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Near the liquid-vapor critical point, the diverging thermal-expansion coefficient causes a local-
ized entropy change to produce an immediate temperature change throughout the entire Auid,

thereby greatly accelerating the approach to equilibrium.

The experimental study of the critical properties of a
single-component fluid near its liquid-vapor critical point
is generally hampered by the occurrence of convection.
This difficulty can be avoided by carrying out the mea-
surements in a weightless environment, such as is provided

by a space vehicle. But then the time required for the
fiuid sample to come into thermal equilibrium becomes an
important consideration. As the diffusion coefficient for
the entropy S to be spread through the fluid is D X/Cp,
where A, is the thermal conductivity and Ct is the constant
pressure specific heat per unit volume, the characteristic
relaxation time for the approach to equilibrium is general-
ly taken to be D 'I, where l is a characteristic length for
the sample. As Cp and A, vary nearly as gz and gr, respec-
tively, D is proportional to gr, the correlation length,
which implies a very long relaxation time when the fluid is
brought close to its critical point. It has recently been not-
ed' that the above conclusion, appropriate for an uncon-
strained fluid kept at the critical pressure, is not applic-
able to a clamped fluid kept at constant volume. In this
case, which we examine here in detail, an entropy change
anywhere in the fluid leads to a pressure change and, in
turn, an adiabatic temperature change throughout the
fluid. The resulting long-range correlation in the temper-
ature produces a much more rapid equilibration than
would result from diffusion alone. Although implicit in
the existing body of knowledge, this effect, which is im-
portant for the feasibility of space experiments on the crit-
ical properties of fluids in a zero-gravity environment, has
until now been overlooked. We therefore begin our expo-
sition of it with a simple heuristic model. (We neglect the
effect of gravity and restrict our analysis to small devia-
tions from equilibrium. )

To illustrate the basic physical mechanism, it is con-
venient to imagine that a quantity of heat AQi is intro-
duced into a small subvolume Vl of the fluid, whose total
volume is Vl+ V2. If the fluid is free to expand so as to
avoid any change in pressure, the temperature and volume
of Vl will change by

gT io)
ViCp

and

AVl apVihTt (0) (2)

respectively, where ap is the constant pressure thermal-
expansion coefficient. But now, as a second step, we in-

crease the pressure so as to bring the entire volume back
to its original value and thereby cancel the expansion rep-
resented by Eq. (2). This is accomplished without any en-

tropy exchange, as described by the adiabatic coefficient,
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and is determined, as to be expected, by Cl, the constant
volume specific heat. Dividing up the process envisioned
above into two steps is not essential. The pressure and en-
tropy changes can occur simultaneously so as to keep the
total volume unchanged at all times. For a fluid close to
its liquid-vapor critical point, y

—l is many orders of
magnitude greater than l. The essential point of this pa-
per is that, because of the adiabatic eff'ect, as expressed by
the factor of y

—1 in Eq. (4), the temperature of Vi, the
main bulk of the fluid, which is untouched by any entropy
transfer, can share to a considerable degree the tempera-
ture change of a small subregion Vl « V2, to which the ac-

a familiar thermodynamic relation, where y Ct /Ct is
the specific-heat ratio. Substituting V Vi+ V2 and hV

—AVi, from Eq. (2) into Eq. (3), yields the tempera-
ture rise in V2,

hT2
—l -(y- I) Vl

~T,"'. (4)
Vi+ V2 ap Vi+ V2

The subvolume Vi undergoes the same adiabatic tempera-
ture increase. The resulting rise in the average tempera-
ture (T) is the sum of the entropy and adiabatic contribu-
tions,
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tual heat transfer is confined. The approach to equilibri-
um is thereby considerably facilitated.

The long-range temperature correlation described by
Eq. (4) can be analyzed in detail for the one-dimensional
case of a sealed fluid kept between two parallel plates at
x 0 and x 2l. Let these plates impose a prescribed
time dependence for the boundary temperature, Ta(t)
The temperature at an arbitrary point in the fluid is
T(x,t), with special interest attached to the midplane
temperature T;s(t) —=T(l, t). Because of the symmetry,
we need study only the interval 0~ x ~ l. Our specific
goal is to find the relaxing temperature profile T(x,t) for
the problem defined by the time-dependent boundary con-
dition Ta(t) 1 —8(t), where 8(t) is the usual Heaviside
step function, zero fOr t (0 and equal to one for 1)0.
For convenience, and without loss of generality, we have
shifted the zero base line to the final temperature, as well

as renormalizing the temperature drop to equal unity, as
permitted by linearity. During the initial phase of relaxa-
tion, before the adiabatic effect sets in, the temperature
profile is represented by the usual error function diff'usion

formula

ml(I

0
0
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(b)
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T (x,t) erf (6)
4Dt

Integration yields the effective thickness of the relaxed
boundary layer as

x ff J(4/rr) Dt
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Identifying AT2 and AT~ in Eq. (4) with AT;s(r), and
—1, respectively, and substituting V&/(V~+V2) x,ff/I
gives

(8)

AT, - +(y —I)AQ; A (10)
V;Cp VCp

The change in average temperature, from Eq. (10), is
A(T) yAQ/VCp Ag/VCV, as required. Using this to
eliminate Ag from Eq. (10) yields

AT; + 1 ——A(T),
AQ; 1

VCp y
(«a)

AT s(T) —(y —1) — Jijef 2
ml

I

where r t/t ~, with the time unit given by

D
—1t2

t) (9)
y
—I '

The initial drop of T;q plotted versus i in the upper
half of Fig. 1 illustrates Eq. (8). The uppermost curve of
the lower half of Fig. 1 shows T(x, t) plotted versus the
scaled space coordinate g (y —1)x/I for r —,', . The
early temperature profile is accurately represented by Eq.
(6) for r«1.

To carry the problem further we need to generalize Eq.
(4) to many subvolumes V;, and the associated heat
transfers, Ag;. These sum to the total volume V g; V;
and the total heat AQ P;Ag;, respectively. With all of
these contributions pooled, Eq. (4) sums to (y —l)AQ/
VCp, which, added to hT;~, the temperature change from
heat transfer, gives

FIG. l. (a) Midplane temperature T;s vs dimensionless time
t/t~ and (b) temperature vs space variable in units of the

lluid thickness 21 divided by 2(y —1), where y CIICv»1 is
the specific-heat ratio. The profiles are for r I'6, &, 1, 4, and
16, in descending order from above. The time unit is
t~ 8 'l~/(y —1)~, where D is the constant pressure thermal
diffusion coeScient.

or, equivalently, the entropy change

AS; AT; — 1 ——A(T) . (11b)
AQ; VCp

T T. '. y,
For the continuum version of this equation we need to

introduce the heat current density —
A,VT. Thus, the heat

introduced into V; in time dt is given by the convergence
Ag;/V~ —V (XVT)dt, thereby converting Eq. (11a) into
the partial integro-diff'erential equation

8T
DV T 1 —1 8(T) (12)

8r y 8r

This equation can also be obtained from Eq. (I lb) and
the linearized heat conduction equation p8cr/8t -),V T,
where p and o are the mass density and entropy per unit
mass, respectively. The application of Eq. (12) to the
one-dimensional geometry considered here is facilitated
by the identity 8(T)/8t —(yD/l)8T/8x ) n that follows
from integrating over the interval 0 ~ x ~ 21 and impos-
ing symmetry about the midplane. This identity expresses
the necessary connection, via C&, of the rise in mean tem-
perature with the inffux of heat at the boundary.
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With some of the details to be provided elsewhere, we
exhibit here the solution of the initial value problem posed

by Eq. (12). For t ~ 0 the solution can be written as the
Fourier integral

p oo

T(x,t) - dhof(x, to)e
2m 4

where the Fourier transform is

1 coskx —1+tankl sinkx
1+(y —1)tankl/kl

(i 3)

1 coskx —1+i sinkx

Dk z 1+i (y 1)—/kl

D 'l 2 cosug —1+i sinu(

(y —1)' u(u+i) (i4)

T(x t)
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g (~(4,
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The exact result of the integration is

T(x,t) t erfc( Jz+g/2 Jz)
Tmid«) et fcJg

(17)

which is readily seen to reduce to Eq. (17) for Ji» 1 and
to Eq. (6) for Ji«1. The function T(x, t) has been com-
puted from Eq. (18) and plotted versus g as the five curves
in the lower half of Fig. 1, for Ji —,', —,', 1, 2, and 4.

At much longer times, z ~ y, the last stages of equilib-
rium proceed as a discrete sum of normal modes, having
equal strength of O(y '). The relaxation rate of the
slowest mode is Dx I, four times faster than that of the

Here k ito/D and u kl/(y —1). As already intro-
duced above, g (y-1)x/l is the scaled space variable.
The approximation in the second line of Eq. (14) is valid
for those real values of to for which (k ) » l ', so that
tankl=i. This limits the dimensionless time to r«(y
—1)2. Deforming the contour of integration to pass
around the cut alon the negative imaginary axis at
to —iDk 2 —iDl (y —1)2u 2 reduces the integration
in Eq. (13) to

T(x,t) — e '" (1 —cosug)
2 ' du

u 2+1

2 u du —~g&e ™sinus.+40 u +1
For ug » 1 the contributions from the oscillating terms in
the integrand vanish, leaving

2 ' du, „2, 1
Tm;o(t) —

2
e '" e'erfcJi=, (16)

u +1
where erfc 1 —erf is the complementary error function.
The final expression in Eq. (16) is an approximation valid
for 1 « r « (y —1) . In this range the denominator of the
integrand of Eq. (15) may be approximated by 1, yielding
for the profile

fundamental mode in ordinary therinal diffusion. An al-
ternative general treatinent of this problem, based on a
sum over the discrete modes will appear elsewhere.

Between the long times, r) y, and the short times,
r O(1), there is a broad intermediate regime which can
be characterized by the geometrical mean, z;„t—= y, corre-
sponding to a real time of

I2 Cv
yti I (i9)

yD

It is instructive to rederive Eq. (16) for the intermedi-
ate regime by returning to Eq. (4) and the simple picture
on which it is based. The subvolume V~ undergoes the to-
tal temperature change

AT~ ~&T| +AT2 1+(y—1) d Ti . (20)
Vl

The fraction by which the temperature in V2 (inside the
fluid) deviates from that in Vi (the boundary layer) is,
therefore,

d Tt —hT2 hT[ 1 (21)
hT~ hT~ 1+(y —1)Vl/(Vl+ V2)

which can be identified with T;o(t). In the intermediate
time regime the second term inside the parentheses in Eq.
(17) can be neglected, which yields for the effective thick-
ness of the boundary layer

T(x, t)x,ir—= dx 1 — ' = dxe t t ' dttDt .
4 0 T;~(t)

(22)

This has the same diffusive time dependence as that of the
initial thickness x,tt of Eq. (7), and differs from it only by
the numerical factor tr/2. Substituting

(y —1)V|/(V|+ V2) (y —1)xI/l (ttt/t~)'t Jxr
into Eq. (21) gives T;o (ttr) ' for r» 1 and com-
pletes our alternative derivation of Eq. (16) for the inter-
mediate time regime. It is evident that in this regime the
approach to equilibrium is dominated by the diffusion,
more deeply into the fluid, of the quantity of entropy that
has already been received in, or removed from, the bound-
ary region during the earlier stages of the process. Going
further, we note that setting x,tt=VDt gives a good semi-
quantitative account, within a numerical factor of order
unity, for the relaxation process from its very start
through the intermediate time regime. The extension of
these ideas and methods to the two-phase state and to the
nonlinear problem of finite temperature jumps will appear
elsewhere. Our results are consistent with some extensive
numerical studies as well as some previous observations
heretofore not understood.
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