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Phase transitions in a description of multifractals generated by a logistic map
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A logistic map generates multifractal sets in its periodic windows. Using the thermodynamic for-
malism of Halsey et al. [Phys. Rev. A 33, 1141 (1986)],we present two methods of calculating their
generalized dimensions Dq, and we show that there is a phase transition in a period-6 window, i.e.,
Dq is a nonanalytic function of q.

I. INTRODUCTION

Inhomogeneous fractals appear in a variety of physical
problems, and standard examples consist of fractal
growth processes' and turbulence; chaotic dynamic sys-
tems also generate multifractal measures. ' The frac-
tal measures can be characterized by the spectrum of gen-
eralized ditnensions D (Ref. 11}and singularity dimen-
sions f (a). Halsey et al. introduced a convenient
tnethod of calculating functions Dq and f (a) [f(a) is the
Legendre transform of Dq]. This approach, which gen-
eralizes Hausdorff construction, is called thermodynamic
formalism because it is based on calculating a certain
"partition function. " D and f (a) are interpreted as
thermodynamic functions whereas nonanlyticities of
D are called phase transitions. '

In this note we analyze multifractals generated by the
logistic map

f„(x)=1—px, x EI, @&[0,2]

in its periodic windows. ' We introduce a convenient
method of calculating the spectrum of generalized dimen-
sions D characterizing these multifractals. This method
makes use of the thermodynamic formalism and, in par-
ticular, we find the existence of a phase transition in one
of the period-6 windows. We also indicate the mathemat-
ical mechanism of this phase transition.

II. THE MULTIFRACTAL SETS
AND THEIR PARTITION FUNCTIONS

Assume that the nonlinearity parameter p belongs to a
certain period-p window. Then the p-fold iterate of the
logistic map

f„(x)=f„f„' (x), f„(x)=x, pEN (2)

has p distinct attractors. ' ' Depending on the p value
they can be fixed points, cycles, Feigenbaum attractors,
or a set of intervals. Our multifractal set consists of the
boundary between the basins of attraction of these attrac-
tors. It can be constructed by a reccurrence procedure in
the following way.

To each of the p attractors there corresponds an inter-
val 5, j =1, . . . ,p, called the primary basin of attrac-
tion. ' b is the largest open interval containing only one
local extremum of f~~) (x) and is mapped to itself under
the p-fold iterate (Fig. 1). The interval I in (1) (see also
Fig. 1) is the smallest interval containing all primary
basins of attraction for given value of p. Between the in-
tervals 6 there are p —1 closed intervals Ik,
k =1, . . . ,p —1. The points belonging to the given in-
terval b, as well as to all its preimages under fu(y)(x)
form the basin of attraction of the jth attractor. The ana-
lyzed boundary, which is denoted by 8, is contained in
the intervals Ik, k =1, . . . , p —1,

Let us now consider the hierarchy of sets of intervals,

Bo= fIk, k =1, . . . , p —1],
B„=fclosed intervals I "'t:I; f("~)(l "')=Ik, k =1, . . . , p —I]

or shortly B„=f ( t') (B„,). Then B=lirn„„B„.
Now we apply the thermodynamic formalism to calcu-

late the generalized dimensions of set 8. In this formal-
ism, at the nth step of construction, we cover the ana-
lyzed multifractal by X„open balls of diameter I, and cal-
culate the partition function '

(4)

where p; is the measure of the ith ball. Next, to calculate
the generalized dimensions D we use the condition

lim I „(q,r)=I (q, r)=1,

which is fulft}led at a certain value r(q) and then we ob-
tain Dq=a(q)l(q —1}. The Legendre transform of r(q)
gives the singularity dimensions f (a). In order to calcu-
late the partition function I'„(q,r) (4) we use the intervals
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FIG. 2. Fragment of Fig. 1 in which monotonic branches of
f~{ l(x) (dashed line) are replaced by straight lines (solid line) ac-
cording to the mean-slope approximation.
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FIG. 1. The sixth iterate f„(x)for @
= 1.480. Within the in-

terval I there are six primary basins of attraction
j = 1, . . . , 6 and five intervals Ik, k = 1, . . . , 5.

where

N„
~l(n)

—r y Prk

~k
(n)

lI"'FB„(at the nth step of construction) and to each of
them we ascribe the same measure p; = I/N„as none of
the intervals l,'"' is distinquished by the construction. '

After inserting these data into condition (5) we obtain in
the limit of large n the following implicit equation for
r(q):

1.4

N„

(6) 1.0-

0.8-

III. APPROXIMATE METHODS AND RESULTS 0.6

To present the main steps of our analysis we choose the
period-6 window which appears out of chaos at
p=1.474695 378. We shall use two different methods to
calculate the function ~(q) from Eq. (6). In the first
method —called the mean-slope approximation —to each
monotonic branch of f„(x)in a given box Ik XII, (Fig.
2) we attribute its mean slope denoted by s;,
i =1, . . . , 25. Now let the intervals l "' cover the bound-
ary 8 at the nth step of its construction. Using the fact
that the analyzed set is contained in the separate intervals
Ik, k = 1, . . . , 5, we can write the right-hand side of Eq.
(6) in the following form:

-20.0 —10.0 0.0 i 0.0 20.0

FIG. 3. Generalized dimensions Dq obtained from the mean-
slope approximation (solid line) and direct evaluation (dashed
line). The direct evaluation method indicates the existence of
one point of nonanalyticity at q =2.3. The mean-slope approxi-
mation gives three points of nonanalyticity at q =0.187, 1.0,
and 2.475; two of them, which are not clearly seen at this scale,
are indicated by arrows.



41 BRIEF REPORTS 2205

represents the sum over N(„) intervals I "'FB„located in

I„. At the (n +1) step of construction the covering of
the set B consists of preimages of the intervals l "' un-

der the map fl }(x). Approximating each branch of the

function f( }(x) in boxes Ik XI«by straight lines with

slopes s; (Fig. 2) we are able to represent each sum

W[„+,] as a linear combination of W[ ].
For example,

(n+1)~) y ~I(n+ 1)~
—~

i=1
N (n) I(n) ~ I(n)

l

$1 $2

(n) ~ N

+ + $
$3

I(n)

$4

~(n)

+
$5

=(s) +s2+s3) W('„) +(s4+s3) W(„) .

W„+1=T.W„, (9)

After introducing the auxiliary vector W„=( W("„)),
k = 1, . . . , 5, we obtain the recurrence formula

52, —~ (w+ —0.700

51 0.700 & 7 0.000
5( ) — 5 0 000&7(1210

53, 1.210 & r ( oo .

(14)

where T=(tkk ), k, k'=1, . . . , 5 is the transfer matrix,
e.g. , t» =s;+s2+s3, t, 2 =s4+ss, etc. From Eq. (9) one

gets W„=T"Wo. Therefore the right-hand side of Eq.
(7) will asymptotically grow proportionally to the nth
power of the largest eigenvalue 5(r) of the transfer matrix
T

S ~5(r) ~" . (10)

N„

The number of intervals 1V„covering the boundary B
at the nth setp of construction grows with n according to
the asymptotic law'

5(r) is not differentiable at these three points. Hence

q (r) =in(5(r)(/in[A[ and D4 =r(q)l(q —1) are non-
analytic at these points (Fig. 3).

In the second method we do not use the mean-slope ap-
proximation and we make the direct evaluation of the
sum s in Eq. (7). For large values of n one has

I „+)(q,r) —1
I „(q,r)

which can be rewritten as

n+1

where I, is the largest eigenvalue of the kneading ma-
trix. ' Thus asymptotically Eq. (6) reduces to the follow-
ing implicit expression for the function r(q}:

~

I(n +1)
~

—7.

[g(n)[
—r

(16)

(12)

The eigenvalues of the transfer matrix T are calculated
from the equation

(t33 5}[(tii 5}(t22 5} ti2t21]

X [(t —5)(t„—5)—t„,t„]=0 .

Hence 5(r) =max[5)(r), 52(r), 53(r) I where

5)( )r2 [t„+t22+(t„+t22+4t2, t, 2 2t„t22) ]

52(r) ,'[t44+ t53+(t44+t—3s+4t34t45 2t44ts5 )' ] ~ (13—)

53(r)=t33 .

It turns out that a phase transition (in the above de-
scribed sense} takes place when the largest eigenvalue
5(r) of T becomes degenerate. This happens at certain
values of parameter r Numerical ana. lysis of Eq. (13)
showed that

Equation (16} was analyzed numerically for increasing
values of n (up to n =6) and the input parameters 1,

'"'
were calculated directly, without using the mean-slope
approximation. The function D obtained in this way is
presented in Fig. 3.

IV. DISCUSSION

The generalized dimensions D calculated by both
methods, i.e., in the mean-slope approximation and via
direct evaluation, show nonanalytic behavior. In the
mean-slope approximation we obtain three points of
nonanalyticity while the direct evaluation indicates only
one point of nonanalyticity. In order to determine
whether the existence of the remaining two points is
confirmed or not in the direct evaluation one should car-
ry on the calculations for much higher values of n which
unfortunately is beyond our numerical possibilities.

The mathematical mechanism responsible for this non-
analytic behavior is, at least in the mean-slope approxi-
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mation, quite transparent: similarly to phase transitions
in physical model systems' it corresponds to degeneracy
of the largest eigenvalue of a certain transfer matrix.
This observation tells us that perhaps the presently ana-
lyzed nonanalytic behavior of D could be understood in
terms of certain lattice spin models into which our cal-
culations could be translated.

Finally let us add that a sj.milar analysis was also per-

formed for period-3 and -4 windows and nonanalyticities
(in any of the methods) were not observed.
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