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Soap films as two-dimensional classical fluids

J. M. Chomaz and B. Cathalau
Centre National de Recherche Meteorologique, 42 avenue G. Coriolis, 31057 Toulouse CEDEX France

(Received 29 November 1989)

We present a theoretical derivation of the equations governing the motion of liquid soap film

taking into account the physical dynamic as well as the chemical one. Generally, the behavior is
specific to soap film, but we define some domains of the parameter space where its dynamic corre-
sponds to classical two-dimensional incompressible flows. In this case we give an equation for the
thickness of the membrane. We then simulate on a computer various regimes to explain how the
thickness is linked to the internal motion.

KCl, (2)

where the parameter EC depends only on the kind of soap
you are working with, and it corresponds to an equivalent
thickness of the surface. Naturally, the surface tension

Soap films and soap bubbles are fascinating objects;
their properties (stability, elasticity, . . .) are well known
from early works by Plateau' and Gibbs. 2 Extensive re-
views may be found in Mysels, Shinoda, and Frankel3 and
Boys mainly for experiments, in Rusanov and Krotov
for thermodynamic theory.

Recently, a new experimental field dealing with the
two-dimensional hydrodynamics of liquid soap films has
been introduced by Couder and co-workerss ' and
Gharib and Derango. ' They observed that the thickness
varies with the velocity field and therefore provides a prac-
tical, instantaneous, and global visualization of the flow
structure. This new type of experimental technique raises
several questions, such as the following: Is there a regime
where the soap film behaves as a two-dimensional
Newtonian fluid and how does the thickness depend upon
the motion?

The full dynamics of soap film is in general very com-
plex; it includes chemical kinetics between multicom-
ponent phases out of global and local equilibrium (Fig. 1),
three-dimensional motion inside the film and inside the
air. In a previous paper, Couder, Chomaz, and Rabauds
have deduced a set of simplifications from experimental
results that we are going to adopt. First, we need to de-
scribe the equilibrium state of a membrane submitted to a
fixed stretch defined by a surface tension a. The film is
composed by a bulk phase and a double surface phase
which may exchange soap molecules (Fig. 1). We treat
the case where only one tensioactive species is present. Its
surface concentration I ~ and the bulk concentration c ~ are
linked by

cp ci+2I i/h,

where cp is the total concentration of soap, given by the
initial solution from which the membrane has been made.
h represents the homogeneous thickness of the membrane.
The chemical potential of the soap molecules are equal in
the bulk and in the surface phase. In this simple case, this
imposes a relation between I"] and c~ which will be taken
as linear,

depends on the soap molecules adsorbed on the surface.
Ideally it verifies a perfect gas law

cr op —I )RT, (3)

where R is the usual perfect gas constant and T the tem-
perature. Equations (2) and (3), which seem quite crude
at first, in fact, fall in with the experiments.

To fully understand the dynamic of soap films it is
necessary to describe the response of a film to an instan-
taneous change of surface tension. The sequence of events
is idealized in Fig. 1. When the tension applied to a film
in chemical equilibrium is increased [Fig. 1(a)], it
stretches, the surface density of soap decreases, and thus
the surface tension increases and finally balances the extra
force [Fig. 1(b)]. In the process, no molecule has enough
time to migrate from the bulk to the surface. After the
chemical relaxation time s, the two phases go back to the
chemical equilibrium [Fig. 1(c)]. The instantaneous re-
sponse defines the so-called Marangoni elasticity and the
long-time response the Gibbs elasticity. The Marangoni
elasticity allows propagation of elastic waves (equivalent
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FIG. l. Evolution of a membrane instantaneously stretched
(the force applied to the side goes from F' to F ) with a fixed
width L: (a) initial state, (b) instantaneous response (Maran-
goni elasticity), and (c) asymptotic response (Gibbs elasticity).
The soap molecules have migrated from the bulk fluid to the
surface.
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dh/dt —hV u,

dcp/dt -0.
(6)

Taking into account molecules transport and flux, Eq. (4)
becomes

dr, /dk -—r,v. u —[r, c,hK/(h+2K)]/—~' . (8)

The set of Eqs. (1)-(3), (7), and (8) is now closed. Al-
though it is not our purpose here, it may simply be adapt-
ed to take into account gravity effect. We claim that this
set contains all the physics of a liquid soap film. We take
the case where co is initially uniform and remains so be-
cause of the conservation law (7). The case of a nonuni-

of sound waves in gases) at a velocity vL,

(UL, [2RTcpK/p(H+2K)]'~, 2p being the density of
water, H being the mean thickness). The chemical kinet-

ics define a time scale i which depends on the particular
setting. If the diffusions inside the bulk fluid were the
only limiting phenomenon r* would be roughly 10 s

for a value of h of about 10 m. In fact, experimental re-
sults impose 1 s at least for ~ or more which may be due
to a small contamination of the surface. Thus, the chem-
ical kinetics act on the same time scale as the dynamics
and must be taken into account. For a homogeneous
membrane the kinetic equation for I ~ will be assumed as
linear. All dependencies on other parameters are pushed
back in I i, the equilibrium concentration [given by (1)
and (2)],

dr, /dr - —(r, —r, )/i'.
This equation specifies ~* which characterizes the ten-
sioactive component used. Other legitimated hypothesis
(as taking Kc~ instead of I ~) will lead to the same final

first-order equation [with 2K' /(H+2K) instead of r ]
Because of the different scales of the thickness of the

film (a few micrometers) and of the typical extension of
the motion (a few millimeters), we may neglect any
differential transport inside the film. This means that we

may assume the velocity to be in the plane of the film and

uniform in depth (plug flow); we may also assume that no

exchange of chemical species occurs between different
points of the film. The chemical equilibrium or kinetics is
therefore a local motion. Given this fundamental assump-

tion, we may now speak about particles of the film which

are characterized by a well-defined mass and composition.
Writing the Newton law for this particle, we get the
dynamical equation. In the absence of internal forces its
expression reads

ph du/dt 2Va+ hphu,

where h is the local thickness of the film, p the density of
the solution, p its viscosity, and u the two-dimensional ve-

locity. To simplify further, the surface layer viscosity has
been neglected. As we will consider only small variation
of h, its introduction would just change p into an effective
viscosity. The surface tension a is assumed to be equal on

both sides. The Lagrangian derivative is represented by
d/dt. From the conservation of masses, we obtain the fol-

lowing:

hi I ii+e/2k,

8e/8t+up Ve —(I ii e)r'— (12)

The variation of the thickness splits in two parts: The
pressure part I ~i of (11) corresponds to an instantaneous
Marangoni stretching and the e/2k contribution corre-
sponds to the relaxation toward the Gibbs equilibrium.
For a specified flow the field e depends only on

r(1+ 2k )/2k, a measure of the local chemical relaxa-
tion time scaled by the advection time. For a fast relaxa-
tion i'(&1, e is equal to the pressure and h& follows the
Gibbs relation h~ I ii(2k —1)/2k.

In the thickness expression (11),e is weighted by 1/2k
which compares the amount of soap molecules in the bulk
and the one adsorbed on the surfaces. Pure Marangoni
dynamics (h~ I ii) are obtained when the surfaces are
predominant (k » 1).

In those two limits, pure Gibbs or pure Marangoni dy-
namics, the thickness just visualizes the pressure field.
Figure 2 shows at time tU/L 16, the vorticity and pres-
sure fields of a vortex couple generated by the secondary
instability of a Bickley jet at an actual Reynolds number

(0) (b)

FIG. 2. Vortex couple produced after T 16 by a numerical
simulation of the Bickley jet for %' 300 with a spectral code
1282 (L 2x, U 1, initial wake thickness L, 0.3): (a) the vor-

ticity, isolines every 0.4 by 0.4; (b) the pressure equivalent 1»,
isolines every 0.025 by 0.025.

form cp is important and will be treated in a forthcoming
paper. Scaling (u, x, t, h, I i) by typical values [U,L,L/U,
H, cpKH/(H+2K)], we obtain

du/dt —M h 'VI i+R, 'b,u,

dr, /dr - —r,V u —[r, —h(1+2k)/(h+2k)]/~, (9)

dh/dr —hv. u,

with k K/H, R, ULp/p, and i i U/L. M is the
analogous to the Mach number, U/vL, . By dimensional
analysis on (9) we see that the relative variations of I i

and h are of the order M2, thus small when the velocity is
small compared to vL, . This corresponds to the experimen-
tal cases. 'i To understand the dynamic of soap films we

may use asymptotic theory and expand variables in a
series of M e, a g~ejaj W. e get at zero order,
I ip hp 1, and at first order,

8up/8t+up Vup —VI ii+R, 'hup,
(10)

Vuo 0,
which is the Navier-Stokes system for an incompressible
fluid. We deduce that I ~ ~ represents a pressure. The next
order gives the following equations for h i

..
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(% R,LJ, LJ being the width of the jet) of 300. We use
a spectral numerical code 128 (see Ref. 7 for details).
As the pressure is a nonlocal quantity it "feels" globally
the flow and smoothes out all the details [Fig. 2(b)]. Such
a field [Fig. 2(b)] does not correspond to observations
made with soap films. We need the memory effect given

by the chemical relaxation. We compute for this proto-
type simulation the field e using Eq. (11). Figure 3
presents the fields e for various relaxation time r'. For
r'((1 the pressure field is recovered. But as r' increases
and becomes of order 1, e starts to "look like" the
modulus of the vorticity. The two vortices that form the
couple, while in the same depression, form two separate
structures in Figs. 3(b) and 3(c). Going back to the
thickness, we deduce from Eq. (11) that the correlation
between h~ and the vorticity field, when r'~ 1, will be
stronger if k is small (e.g., an equilibrium dominated by
the bulk phase).

In conclusion, we may say that soap films will behave
like a two-dimensional incompressible fluid as soon as we
run experiments at a low speed U compared to the velocity
(vL-5 m/s) of longitudinal Marangoni waves (equivalent
of sound waves in gases). In this case, the relative varia-
tions of thickness are small and of order (U/vt, ), the
equivalent Mach number. The thickness field will follow
the two-dimensional pressure field in the limits of ex-
tremely clean solution (rapid equilibrium thus Gibbs dy-
namics) or of a thin film where there is negligible relaxa-
tion (Gibbs and Marangoni dynamics equivalent). In the
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other cases the thickness will be linked by an noninvertible
relation to the velocity field, but will provide a better visu-
alization of motion for slow chemical relaxation (r'~ 1)
and thick film (small k).

The authors wish to thank Y. Couder, B. Lacroix, and
M. Rabaud for many very helpful and stimulating discus-
sions.

FIG. 3. The e component of the soap film thickness (see Fig.
2) vs r' (to be compared with 3, the order of U/L, ): (a) r' 0.2,
isolines every 0.02 by 0.02; (b) r' 2, isolines every 0.025 by
0.025; (c) r' 10, isolines every 0.025 by 0.025.
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