RAPID COMMUNICATIONS

PHYSICAL REVIEW A

VOLUME 41, NUMBER 4

15 FEBRUARY 1990

Interface dimension in intermittent turbulence

Charles Meneveau® and K. R. Sreenivasan
Mason Laboratory, Yale University, New Haven, Connecticut 06520
(Received 23 October 1989)

We elaborate on a result obtained in Sreenivasan, Ramshankar, and Meneveau [Proc. R. Soc.
London Ser. A 421, 79 (1989)] which explains the observations of a universal fractal dimension

of interfaces close to T.

Here we explicitly take into account the influence of local fluctuations in

the Kolmogorov scale (due to the multifractal nature of the rate of dissipation) on the surface
area. The resulting dimension is shown to be equivalent to the prediction of a simple argument

involving coarse graining of the interface.

In this Rapid Communication we elaborate on a result
obtained by Sreenivasan, Ramshankar, and Meneveau.'
There it was shown that the experimental observations? of
an apparently universal value for the fractal dimension of
turbulent interfaces close to T could be explained from
basic principles in a simple fashion. Consider the situa-
tion (see Fig. 1) where an interface separates two distinct
regions A and B of the flow. If the interface is a
turbulent-nonturbulent interface, 4 would be the (outer)
region of irrotational nonturbulent fluid and B would be
the turbulent (vortical) region. Such a situation is typical
in free shear flows such as boundary layers, jets, mixing
layers, etc. When considering turbulent mixing of species
or other passive scalars, B could be a region where mixing
has occurred, while A4 is the unmixed region; the interface
is then a scalar interface. It was shown in Ref. 1 that in
order to relate geometric properties of the interface to the
dynamics of turbulence, it is useful to focus on the flux of
a given quantity through such interfaces. In the case of a
turbulent-nonturbulent interface, the transportable quan-
tities whose flux can be studied could be momentum, tur-
bulent kinetic energy, mean-square vorticity, etc. In the
case of scalar interfaces, the flux could be mass or heat
flux, the flux of scalar fluctuations, etc. For now, we re-
strict our attention to transportable quantities whose
diffusivity is equal to the viscosity. Extensions to cases
where they differ can easily be performed, following Ref.
1.

The total diffusive flux of the transportable quantity

FIG. 1. Schematic diagram of an instantaneous planar sec-
tion through an interface, separating region A from region B.

4

across the interface will be given by the product of the ap-
propriate diffusivity, the gradient of the transportable
quantity across the interface, and the total area of the in-
terface. In Ref. 1, it was argued that the thickness of the
interface, being essentially given by a balance of viscous
action and turbulent straining, has to be the Kolmogorov
scale of the flow, n. This then implies that the gradients
across the interface will be of the order A 45/n, where A 45
is the difference between the transportable quantity in re-
gions 4 and B. Furthermore, if the interface is fractal
with dimension D, its total area S(n) measured with a
resolution equal to n (convolutions of scales smaller than
n get smoothed out due to diffusion) will be of the order of
(see Ref. 1)

S(n)~L*n/L)?*?P, a

where L is some outer (integral) length scale. The total
flux ® 45 will then be

D45 ~vLI(/L)* PAp/n. ()

Expressing this in terms of the Reynolds number R,
=y'L/v, where u' is the root-mean-square value of the
turbulent velocity fluctuations, gives

¢AB~AABuIL2ﬁ2/4(D—7/3) , 3)

where we have used n/L~ R ¥* As argued in Ref. 1,

the total flux in fully turbulent flows is expected to be in-
dependent of the viscosity of the fluid, that is to say, in-
dependent of Reynolds number (the so-called Reynolds
number similarity). Equation (3) then implies that D

1, in essential agreement with the experimental obser-
vations of Ref. 2. Reference 1 obtained corrections to this
estimate by taking into account fluctuations in n due to
the intermittent (multifractal) nature®* of ¢, the rate of
dissipation of turbulent kinetic energy. This was done by
computing the mean value of the gradient A 45/n. The re-
sulting correction to D is of the form

D=1+20GB—D,), )

where D4 is the “generalized dimension” D, of the dissi-
pation ¢ for ¢ = ¢ (in the three-dimensional domain).
However, Ref. 1 did not make corrections to the esti-
mate of the total area S(n) due to fluctuations in . This
seems to be difficult at first glance, because the definition
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of D via Eq. (1) already involves a spatial averaging and it
is not clear which of the following length scales should be
used: The spatial mean of 7, {n), or the usual Kolmogorov
scale n* defined in terms of the mean rate of dissipation
(&) according to

n* =3/ V4. 5)

In general, each of these scales are different. Here we
show a means of circumventing this difficulty by explicitly
integrating the flux over boxes along the interface, taking
into account the multifractal nature of €.

As before, consider covering the interface with cubic
elements of size equal to the local thickness of the inter-
face, which is assumed to be of the order of the local Kol-
mogorov scale n;. The size of the ith cube along the inter-
face is denoted by n;. The local contribution of each such
small element to the total flux will consist of the typical
area of such elements n? times the local gradient A4z/n;.
The total flux will then be given by the sum of such contri-
butions along the entire interface according to

Dap~ 2 vidap~u'bapL R Y (/L) . )
i i

The local value of n; can be expressed as a function of the
local singularity strength a; of the dissipation (see Ref. 5).
This is done by recalling that in the multifractal formal-
ism the dissipation averaged over a three-dimensional
domain of size equal to r varies as

&~ (r/L)*"3, )

where a is the local singularity strength of the dissipation.
Further, the local value of n can be estimated by

i =(v/e,) 4, (®)

where &,, is obtained by setting » =n; in Eq. (7). Solving
for n; yields

mi/L~(*/L)Y ©)

where n* is the usual Kolmogorov scale of Eq. (5). Now
we want to replace the spatial sum of Eq. (6) by an in-
tegral over all a values. For this we need to weight the in-
tegrand by the number of boxes having the same a. In the
entire domain, the total number of boxes of size n; where
a has a particular value a; [corresponding to n; through
Eq. (9)] scales as’®

N(a;)~ (/L) @ —(g*/L) ~¥Y @/ *e) (1)

Let us now assume that along the interface the dissipation
€ displays basically the same multifractal behavior (at
least for low-order moments) as everywhere else in the
fully turbulent domain. In Ref. 1 it was shown experi-
mentally that this is a reasonable assumption. Now we
use the additive properties of codimensions,® and argue
that 3 — f(a;) (the codimension of an iso-a; set in three-
dimensional space) must be equal to the sum of the codi-
mension of the interface (3 —D) and the codimension of
an iso-a; set in along the interface only. It follows that
the dimension of such a set is equal to f(a;) —3+D.

RAPID COMMUNICATIONS

2247

Therefore, the total number of boxes where a has a cer-
tain value a; along the interface scales as

N(ai)~(n./L)—4[j(a,)—3+Dl/(|+a,) a1

Now, we can replace the sum over all boxes of Eq. (6) by
an integral over all possible a values and write

®up~u'bgL R f (n*/L) ~4V@—4+DV+a) g,

(12)

This integral is evaluated using the method of steepest

descent in the limit of small n*/L. The extremum of the
exponent is given by the condition

df/da=[f(a) —4+D1/(1+a). 13)

We now use the usual relations’ between the f(a) curve
and the moment exponents D, and designate by Q the
value of ¢ =df/da at which Eq. (13) is satisfied. Using
n*/L ~ R ¥ the flux can then be written as

¢A3~u'AABL2‘7fL—'+3Q, (14)
and condition (13) can be rewritten as
D=4+0+(Q—1)Dg. (15)

Again, the independence of the flux on the Reynolds num-
ber now implies, from Eq. (14), that @ = 1. It then fol-
lows from Eq. (15) that the dimension of the interface is

D=1+%1(G—-Dy). (16)

Thus the intermittency correction obtained by this ap-
proach involves the moment exponent of order + instead
of the one of order + that was obtained in Ref. 1 by con-
sidering fluctuations in 7 through the gradients only.

Finally, we point out that the result (16) can also be ob-
tained by two different arguments. One of them, consid-
ering the transport due to relative velocity fluctuations
over distances of the order of n*, was presented in Ref. 1
and will not be repeated here. An alternative argument?®
considers a systematic coarse graining of the interface
shown in Fig. 1. One coarse grains the interface up to a
scale r (where r is a distance pertaining to the scaling
range) and computes the flux across this coarse-grained
interface. Let S(r) be its area measured with resolution .
The gradient will be estimated as A 4p/r. The eddy viscos-
ity v(r) that accounts for the convective action of all
scales smaller than r is usually estimated in terms of typi-
cal turbulent velocity differences (|u(x+r)—u(x)|)
= | Au, | as

v(r)~r|Au, | ~u'r(r/L)¢. an

Here £ is the scaling exponent of | Au, |, which in the Kol-
mogorov 1941 theory is £= 1. In the presence of inter-
mittency, & can be related* to the moment exponents of &
according to

E=L+1(3-Dyp). (18)

The total flux computed from a coarse-grained interface is
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thus
D5(r)~u'AgSF)(r/L)S. (19)

If the eddy viscosity consistently takes into account the
effects of the coarse-graining procedure, and if the surface
area S(r) is correctly evaluated as a function of r, one
would expect the estimate for the flux to be independent of
the resolution r chosen to formulate the problem. This
immediately implies that S(r) ~r ~¢, which means it is
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fractal. Furthermore, since for fractal surfaces of dimen-
sion D one has S(r) ~r272 it is clear that

D=2+¢&. (20)
Using Eq. (18), this result agrees with Eq. (16).
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