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Average-atom quantum-statistical cell model
for hot plasma in local thermodynamic equilibrium over a wide range of densities

B.J. B.Crowley
Atomic Weapons Establishment, Aldermaston, England

(Received 17 July 1989)

A method for numerically modeling hot plasma over a wide range of densities is described. The
model generalizes the essential aspects of the Stewart-Pyatt model to plasmas comprising mixtures

of elements and extends the treatment to include the effects of electron polarization and screening.
A practical numerical prescription is provided that is a straightforward generalization of the ion-

sphere cell model. In addition, exact closed-form expressions are given for the continuum lowering.

The model also addresses the problem of the microfield, i.e., the plasma-potential Auctuations that

perturb the upper electronic states, and provides a suitable framework for improved practical ap-

proaches to this.

I. INTRODUCTION

Self-consistent-field average-atom models of hot local
thermodynamic equilibrium (LTE) plasma generally fall
into two generic groups: The spherical ion-cell (SIC)
model —also called the ion-sphere model —considers the
atomic ions in the plasmas to be centered inside neutral
spheres which otherwise contain only electrons. This
model is appropriate at high densities and/or low temper-
atures when the ions are sufficiently constrained by their
mutual Coulomb repulsion for the ion cells to be weakly
ouerlapping (Fig. l). An example of an SIC model is the
Wigner-Seitz model' used in the treatment of liquid
metals. SIC models are commonly employed for calculat-
ing the opacities of laboratory-produced medium- to
high-Z plasmas, and some high-density astrophysical
plasmas.

At very much lower densities the average potential at a
reasonable distance from an ion is believed to resemble a
Debye-Huckel screened potential which attains vanishing
slope at infinity. The plasma is thus weakly polarized out
to arbitrarily large distances and, since the potential does
not (necessarily) have vanishing slope at the surface of
the ion sphere, neutrality of the ion sphere cannot be
guaranteed in accordance with the premises of the SIC
model. This is because there is an appreciable probability
of finding other ions inside the ion sphere of one particu-
lar ion. Neighboring ion spheres can overlap
significantly. This situation occurs when the ions are able
to move freely throughout most of the plasma (Fig. 2).
Note that the potential in this model exists only by virtue
of correlations with the central ion (which is afforded a
special significance in the theory). I shall refer to models
of this generic type (e.g. , Refs. 9 and 10) as polarized
correlation sphere (PCS) models. As high-temperature
hydrogen plasmas are typically weakly coupled, this type
of model is often preferred in astrophysical contexts. "

The apparent incompatibility of these two models
presents an immediate problem when considering plas-
mas of intermediate coupling. Indeed, it turns out that

medium-Z I.orentzian plasmas are typically in this regime
and that the very high coupling strengths required to jus-
tify the SIC model are really those characteristic of liquid
metals. This is the principal problem addressed by this
paper.

The average-atom model acquires its justification in
the context of the canonical or grand canonical ensem-
bles. ' Here the plasma is considered as an ensemble of
neutral atoms, each comprising an ion and a requisite
number of unbound electrons. An approximated average
over this ensemble yields the average atom. Thermo-
dynamic properties of the plasma that relate to ensemble
averages can then be deduced from the properties of the
average-atom model with a reasonable degree of rigor.
The picture seems to break down in the case of the PCS
model which encompasses, not a single atom, but rather
the whole plasma. Of course we could consider an en-
semble of plasmas. The problem here is that the PCS

FIG. 1. Two-dimensional schematic representation of a
high-I (high-density low-temperature) plasma, illustrating
weakly overlapping ion spheres.
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FIG. 2. Two-dimensional schematic representation of a
lower {than in Fig. 1) I plasma illustrating strongly overlapping
ion spheres. The shaded regions depict the ion cores which may
be thought of as Landau spheres and which indicate the closest
distances within which ions may typically approach each other.

model does not properly treat the plasma as a whole.
Only the central ion is treated with the required degree of
correctness. Thus there is evidently an ambiguity with
regard to the extent of the thermodynamic system ad-
dressed by the model, a conceptual difficulty which is
only overcome for the case of an isolated impurity ion
immersed in a background plasma.

Another difficulty with the PCS model is that it often
allows stable electron orbitals in regions where the ex-
istence of such orbitals is unlikely or impossible. (An
artificial, often ad hoc, continuum lowering needs to be
introduced to "reinove" such states. ) At large distances
from the central ion, the PCS potential represents an
average of a potential whose fiuctuations are dominant in
determining the behavior of an electron.

Both models have problems with arbitrarily composed
mixtures (of different ion species, i.e., different elements)
which is perhaps the clearest indication of their inade-
quacy. The SIC model works quite well provided aII the
components are strongly coupled to each other. The PCS
model can accommodate impurities only at concentra-
tions of less than one ion per Debye sphere.

A new generalized ion cell (GIC-) model, which extends
some earlier ideas of Stewart and Pyatt, is proposed.
This mode1 overcomes a11 of the difficulties mentioned, if
not directly, then by providing a theoretical framework
that is sufficiently flexible to allow a treatment which
does. The GIC model accommodates both SIC and PCS
limits and interpolates continuously between them.

be —
p while the electronic potential will be —V.

The formulation applies to a mixture of average-atom
ion species (i.e., different elements). The various mixture
components are denoted by the subscript i. Thus n, is the
average (number) density of ions with atomic number Z;
in the plasma.

Only the electrostatic potential is considered here. Ad-
ditional exchange and correlation components need to be
taken into account when performing the quantum-
mechanical part of the self-consistent-field calculation.
However, once the self-consistent electrostatic potential
is known, the other potential components are uniquely
determined and therefore do not require an explicit or
separate treatment. This is most evident in the general
context of the local-density-functional approach, '

which is almost universally adopted in average-atom
computations.

B. Basis of the model

An underlying idea in the new model is the concept of
a nonspherical ion cell as depicted in Figs. 3 and 4. It
comprises an external region (of unspecified shape) con-
taining only electrons surrounding a spherical core of ra-
dius r, centered on an ion. The spatial average of the
charge density in the external region is denoted by pp.
When treating the average atom, po becomes the ensem-
ble average of this quantity, which is the same as the
average taken over the whole plasma. It is perhaps useful
to point out at this stage that the nonspherical shape of
the "typical ion" represented by Fig. 4 has no particular
consequences in the theory that follows; i.e., no attempt
is made to calculate any nonspherical terms in the poten-
tial. A principal reason for defining the ion cell in this
way is to permit, at the outset, the exclusion of neighbor-
ing ions from the ce11, which is not generally possible if
the cell is defined to be spherical. This picture (Fig. 3)
represents an instantaneous configuration of the ions in a

II. GENERALIZED ION-CELL MODEL

A. Notation and general remarks

Throughout the following p is used to denote electric
charge density in units of the electronic charge e ( )0),
while V denotes the electrostatic potential. Therefore, in
the absence of positive charges, the electron density will

FIG. 3. Two-dimensional schematic represenation of the
plasma depicted in Fig. 2 illustrating division of the plasma into
nonspherical ion cells. These cells are electrically neutral re-
gions each enclosing a single ion. Together, the cells fill the
whole plasma without overlapping.



41 AVERAGE-ATOM QUANTUM-STATISTICAL CELL MODEL FOR. . . 2181

-(a)

The condition that the cells fill all space is

n, =1.
pi.

(2)

Let the internal electron polarization parameter P be
defined by

4vrr

3Q + PO (3)

(b)

FIG. 4. The "fried egg" model. Components of a single non-

spherical ion cell. (a) "external" plasma region (of unspecified
arbitrary shape) containing only electrons at an average density
of —po. The total number of electrons in this region is exactly
the number required to make the cell neutral and is equal to the
product of the volume of the region and the average density
—po. (b) Spherical ion core of radius r, containing a single nu-

clear charge Z surrounded by Q, +B; electrons. (B; is the total
number of bound electrons which defines Q;, the effective num-

ber of "free" electrons inside the core. )

plasma prior to averaging over their relative positions.
The resulting average-atom potential around a single ion
must be totally spherical for a homogeneous isotropic
plasma, since no preferred direction is defined. The sub-
sequent distinction, made by the calculation, between the
two regions is as follows: In the interior (core) region, the
average-atom approximation involves an average over
quasispherical electronic states dominated by the field of
the central ion, while in the external region r ) r, the
average is over configurations (of electrons and ions) that
are likely to be far from spherical. One is therefore aware
that electron eigenfunctions of the spherically symmetric
average-atom Hamiltonian that extend into the exterior
region are subject to potentially strong perturbations due
to the presence of neighboring ions. Moreover, the mod-
el allows the average contribution of those neighboring
ions to the potential to be included in a reasonable way.

Denoting the number of electrons within the core by
Q +B;, where B; is the total number of bound electrons,
and the charge of central nucleus by Z, , the total volume
of the cell, which is written as

1 4m

3Pi

(which defines the ion-sphere radius R; without necessari-
ly defining an ion sphere), is determined by charge neu
trality condition

Z,' —
Q,
'= —

po (R, r, ), —

where

Z;*=Z; —B; .

which is the ratio of the number of free electrons within
r, , were they to be unpolarized at a uniform density po, to
the effective number Q . Equation (1) now gives

Z +(g; —1)QR;= (4)
4m —

po

Multiplication of both sides of (2) by po, making use of
(4), gives

pc= g n; —= —g n;[Z +(g; —1)Q,'] .Po

p; l

Equations (4) and (5) are generalizations of the standard
ion-sphere mixture model equations

' 1/3

R;=
4~ —

po

po= —g n, Z,",
to which they reduce when the free-electron density is
constant throughout.

Define the auerage (zero) plasma potential to be the en-
semble average of the spatial average taken throughout
the external regions, each spatial average being taken
over a particular plasma configuration. This potential
level is associated with the equivalently averaged electron
density —po. The chemical potential, referred to this
zero potential level, is then reasonably given by the
Thomas-Fermi formula

p = kTF, &2 [ —po/—c, ( k T )
~ ],

where F ' is the inverse of the function

F ( )
f y yp oo Jd

"o I+exp(x+y)

while c, denotes the physical constant

4n.(2m, ) /h

In order to quantify the continuum lowering, one
makes a canonical decomposition of the potential into a
part due to local charges and a part V (r) attributed to
the plasma as a whole. The potential V~(r) is defined to
be the average potential due to all charges in r ) r, , plus
that due to a constant background electron charge densi-
ty within r ( r, . This background electron charge density
is chosen to be continuous with the electron charge densi-
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ty in the surrounding plasma. This allows one to define a
continuous exchange component of the full potential cor-
responding to V (r) and means that the formalism
remains implicitly valid for potentials both with and
without exchange —in accordance with the general re-
marks given in Sec. IIA. Any alternative definition„
which invokes a different constant electron background
electron density, yields a decomposition of the exchange
potential into components that may be discontinuous at
r=r, (as, for example, in any kind of local-density ap-
proximation). These discontinuities render the resulting
continuum lowering that one would obtain less meaning-
ful.

The potential Vz(r) can therefore be written

V (r)=V&(r)+V, (r),

where V, (r) is the potential due to the background elec-
tron charge density within r (r; and V& (r) is the average
potential due to all charges in r) r, The .continuum
lowering is defined to be the value of V~(0) —V~(~),
which can be thought of as the shift, due to the plasma,
in the binding energy of an arbitrarily deeply bound level
(confined near r =0) relative to the continuum [assumed
to be at V ( ~ )]. It is important to appreciate that there
is some degree of arbitrariness in the definition of contin-
uum lowering and that this is largely resolved by conven-
tion. A properly formulated self-consistent-field calcula-
tion, such as is here being proposed, is independent of the
definition of the continuum lowering and does not require
any explicit description of it. The continuum lowering is
a parameter quantifying one aspect of the effect of the
plasma on an ion and is provided as a result of such a cal-
culation. Conversely, the continuum lowering is an in-

complete, and therefore approximate, description of the
plasma effects and a calculation that seems to depend on
it should be regarded with some suspicion.

The results of this section are not dependent on any
particular definition of continuum lowering. The poten-
tial V merely provides a choice of reference potential
levels, namely, V ( oo )= V& (oo ), which is the asymptotic
p!asma potential, and V (0), which has the role of a local
vacuum —not to be confused with the real vacuum
whose level (relative to p) defines the plasma work func-
tion,

In the internal region (r (r, ), the average electrostatic
potential is defined, in the erst instance, with respect to
the local vacuum V (0) as follows:

V,„,(r)= V((r) —V, (0)

dr' — p(r, )r,
'1 " p(r'), 1

4vreo o Ir' —rl

, p(r') p(r—, )
dr' — p(r, )r

4~co o
I

r' —rl 6eo

(7a)

(7b)

C. Determination of the core radius r;

Following Stewart and Pyatt, the core radius is deter-
mined by conditions of internal consistency of the model
and the requirement that the electric field be a continu-
ous function of position (r). The procedure is therefore
to match the derivatives (with respect to r) of the internal
and external average electrostatic potentials at r =r, .

Values of the electron density within the core sphere
( r ( r, ), Z;", and Q;* are yielded directly from the
quantum-mechanical part of the self-consistent-field cal-
culation. At r =r„ the derivative of the electrostatic po-
tential is given by Gauss's theorem as

which, with the aid of (1), becomes

R, —r,
3 3

V'(r; ) = —
po .

3eo

For r r„ the potential derivative is taken as being given

by

1 1V'(r)= — —+—[V(r)—V (~)],
r D P (9)

which is the potential due only to charges within r;, mea-
sured with respect to the potential which would exist at
the origin if all the charges within r; were removed and
replaced by electrons at a constant density in equilibrium
with the surrounding plasma, while leaving the state of
the surrounding plasma unchanged. This potential differs
from the plasma potential referred to in Eq. (6) due to the
monopole polarization field generated by correlations be-
tween the plasma components and the central ion. This
is the physical origin of continuum lowering. The poten-
tial (7) is provided self-consistently in terms of the total
charge density p(r), and vice versa, through the usual sta-
tistical and quantum-mechanical relations of the
average-atom model (e.g. , Ref. 31).

V;„,(r) = V((r)+ V, (r) —Vp(0), with the electrostatic potential given in terms of the plas-
ma polarization charge p(r) by

where V((r) denotes the potential due only to the charge
distribution within r ( r, . In determining the average po-
tential, electric fields, and fields of higher multipolarity,
due to external charges (outside r,.) are ignored —these
are treated as part of the microfield fluctuation. This
leaves V& (r) being given by only its average monopole
component which is constant within r ( r, and therefore
equal to V& (0). Hence the potential V;„, is provided as a
particular solution of Poisson's equation as follows:

V(r)= V ( &x) )—D'p(r)
P E'

0
(10)

where D is the plasma screening length. Equation (10)
can be considered as constituting the definition of D.
Equation (9) then applies in the asymptotic region where
semiclassical statistical approximations are valid (when D
becomes independent of r). The approximation (9 and 10)
depends on one of two alternative assumptions: either
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that the core extends sufficiently into the asymptotic re-
gion (which is true at low to moderate densities) or that
the external region (R; ) r ) r; ), where the validity of the
approximation matters, is of negligible extent (which is
shown, in Sec. IV, to be the case at very high densities).

The charge density at r =r, is assumed to be due to
electrons alone. These electrons are polarized in the po-
tential V (r), in which case, introducing the characteristic
electron screening length d„ the average electron density
at r =r; can be expressed by

eoV(r; )

p(r, ) =po

Equation (11) here constitutes the definition of d, and is
to be regarded as exact.

Although the instantaneous local ion density is zero at
a point in an external region of a typical cell, neighboring
ions are not constrained from approaching this point.
Indeed the plasma is unpolarized, on average, with
respect to such points. Implicit in the underlying cell
model of Fig. 4 is that the system of electrons must be
capable of maintaining equilibrium contact with an equi-
potential electron gas at the plasma temperature T, densi-

ty po, and chemical potential p as given by (6). This re-
quires that the "asymptotic" plasma potential V ( ~ ) be
synonymous with the "average" plasma potential (zero)
defined prior to (6) and is also consistent with the notion
(Sec. III) that V ( Oo ) lies at the (true) continuum thresh-
old. Combining (10) and (11), and setting Vz(oo )=0,
gives

Po
2

D2/d P Po
e

where

V(r, )=—DIPo
2

—:V, .
Eo

(16)

Note that this is same for all ions —no contact potentials
exist between surfaces of different ion cores. This is
necessary in view of the presumed approximate uniformi-

ty of the potential in the region between the cores. Note
that, when V, =0, this yields a muffin-tin-like model of
the plasma potential.

Finally, combining Eqs. (8), (9) and (16) gives

1]
R; —r; =3DIr; 1+—

3D12& 1+
I

with

ishingly small. (See Sec. IV.) Justification of Eq. (14) is
provided later in Sec. II D.

The total plasma screening length is then given by

1 P(r) 1 1 P(r) P—o 1

D Po DI d, Po

in which d, is locally dependent on the particular ion
species and contains all the quantum-mechanical effects
included in the determination of p(r, ).

Only two approximations are made in the above. The
first involves the assumption that the plasma screening
length D is effectively constant for r & r, ; the second takes
the ion screening length, defined by (12), to be given by
an appropriate generalization of the classical (Debye-
Hiickel) formula.

Combining (10) and (15), while recalling that
V ( oo ) =0, gives

1 1 1

Di (12) a;= p(r, )

Po
(17)

DI is thus identified as the screening length due to ions
alone and is taken as being given by a generalization of
the classical Debye form

1 1

where

q;n;
D2 eokT

' (13)

4~R;
q,.

= — Po=Z,*+(P,* —1)Q;* (14)

is the effective ion charge (which takes account of the
effect of screening by electrons within the ion cores on
the interactions between ions). It is assumed that the
classical Debye-Huckel theory is applicable to the ions
rather than the electrons. Their relatively large mass and
(perhaps) charge means that their behavior is more likely
to be classical. The approximations represented by Eqs.
(9), (12) and (13) are generally regarded as being meaning-
ful only in weak coupling. However, at high densities, in
the strong coupling limit, the extent of the region in
which the approximations need to be valid becomes van-

The parameter Y introduced above is directly related
to the ion coupling parameter I,. according to

R,
D

=3I, . (19)

The quantity I, is a measure of the strength of the cou-
pling between the ion i and the surrounding plasma. This
can be decomposed into a volumetrically weighted sum

Setting X=r, /R, , Y=DI/R;, and a=a, gives

X +3aX Y+ 3XY' —1 =0

which is to be solved for X. The sum of the three roots of
this equation is —30., which is negative definite, while
their product is +1. The equation therefore possesses ei-
ther three real roots, one positive and two negative, or
two complex (conjugate) roots with negative real parts
and one real root which must be positive. In either case
the equation always possesses one and only one positive
real root —which is the one required.

D. Plasma coupling and effective charges
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over contributions I J from the each of the other ions in

the plasma, i.e.,

nJI, =g ' I', ,
j pJ

where the mutual ion-ion coupling parameters I J are
defined by

(21)

4~eokT

is the generalized Landau length for species i, and

poq

DI Eok T

which gives directly the ion screening length.

E. Discussion

(25b)

(26}

and where

q;qJ

4~eokT

are the mutual interaction Landau lengths.
Combining Eqs. (19)—(22) yields

(22)

q;

qJ

R;
R

(23}

i.e., the effective charge is directly proportional to the
volume of the ion cell. Hence we can write

q;= —r 3
R, po

4m

where y is a constant for the plasma as a whole.
The special case when the electrons are unpolarized

and do not give rise to screening yields y =1 and hence
q,

=Z . Otherwise, interpreting r, as the closest distance
to which a perturber ion may approach, the minimum
screening charge due to the ambient electron polarization
seen by the perturbing ion is equal to

4m

which is the increase, due to polarization, in the number
of electrons within r;. Then, recalling (1), the effective
charge is found to be given by

J
n.

j Pg

(24)

which allows many of the properties of the surrounding
plasma mixture to be reduced to those of a single com-
ponent plasma of ions carrying charge q ~ In particular,

(25a)

where

which again implies @=1. The reasonableness of the
general assignment y = 1 is supported by the lack of obvi-
ous suitable nontrivial dimensionless constants in the
theory in its present form.

Equations (20)—(22) lead to the powerful concept of
the plasma or perturber ejective charge,

This then completes the set of equations that are essen-
tial to the model. The equations define how the (average)
electrostatic potential of an ion should be constructed.
%ithin the sphere r =r;, the potential is determined self-
consistently with the aid of (7). In the region r & r;, the
potential becomes an average screened type of potential
satisfying (9) and (16), e.g., V, (r; /r)exp[(r; r)/D], —
which includes a contribution from other ions. The ra-
dius r; is chosen so that, when these potentials are
matched (at r, ), by means of a gauge shift in one of them,
the first derivative (electric field) is continuous.

Beyond the surface r=r, , the model allows consider-
able freedom in how one treats plasma fluctuations and
ion-ion collisions. Also, such considerations as how and
where the quantum-mechanical boundary conditions
should be applied are left open.

The significance of the radius r, is that electrons within

r, are strongly influenced by the central charge and are
only weakly affected by perturbations due to the sur-
rounding plasma. Low-order perturbation theory (e.g. , of
the Stark effect ') will be valid in this region. In particu-
lar, it is often reasonable to ignore the possibility of
finding perturber ions within r, . Electrons whose orbitals
extend significantly into the region r ) r, are susceptible
to strong perturbations due to neighboring ions. Low-
order perturbation theory is less likely to be valid since
the perturber can approach closer than the central ion
and spherical symmetry is strongly broken. This divides
the electronic spectrum into, not two (bound and free),
but three, not necessarily distinct, regions: (i) deeply
bound (weakly perturbed) states, (ii) strongly perturbed
bound states which may form a quasicontinuum merging
with (iii) the true continuum of nonlocalized states and
resonances. A similar sort of picture has been adopted in
the plasma model of Rogers.

The spherically symmetric potential is just an ensemble
average of the microfield taken over many ions. Howev-
er, in an average-atom treatment, we can consider such
an ensemble average as being equivalent to a time average
(taken over a suitably long interval) of the properties of a
single electron undergoing transitions, in a slow time-
dependent potential, between all its accessible states.
This is a form of the ergodic hypothesis. %hat it sug-
gests is that one might be able to treat the plasma fluctua-
tions by means of a complex potential. This is an ap-
proach, familiar to nuclear physicists, for treating, in a
time-independent formalism, states which decay to other
channels through processes whose detailed treatment is
omitted. The eigenvalues of a complex potential are
complex, yielding simultaneously both the energy and
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width of a level. The complex eigenvalue approach has
already been suggested by More ' ' as a means of treat-
ing continuum resonances. Marrying this with a complex
potential will include, in a seemingly practical manner,
the all-important e6'ects of plasma perturbations on those
resonances and upper bound states.

A suggested form factor for the imaginary part of such
a potential is

exp(aL; /R; )W;(r)=, a= 1

(R, /r) exp( aL,. /r)+exp( aL, /R, )

(27)

while from (16),

Dis 0
2

V, =—
Eo

2D

4meoR, R;

q, q,

I; 4m.eoR, 4m.eoL;

kT

qp

Hence the formula for the continuum lowering is

b, V, =—V, —V;„,(r;)

(29a)

(29b)

(29c)

which exhibits reasonable behavior in all the various lim-
its. Such a function can be roughly interpreted as being
proportional to the probability that the center of a neigh-
boring ion is closer to the electron at r than the nucleus
of the central ion. The strength of the imaginary part
will then be related to some mean free path for the elec-
tron propagating in the bulk of the plasma.

The theoretical framework also provides direct means
of estimating parameters of the microfield. If the elec-
trons are treated as a continuum, then the potential in the
plasma region external to all the cores is nonsingular, and
it is relatively easy to estimate statistical moments of the
microfield, by, for example, assuming each of the ions
contributes a screened Coulomb potential, and they are
randomly distributed as hard spheres with radii —r, . At
high I", when the r; become the ion-sphere radii, al-

lowance must be made for the fact that the ion spheres
must overlap. This is achieved generally by parametriz-
ing the microfield outside a reduced core, whose radius is
taken to be given by r,

' =r, (!+I, )/(I+y;I; ) where g, is

the ratio of ion-sphere diameter to the average separation
of the ion centers. This approach permits treatment of
nonspherical components of the microfield arising from
the discrete distribution of nearest neighbors (see Sec.
III B).

1

4@co I,
1 1—

R;
(30)

Electronic
potential

vacuum potential

which is exact within the context of the model. Figure 5
illustrates the schematic relationship between the various
potentials and is helpful in order to understand why
hV; &0 [as implied by (30)] corresponds to continuum
lotaering.

Equation (30) is consistent with the simpler result of
Stewart and Pyatt to which it reduces in the case of a
one-component plasma (OCP) when the i subscripts are
dropped (one-component mixture) and a set equal to uni-

ty throughout (no electron polarization). Equation (30),
on the other hand, applies to a mixture and allows for po-
larization of the electrons. The change in value of (30),
when a, is set equal to unity, gives the electron polariza-
tion contribution to the continuum lowering. (The case
a = 1 applied to a mixture is recognizable as a form of the
Steward-Pyatt formula. However, the latter is expressi-

III. CONTINUUM LOWERING

A. General formula

continuum lowering

ri~~~~~~~~~~~ r~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~p! as ma po t nt I a
r r

The continuum lowering, as defined in Sec. IIB is
given by

AV= V (0)—V (~)

- I's

= [V((r; )+ V) (r; )
—

V~( ~ )]
—[V((r, )+V)(r, )

—V (0)]

=V, —V;„,(r, ) .

In terms of the above, the potentials V;„,(r, ) and V„as
defined by (7) and (16), are provided as follows:

q]
V,„,(r, ) =

4m d'or, .

3
fq

R;
'3

R;

1
p(r; )r,

2EO

(1—
—,'a; ) (2&)

FICx. 5. Shifted and unshifted electronic potentials in the
neighborhood of an ion illustrating continuum lowering. Poten-
tials are schematic and are plotted as functions of the radial dis-
tance r from the ion center. For additional explanation, see
text.
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ble in various ways which differ in the way they general-
ize to mixtures. )

Figures 6(a) and 7(a) illustrate the results of some cal-
culations of the continuum lowering using Eq. (30).
These show the various contributions to the continuum
lowering for an astrophysical plasma and for a plastic un-

der conditions attainable in a laser experiment. The elec-
tronic contribution in these cases is significant. The Auc-
tuation component is the rms microfield calculated as
outlined in Sec. II E. The reason for this extra contribu-
tion is explained below. Figures 6(b) and 7(b) show the
corresponding values of I, and r;/R;. Note that, al-
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FIG. 6. (a) Continuum lowering, calculated using (30), with an added fluctuation contribution, for an astrophysical plasma charac-
teristic of part of the solar interior (IBEN-XIV mixture, temperature=300 eV, density=1. 0 g/cm'). The ionic component of the
continuum lowering is given by the Stewart-Pyatt formula in the form of (30) with +=1. The remainder is the electronic contribu-
tion. The total continuum lowering is the sum of all three contributions including the fluctuations which are the rms values of the
microfield calculated in the annuli r,

' ( r & R, (see Sec. II E). (b) Characteristic values of I, and r; /R, for the components of this plas-
ma.
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though the plastic is an example of a moderately strongly
coupled plasma, the values of r, work out considerably
less than the ion-sphere radii. This is explained by (35),
which shows the residual terms to be 0(I ' ).

B. Continuum lowering: general discussion

An occasional misconception about continuum lower-
ing is that it represents an additional correction to the
electronic potential within a plasma. This is not so. Any

properly formulated self-consistent-field model will al-

ways automatically have included the continuum lower-
ing. Equation (30) therefore represents the continuum
lowering that is already inherent in the model and does
not normally need to be worked out when implementing
the model. Proper uses of Eq. (30) include cotnparisons
between different models, estimating where the continu-
um lies in relation to upper electronic states of an atom
and crudely correcting isolated-atom calculations for the
presence of the surrounding plasma. However, thermo-
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FIG. 7. Same as for Figs. 6(a) and 6(b), but showing continuum lowering and plasma parameters for a laser-heated plastic [PPS

(C6H7S) at temperature of 5 eV and density of 0.0091 g/cm'].
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dynamic inconsistencies are likely to result if the continu-
um lowering is introduced in this way.

The continuum lowering, as provided by (30),
represents an element of the spherically averaged poten-
tial. In the presence of a nonspherical component of the
microfield, e.g., due to a nearby perturber, the potential
barrier surrounding an atom will somewhere be lower
than its average, resulting in a further lowering of the ap-
parent ionization threshold. ' Also, microfield
broadening of the upper bound states will invariably
mean that they merge with the real continuum. These
are the arguments for including an additional "Auctua-
tion" term in the continuum lowering of the ionization
threshold, as was done in the calculations shown in Figs.
6 and 7.

The continuum lowering derived in Sec. III A is
defined in terms of the continuum threshold [ —V~( ~ )]
associated with a given potential. For atoms in plasmas,
the definition may be more usefully expressed in terms of
the effect on the energy threshold for photoionization.
The first definition is, by virtue of Koopman's theorem,
equivalent to the statement that the change in the free en-

ergy of the system, when an infinitesimal test charge —5q
is added to the lowest-energy continuum state, is AV5q,
and hence that the minimum energy required to transfer
an infinitesimal —5q of charge from the level a with ei-
genvalue e to the continuum is (b V —E )5q. If the free
energy is expanded as far as quadratic terms in the Tay-
lor series in the atomic configuration, the ionization
threshold energy, for the transition

N. ,Z* N. —1,Z*+ &,
is found to be

(b V —e )
—— (b V —e )+ — (hV —e ), (31)

1 a
2 ax. 2 az*

in which BE /BZ*=Bb V/BX, . It is evident that, pro-
vided that all energies (i.e., eigenvalues, both bound and
in the continuum) are referred to the continuum thresh-
old, as defined by the potential for that particular
configuration, the continuum lowering is treated implicit-

ly and one does not need to worry about it. In the same
vein, a particular consequence of Koopman's theorem is

that the energy of an atomic configuration is independent
of the number of electrons occupying the level corre-
sponding to the zero energy eigenvalue (i.e.,
BE /BRAVO

= eo =0). For a system of interacting particles
(e.g. , electrons) this makes sense if and only if the density
of states at E =0 is effectively zero for all possible
configurations. This leads to the conclusion that the zero
energy level common to different configurations within
the same plasma corresponds to the continuum threshold
—V~( ~ ). Note also that the global gauge symmetry is a
property of the many-particle system. Global gauge
transformations cannot and should not be applied in-
dependently to each quasiparticle Hamiltonian. The spe-
cial significance of the zero energy eigenvalue is a clear
indication of the nonarbitrariness of the energy scale to
which it is referred.

The continuum lowering is generally not the same as
the minimum free-energy per electron in the continuum,
any more than the free energy of the ion is the sum of the

single-particle energy eigenvalues of the occupied bound
states. The difference is, of course, due to the Coulomb
interaction energy between the electrons, which, for con-
tinuum electrons, is always a significant proportion of the
total potential energy. Nor, for similar reasons, is it the
potential energy per ion pair divided by Z
interestingly the electrons rnatter even in the OCP limit
when the free-electron density is assumed constant
throughout. This is because the continuum lowering is
related to the change in the free energy when an electron
is added to the continuum. In the extended OCP mod-
el, there is an effect due to the correlation between
the ion's charge and its separation from neighboring ions
due to increased Coulomb repulsion when an electron is
removed and added to the background. In the ion-sphere
model, this pair correlation is neatly treated through the
expansion of the ion sphere. Because, in reality, the ions
are free to move within the plasma, this leads to the need
to distinguish between the continuum lowering and the
specific free energy (per electron per ion pair). Failure to
do so has resulted in some confusion in one or two places
in the literature, not the least in Stewart and Pyatt's orig-
inal paper. This has led to misapprehension concerning
their formula. The situation is that Stewart and Pyatt's
paper describes, not one, but two different models. The
first leads to their celebrated formula, which, as will be
shown, is correct. The second, a numerical model which
attempts to be more sophisticated, makes the error allud-
ed to. The outcome is that, if one attempts to calculate
the ion free energy from the incorrect formula
hF, =

—,'Z*hV, which ignores the pair-correlation effect
mentioned above, taking b V as given by the first formula,
one obtains the result that b.F, = ——', (Z'e ) /(4~eoR ), in

the large-1 limit, instead of the correct result given
below. This deficiency was pointed out by More and
has resulted in the misapprehension that the original for-
rnula is itself defective.

To put the record straight„ in the OCP ion-sphere
model of More and Zimmerman, the continuum contri-
bution to the free energy of an ion is (assuming Z' )&1)

with

9 (Z'e)
10 4~eoR

3 3Z
4 p,

where p, is the average free-electron density in the plas-
ma [cf. Eq. (14) above]. This yields the continuum-
lowering as

Z'e'
AV=

2 4vreoR

in complete agreement with the Stewart-Pyatt formula
[cf. Eq. (36a) below], while the first of these equations
agrees, to within about —,'%, with the extended-OCP for-
mula of DeWitt, in the limit of I —~. This is quite re-
markable agreement considering the relative simplicity of
the ion-sphere model.
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IV. SPECIAL CASES

A. Solution in the weak-coupling limit
(ideal plasma)

Solving Eq. (18) for a weakly coupled ion (I,. ((1)
yields r, as the generalized Landau length [Eqs. (25)],

which relates the result to the electron density at the
ion-sphere —ion-core surface.

The results expressed by Eqs. (36) and (34) generalize
the previously known formulas to mixtures while taking
account of electron polarization.

V. SUMMARY
r, —I,. R, [1—I,(31,)'~2]-I,R,. =L, , (32)

which is expressly much less that R, Note the corollary

1 1

L; D
(33)

av, = — ' [1+0(r,')],
4me(PI.

(34)

which gives the continuum lowering in a form resembling
the usual Debye-Huckel result, e.g., Refs. 29, 30, and
47-50. Note the appearance of the effective charge q; in
place of Z; .

B. Solution in the strong-coupling limit

For a strongly coupled ion (I, ))1), the limiting solu-
tion of (18) is

r; -R;[1—a;/(31';)'~ ]-R;, (35)

from which we see that the model reduces to the standard
spherical ion-cell model. The region r, & r (R, , in which
the potential is assumed to be given by a Debye-Hiickel
type of screened potential, becomes vanishingly small, so
that the question of the validity of introducing such a po-
tential form in this limit does not pose any serious
difficulty. Also, the account taken of weakening of ion-
ion interactions by electron screening ameliorates any
(apparently slight) discrepancy between the ion-sphere
model and the extended-OCP model at very high I"s.
This might arise because the ion-sphere model does not
include a proper treatment of the ion-ion correlations.
Electron screening tends to reduce I and the longer-
range correlations between ions, while the electronic
screening effects may be the more important.

In the strong-coupling limit (I;))1), the continuum
lowering (30) becomes

2

~v, = —— ' ' [1+o(r ")], (36a)
2 4m.eoR,

which resembles the ion-sphere result. ' Substitut-
ing for q;a; from (14) and (17) yields an alternative form
of (36a)

p(r, )R,
av, = — ' ' [1+o(r ")],

260
(36b)

The average potential beyond r; is the screened Coulomb
(Debye-Huckel) potential. However, this is also the re-
gion in which pressure broadening effects due to the
microfield of neighboring ion perturbers are likely to be

important.
'

In the weak-coupling limit (I; ((1), Eq. (30) reduces,

by virtue of (33), to

The new generalized ion-cell model of an atomic plas-
ma described here overcomes many of the defects of the
standard models listed in Sec. I. Although this model
contains the other models as its limits, the extra degrees
of freedom introduced into the treatment obviate the
inadequacies. The scope of the model extends to any
mixture of elementary ions, which may be particular ion-
ization states or average-atom representations of different
elements, in local thermodynamic equilibrium. (Non-
LTE generalizations of the model appear feasible. )

The model remains a single-atom cell model even at
low densities, but copes with the problem of strongly
overlapping ion spheres in this regime by allowing typical
cells to be nonspherical. In this picture, the ion-sphere
radius enters only as a parametrization of the density. In
the average-atom approximation, one has taken an aver-
age over all possible configurations (including nonspheri-
cal "terms"). The resulting potential is always spherical-
ly symmetric. However the model now recognizes the
presence of "other ions" in the region outside the core.
As will all cell models, the extent of the physical system
addressed by the model is unambiguous and allows
rigorous application of statistical mechanics and thermo-
dynamics.

The spherical core within each cell defines the region
in which a conventional spherical average-atom approxi-
mation has strong validity, i.e., in which perturbations
due to fluctuations of the surrounding plasma microfield
are generally weak. Within such regions, one can per-
form self-consistent quantum mechanics with real poten-
tials. Where wave functions extend significantly into the
exterior plasma region, it is necessary to take account of
the plasma microfield which is both nonspherical and sta-
tistical in nature. In the exterior region, the electrons are
treated using the Thomas-Fermi statistical model.
Whereas this is likely to be a good approximation in the
majority of cases, it is not a necessary feature of the basic
model. Enhanced statistical models' may be used in
place of the Thomas-Fermi model, if the latter is thought
inadequate.

In the high-density (strong-coupling) limit, the model
reduces to the standard spherical ion-cell model. Howev-
er, it is noted that this limit is attained only for very large
values of the coupling parameter I, .

In the low-density (weak-coupling) limit, the model
defines the core region to be a Landau sphere beyond
which the potential is allowed to take the form of the
Debye-Huckel polarization potential. The model will ac-
commodate a complex potential to account for perturber
fluctuations at distances beyond the core radius.

The model copes with all intermediate regimes, includ-
ing plasmas comprising mixtures of components charac-
terized by both small and large values of I. A useful
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concept for use in treating individual components of a
mixture is that of the effective plasma or perturber charge
which characterizes the effects of the surrounding plas-
ma.

One of the principal features of the model is that it
consistently takes account of polarization of the electrons
and the consequent weakening of the effective interaction
between the ions. This polarization is given in terms of
the quantum-mechanical solution for the electrons within
the spherical core. The model thus obviates one of the
principal deficiencies of the OCP model, while its own
deficiencies in relation to the OCP have, in the past, been
overstated.

The model yields explicit formulas for the continuum
lowering, and plasma work function (which is taken to be
the volume average of the continuum lowering). In the
strong- and weak-coupling limits, respectively, the for-
mulas resemble the ion-sphere and Debye-Hiickel formu-
las for an OCP. The new formulas improve on the OCP
by treating electron polarization. In a self-consistent nu-
merical implementation, the continuum lowering is impli-
cit.

A virtue of the new model is its essential simplicity. It
is hardly any more diScult to implement than the stan-
dard SIC algorithm which it generalizes. Moreover, it re-
tains considerable Aexibility concerning details of the cal-
culation that remain beyond its scope. Indeed, the model
often permits better treatments of such details due to its

adopting a more general paradigm. For example, im-

proved treatments of Auctuations, both of the plasma
microfield and the charge state of the ion, become possi-
ble within the context of an average-atom cell model. In
the latter instance, this is helped by the distinction that is
made, even at high densities, between the core and the
average-ion cell. While the average-ion cell remains neu-
tral (by definition), the core charge can fluctuate. The
cores may therefore be treated as a grand canonical en-
semble. When treating the microfield fluctuations and
their effects, ' the model permits one to identify easily
which electronic states are susceptible to strong (non-
linear) perturbations. from the surrounding plasma and
which may be amenable to simpler weak perturbation
treatments. A simple approach to estimating statistical
moments of the microfield itself is suggested.

In conclusion, the new model offers greater generality
and wider applicability than either the SIC or PCS types
of model (which it incorporates in its limits and therefore
replaces) and provides a powerful extension to the
average-atom statistical description of LTE plasma.
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