continu-
ously at a rate of —I mK/s. The cooling began with the sample
at T —T, 100 mK. The lower curve is the boundary tempera-
ture.
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temperature change and the resolution of the temperature
measurement, the fluid can accurately approach the final
temperature and density well before thermal diffusion be-
comes dominant. In the examples we have presented,
equilibrium is effectively reached in a matter of seconds.
Perhaps it is most remarkable that, contrary to the pre-
cept of critical slowing down, the adiabatic cooling speeds
up as the compressibility diverges near the critical point.

The system of Eqs. (3) and (5) is strictly valid only in
the absence of gravity; it remains to extend the model to
allow for density gradients that are part of the final equi-

librium state in a gravitational field. Nevertheless, these
equations are immediately applicable to critical-point ex-
periments in low gravity, which are an active part of
several space research programs, where the possibility of
achieving practical equilibrium in critical fluids in times
significantly shorter than through thermal diffusion alone
is an important consideration in experiments whose dura-
tion is measured in hours.
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