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Modulation instability of obliquely modulated ion-acoustic waves in an unmagnetized plasma
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The stability of oblique modulation of ion-acoustic waves in an unmagnetized plasma due to non-

linear interaction with a slow-response quasistatic plasma is studied. A nonlinear Schrodinger
equation is derived for the system. It is found that there exists a wide domain in the k-8 plane in

which the ion-acoustic waves would be modulationally unstable. It is also found that when 8& 60',
the waves are unstable for all values of k. However, for 8&60', the waves are unstable only for
0& k & km», where km» is given by tan6P/(3 —tan 8)'

The modulational instability of ion-acoustic waves in a
dispersive and weakly nonlinear plasma has been a topic
of significant interest. ' " Accounting for harrnonic-
generation nonlinearities, several authors' derived a
nonlinear Schrodinger equation that governs the dynam-
ics of nonlinear ion-acoustic wave packets for different
types of plasmas with parallel and oblique modulation.

Recently, nonlinear parallel modulation of ion-acoustic
waves in an unmagnetized plasma due to nonlinear in-
teraction with a slow-response quasistatic plasma was
studied by Shukla. Then the case of a magnetized plas-
ma was discussed by Bharuthram and Shukla' and
Bharuthram. " In the present paper we studied the
modulational instability of obliquely modulated ion-
acoustic waves in an unrnagnetized plasma due to the
nonlinear interaction with a slow-response quasistatic
plasma. We derived the nonlinear Schrodinger equation
for the system. It is found that there exists a wide
domain in the k-6 plane in which the ion-acoustic waves
would be modulationally unstable in contrast to the case
of parallel modulation where the waves remain modula-
tionally stable. The results of our investigation reduce
to those obtained by Shukla in the limit of parallel
modulation.

We consider an obliquely modulated ion-acoustic wave
traveling in the x-y plane in a collisionless unmagnetized
plasma. We further assume that the modulated ampli-
tude of the ion-acoustic wave varies in the x direction.
The nonlinear interaction of finite-amplitude ion-acoustic
waves with an unmagnetized background plasma is
governed by the following set of normalized equations:

Bn,
+V (n, V, )=0,

Bt

n "=(1+n ')y" (8)

Combining Eqs. (1) and (2), introducing Eqs. (4)—(7),
we obtain a nonlinear equation for the ion-acoustic wave
in the presence of the plasma slow response

tron density, ion-Auid velocity, and electrostatic poten-
tial. T; and T, are, respectively, the ion temperature and
electron temperature. Finally y =2 for the adiabatic ions
and y=1 for the isothermal ions. In Eq. (3) we have
neglected the electron inertia and assumed that the elec-
trons are isothermal. In the above equations the densities
are normalized with respect to the unperturbed plasma
density no, the velocity with respect to ion-acoustic ve-

locity, C, =(T, /m;)'~, the electrostatic potential with

respect to the electron thermal potential, (T, /e), the
length with respect to Debye length A,D, and time with

respect to the inverse of the ion plasma frequency, co; '.
As we are interested in investigating the slow response

of the quasistatic plasma to the ion-acoustic waves, we
write the field quantities in normalized form as follows:

n =1+n "+n', (5)

v, =v,"+v,', (6)

yh+ yl (7)

where n"'" &&1. The superscripts h and I represent the
corresponding quantities associated with the ion wave
and with the quasistatic plasma slow motion, respective-
ly.

Now taking Eq. (3) and using Eqs. (5)—(7) the electron
density perturbation associated with the ion-acoustic
waves in the presence of the plasma slow motion is given
by
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n,'P"=0 . (9)
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Vg=n, n;, — (4)

where V;=(V;„,V;,0), V=(B/t)x, t)/t)y, 0). n;, n„V„
and P are, respectively, the normalized ion density, elec-

In deriving Eq. (9), the ions are assumed to be much
colder than the electrons, i.e., T, /T, «1, the plasma
slow response is assumed to be quasineutral and quasi-
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acoustic wave periods, we get

T; Bn,
(V,"„)=—

2 ax ' ax T, ax
k

M2
1+k' (10)

and

static, i.e., n,'=n,', and V,'=V,'=0. In the absence of
nonlinear interaction, linearization of (9) yields the fol-
lowing dispersion relation: (12)

where k =k„+k, k„and k being the x and y com-
ponents of the wave vector k of the ion-acoustic wave.
The modulation group velocity (i.e., the velocity with
which the modulation propagates) of the wave is given by

BN

Bk„
co Oct)cos8= cosH,
k

which is the component of the group velocity (Bco/Bk)
along the direction of modulation, where 0 is the angle
between the wave vector of the ion-acoustic wave and the
x axis, the direction in which the modulation of the wave
amplitude propagates.

Now we calculate the electron density perturbation n,'

associated with the quasistatic plasma slow motion.
When the phase velocity of the modulation is much
smaller than the electron and ion thermal velocities, then
taking the x component of the momentum balance equa-
tions, using Eqs. (5)—(7) and averaging over the ion-

Bn,

Bx Bx
(13)

k„
Vh — ~

( 1+k 2)1/2yh
lX (14)

Substituting the value of V;"„ from Eq. (14) in Eq. (12),
and eliminating P' assuming n =n,', we get

( 1+k
n,'=—

2(1+yo )
(cos28) ~yh~2 (15)

where o = T; /T, is the ratio of the ion to electron tem-
peratures.

Substituting Eq. (15) in Eq. (9), we get

where the angular brackets denote averaging over the
ion-acoustic wave period. The left-hand side of Eq. (12)
represents the ion ponderomotive force. Now from the x
component of the ion momentum equation, we get

B2 B2 B2 B2 B21— yh
Bx' By Bt Bx By

B2

Bt

B' B' (1+k') .
By2 2(1+yo )

(16)

P"=e' P"(g, r)exp(

idiot

+ik„x+ik —y)+c.c. , (17)

where e indicates the magnitude of small but finite ampli-
tude P" and g and r are defined such that

Assuming that the nonlinear interaction of slow-
response quasistatic plasma with ion-acoustic waves gives
rise to an envelope of a wave whose amplitude varies on
time and space scales much more slowly than those of
ion-acoustic oscillations, we let

the P and Q are the dispersive and nonlinear terms, re-
spectively. The dispersion term 2P is the component of
the modulation group velocity dispersion (Bco/Bk) along
the direction of modulation

Vg
P =— cos8

2 Bk
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and

g= e' (x —Vgt) (18a)

or

(20a)

(18b)
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(19)

which is the nonlinear Schrodinger equation. In Eq. (19),

Substituting Eqs. (17) and (18) in Eq. (16), using Eqs.
(10) and (11),we get to 0 (e )

i ~ + [1—(1+3' )cos 8]
B~

cok+
4(1+go )

( 28
~
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~
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or

and

1P =— [1—(I+3co )cos 8]
2 k

(20b)

cok
cos 0 .4(1+pa. )

(21)

From the above expressions we note that the coefficient
P of the dispersive term is the same as that of Kako and
Hasegawa, while the coefficient Q of the nonlinear term
differs from that of Kako and Hasegawa, where the au-
thors included only the second-harmonic nonlinearities in
the study of ion-acoustic wave modulation. Our expres-
sions for P and Q (for y = 1) reduce to those obtained by
Shukla in the limit of parallel modulation, i.e., 0=0.
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The amplitude of an obliquely modulated ion-acoustic
wave, defined by the nonlinear Schrodinger equation (19),
will be modulationally unstable or stable according as
PQ)0 or PQ (0. '

For parallel modulation the coefficient P is always neg-
ative irrespective of the wave number. Similarly the
coefficient Q is always positive irrespective of the wave
number, which implies that PQ is always less than zero,
i.e., PQ (0. Therefore the ion-acoustic waves remain
modulationally stable in the case of parallel modulation.

In the case of oblique modulation, Eq. (20a) shows that
P consists of two parts; one of them is proportional to
cos 0 and depends upon the group velocity dispersion
(a'~/ak ). The other one is proportional to sin 8 and
depends upon the group velocity [i.e., on (1/k)(Bco/Bk)].
Now

and

8 co
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FIG. l. The plot of P=O in the k-8 plane. Q is always posi-
tive. The upper domain represents the modulationally unstable
domain for the ion-acoustic wave.

Thus the term proportional to cos 0 is negative for all
values of k, whereas the term proportional to sin 0 is al-

ways positive. The ratio of these two terms is
3k /(1+k ), which increases monotonically from 0 to 3

as k increases from 0 to ~. Hence the value of P will be
positive for lower values of k and negative for higher
values of k when tan 0 & 3, i.e., L9 & 60'. However, when L9

is greater than 60', i.e., tan 8& 3, the value of P becomes
always positive for all values of k. Physically one can say
that the contribution to P for 8) 60', refer to Eq. (20a),
from the group velocity dispersion is smaller than the
contribution from the group velocity term for all values
of k. While for t9&60', the contribution to P from the
group velocity dispersion and the group velocity term are
such that for small values of k, the first contribution is
smaller than the second but for the larger values of k, the
reverse is true. For a given value of k, P changes its sign
from negative to positive when 9 passes through a value

—1/2
1+4k

cos
1+k

We have plotted the P=O curve on a polar graph, in

Fig. 1, which separates the regions of positive and nega-
tive values of P. However, in the oblique case also, the
value of Q remains positive throughout the whole region.
Therefore for values of k-0 in the domain lying below the
curve P=O, the wave will be stable. And for values of k-

t9 the domain lying above the curve P=O, the wave will

be unstable. This is shown in Fig. 1. It is obvious from
Fig. 1 that for 0& 60', the wave is unstable for all values
of k. However, for L9 & 60', the wave in unstable only for
0 ( k (k,„,where k,„ is given by tan8/(3 —tan 8)'~ .

A comparison with the Kako and Hasegawa work in
which they have considered the second-harmonic genera-
tion nonlinearities, shows that an instability exists in both
cases of oblique modulation. But the instability region
comes out to be different in the two cases. The change of
the instability region is due to the consideration of
different types of nonlinearities.

To summarize, we have investigated the modulational
instability of obliquely modulated ion-acoustic waves in
an unmagnetized plasma due to nonlinear interaction
with a slow-response quasistatic plasma. It is found that
there exits a wide domain in the k-0 plane in which ion-
acoustic waves would be modulationally unstable. It is
also found that when 0& 60', the waves are unstable for
all values of k, whereas for 0 & 60', the waves are unstable
only for 0& k & k „, where k,„ is given by
tan8/(3 —tan 8)'
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