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We work out the thermodynamic curvature resulting from a Riemannian geometric approach to
thermodynamics for the general multicomponent ideal gas. This Riemannian geometry is based on
including fluctuation theory in thermodynamics. We find that the Riemannian curvature scalar for
this system is small, on the order of the average volume per molecule, no matter how many com-
ponents. This result fits in well with expectations developed earlier that the thermodynamic curva-
ture gives a measure of the volume where classical thermodynamic fluctuation theory fails.

I. INTRODUCTION

A Riemannian geometry for thermodynamics based on
thermodynamic fluctuation theory has been introduced
recently and applied to a number of thermodynamic sys-
tems.! ® These systems were, with a few exceptions,
represented by two-dimensional Riemannian geometries;
for example, the single-component fluid or the Ising mod-
el. In this paper, we examine the geometry of general
ideal gases consisting of more than one component. This
requires a geometric representation in three or more di-
mensions. We are particularly interested in the Rieman-
nian curvature scalar. Results for this geometric object
are in accord with earlier expectations that the thermo-
dynamic curvature gives the volume where classical ther-
modynamic fluctuation theory fails.

Thermodynamic state space was first endowed with a
natural metric structure based on the laws of thermo-
dynamics by Weinhold in 1975,'° who introduced an
inner product related to the second derivatives of the
internal energy. This inner product simplified certain
standard thermodynamic computations. A Riemannian
metric structure representing thermodynamic fluctuation
theory, and related to the second derivatives of the entro-
py, was introduced by Ruppeiner in 1979.' It offered a
natural meaning for the distance between thermodynamic
states and a resulting geometry with an interesting inter-
pretation for the intrinsic curvature. It is this geometry
that is the basis for this paper. Salamon et al.,'! in 1980
introduced a slightly different Riemannian metric to
represent thermodynamic processes in finite time.

Riemannian geometry gives rise to geometric invari-
ants, such as the Riemannian curvature scalar, which are
subject to physical interpretation. Initially, the curvature
was interpreted in two-dimensional thermodynamic state
spaces in terms of the correlation length."'? This was fol-
lowed with an interpretation in state spaces of any dimen-
sion with a covariant thermodynamic fluctuation theory
developed in 1983.% This theory predicts that the abso-
lute value of the curvature scalar gives the real-space
volume where the classical thermodynamic fluctuation
theory breaks down. In many cases, particularly near
critical points, this is the correlation volume. This inter-
pretation worked well when tried, but it was never tested
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beyond two dimensions in open systems.

In this paper, we calculate the thermodynamic curva-
ture of the multicomponent ideal gas. We find full con-
sistency with expectations.

II. GEOMETRY OF THERMODYNAMICS

In this section, we summarize the Riemannian
geometry of thermodynamics, discuss its connection to
the covariant thermodynamic fluctuation theory, and
summarize the resulting interpretation of thermodynamic
curvature.

At the outset, we must distinguish between two spaces.
The first is the real physical space in which the thermo-
dynamic system resides. The second is the thermo-
dynamic state space, each point of which represents a
thermodynamic state specified by the values of the inten-
sive coordinates.

Consider a finite, open subsystem A’ of an infinite ther-
modynamic fluid system A. The system A consists of n
fluid components. A4’ has fixed volume V' and fluctuat-
ing energy and particle numbers. Denote by
a=(ay,a,,a,,...a,) the internal energy per volume of
the entire system and the number of particles per volume
in each of the n components of 4. The n’tuple a consti-
tutes the thermodynamic state of 4; 4’ has correspond-
ing thermodynamic state a’. The Gaussian approxima-
tion of the classical thermodynamic fluctuation theory as-
serts that the probability of finding the thermodynamic
state of A’ between a’ and a’ +da’ is'?

W(a,a')dayda’ - - - da,

n

n/2

’ ’ n
=12 exp |~ - zog#V(a)Aa;‘Aa;

m,v
XVg(a)dayda' - - - da, , (1

where Aa;‘=al'1—ay,
1 3%(a)

=——5a 2
&)= 34,0, @

s(a) is the entropy per volume in the thermodynamic
limit, kp is Boltzmann’s constant, and g(a)=det[g(a)].
We use greek indices for the coordinates of the thermo-
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dynamic state space and arabic indices for the com-
ponents of the fluid.
The quadratic form in Eq. (1),

Aa Aa! (3)

(Al?= 2 g, a
u,v=0

v

constitutes a positive definite Riemannian metric on the
thermodynamic state space. The positive definiteness re-
sults since the entropy is a maximum in equilibrium
a’=a. Physically, the interpretation for the distance be-
tween two thermodynamic states is clear from Eq. (1):
the less the probability of a fluctuation between the
states, the further apart they are. Note also that the
quantity in Eq. (1),

Vig(a)daida' - - - da, , (4)

is the invariant Riemannian thermodynamic state space
volume element.'?

The metric defines a fourth rank Riemannian curva-
ture tensor R. For our metric the complete contraction
of R, the curvature scalar R, has units of real-space
volume, regardless of the dimension of the state space. It
is zero for the monocomponent ideal gas and diverges
near the critical point of the pure interacting fluid pro-
portional to the correlation volume.'

This Riemannian geometry has been grounded on a co-
variant thermodynamic fluctuation theory.»* This
theory was proposed as the correct way to extend the
classical thermodynamic fluctuation theory beyond the
Gaussian approximation. It also offers an interpretation
for the thermodynamic curvature.® Janyszek and Mruga-
la have connected this geometry to information theory
and to contact geometry.s’14

III. GEOMETRY OF THE MULTICOMPONENT
IDEAL GAS

The Helmholtz free energy per volume of the mul-
ticomponent ideal gas is'?

pn)=3 pikpTln(ep)+ 3 pif(T),

i=1 i=1

S (Tpipy, - -

(5)

where p; equals the density a;, and where e is the natural
base of logarithms, and the f,(T)’s are functions of the
temperature T whose second derivatives are negative in
order to assure a positive definite heat capacity.

It can be shown'? that for any fluid system, interacting
or not, the metric Eq. (3) can be written as

1

2= ATAs + Au;Ap; 6

(Al K, T TAs kB 121 u;Ap; (6)
where the entropy per volume

s=- 7 @)

aT ’

and the chemical potentials

/,L,»=—ai . (8)

Ip;

Using Eq. (5) for the free energy and a Maxwell relation
yields

A= | S pihT) |(ATP+ S (8p2, O
i=1 i=1Fi
where
h(T)=— AV >0 (10)
i kyT ’

The metric in coordinates (T,p,p,,..,p, ) is therefore di-
agonal, with elements

rr= 2 pihi(T) (11
i=1
and
1
g,, =—. (12)
P p;

The metric is diagonal necessarily only for the multicom-
ponent ideal gas. For interacting gases, there are cross
terms involving the densities g;;Ap; Ap;.

The curvature tensor may be written in terms of the
metric elements as

R}, =Tk, —Th + 2 rrk — 2 rnri, (13)
where the Christoffel symbols
rl):"z%¢§ogw(g¢v,#+g¢#,v_gyv,¢) ) (14)

and the comma notation (,u) denotes the partial deriva-
tive with respect to the uth coordinate. The components
of the second-rank Ricci tensor are

2 R}, . (15)

Contracting the Ricci tensor yields the Riemannian cur-
vature scalar

R=3 g"R,, . (16)
u,v=0

For a given metric, the sign of R may be either positive
or negative depending on the sign convention used. We
use the sign convention of Weinberg,'> since this was
used in Ref. 3. Though we offer no interpretation of the
sign of R, it is nevertheless important to make clear what
sign convention we use.

Since there is such a high degree of symmetry in the
metric for the multicomponent ideal gas, many of the
components in the curvature tensor are either zero or of
the same functional form. Accordingly, it is not difficult
to show that
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S (D) 3 phT)= 3 p,[a(DF
i=1

R= ’“n = .an
2| 'S pihi(T)

i=1

We emphasize that, because of the rules of Riemannian
geometry, the value of R for any particular thermo-
dynamic state is independent of the coordinate system in
which it is calculated.

IV. DISCUSSION

We look first at the case where all of the &,(T)’s are the
same, as would be the case, for example, where all the
constituents of the ideal gas are monatomic. Here, Eq.
(17) reduces to

r={n=1 (18)
2p
where
p=2p (19)

is the total density. This is a surprisingly simple result,
depending neither on the functional form of the h;(T)’s
nor on the relative densities of the component gases.

The correlation length is zero for the ideal gas and can-
not be equated to the curvature, which is not zero if
n > 1. However, the interpretation of the thermodynam-
ic curvature’ is that its absolute value gives the real-space
volume at which classical thermodynamic fluctuation
theory, Eq. (1), fails. A breakdown can occur not only at
length scales less that the correlation length, but if there
are not enough particles for a continuous thermodynamic
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description. Neither of these problems can be fixed by in-
cluding more terms in the series expansion of the entropy
which lead to Eq. (1).> The curvature above is on the or-
der of the volume where there is just a single particle
present per species. At this level, classical thermodynam-
ic fluctuation theory fails badly, as has been shown ex-
plicitly in the single-component ideal gas.® However, it
does not require many particles in an ideal gas for classi-
cal theory to work pretty well. Hence our results for the
thermodynamic curvature are consistent with expecta-
tions.

Consider now the general case. Let h,,,(T) be the
largest value of any of the functions h;(T) at temperature
T and let h; (T) be the smallest. It is straightforward to
show that, at any temperature,

0< (n —1)h i (T) <R< (n —1)h 0, (T) ‘ 20)
2ph max( T) 2ph min( T
For ideal gases, the ratio h,,, /h ., is typically between 1
and 10. Therefore a rough estimate for the general case
is

(n—1)
2p

and the interpretation offered above for all equal h;(T)’s
remains valid.

R= ) (21)

V. CONCLUSION

We have evaluated the thermodynamic curvature for
the general multicomponent ideal gas. The curvature is
on the order of the volume occupied by a single particle.
This result is consistent with the previously developed in-
terpretation that the thermodynamic curvature gives a
measure of the volume where classical thermodynamic
fluctuation theory fails.
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