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Plasma heating by two laser fields in the presence of a strong magnetic field
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The heating of plasma electrons by two laser fields in the presence of a uniform strong static mag-
netic field via the inverse bremsstrahlung process is considered. A kinetic equation is derived, and
the change in kinetic energy of the Landau electrons is calculated. For laser radiation propagating
parallel to the magnetic field and incident on cold electrons, it is found that the heating rate in-

creases as the laser frequencies approach the electron cyclotron frequency.

I. INTRODUCTION

Attention is focused currently on the problem of plas-
ma heating (in 8 pinch or solenoidal magnetic fields) us-

ing laser radiation regarding nuclear hot fusion. ' In
particular, it has been shown" that the correct and
efficient way to achieve rapid energy absorption and a
large heating rate is to illuminate the plasma with two
laser fields, namely, a strong (pumping) field and weak
(probing) field, respectively, in contrast to the mecha-
nisms considered previously. Although the electron cy-
clotron frequency in these experiments is much smaller
than the laser frequencies, the magnetic field probably
has little effect on the rate of absorption of laser energy
by the electrons but has a major effect on particle
confinement. However, a resonance condition, where the
laser frequency is equal to the electron cyclotron frequen-
cy, may be approached by increasing the magnetic field
strength or by using longer-wavelength lasers. Since in-
tense submillimeter lasers are now available, it is there-
fore important to consider the cyclotron resonance ab-
sorption of these radiations.

The inverse bremsstrahlung process is now believed to
play a role in the heating of a plasma by two laser radia-
tions. During this process, a plasma electron gains ener-

gy from the two laser fields by absorbing laser photons
during a collision with a nucleus. We consider here the
inverse bremsstrahlung absorption of two laser fields, and
include the effects of a strong (quantizing) magnetic field.

The laser beams are treated as classical plane elec-
tromagnetic waves in the dipole approximation. The
plasma electrons are described by the solution to the
Schrodinger equation for an electron in the laser fields
and a uniform static magnetic field. Here, contrary to
the method described in Ref. 2, we will make use of uni-
tary transformation method to eliminate the laser field
dependences of the kinetic energy term. To be specific,
by using a unitary transformation the problem of an elec-
tron in the three external fields will be reduced to the
simple problem of an electron in the presence only of a
magnetic field.

II. FORMALISM

In this section we set up a procedure to solve
quantum-mechanical problems with the time-dependent

Hamiltonian. To begin with we write down the
Schrodinger equation for an electron in the two laser
fields in the presence of a strong magnetic field along the
z direction, namely,
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where A(t) is the total vector potential of the two lasers
and Ao is the vector potential of the magnetic field. We
now perform a unitary transformation in Eq. (1), name-
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P(r, t ) = Ug'(r, t ),
where
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The components of the vector functions p(t) and a(t)
are chosen to cancel the terms of H which are time
dependent and linear in r or p. Assuming the case of
linear polarization for the two laser beams the following
relations result:

The function p(t) produces a translation in space and
the function a(t) produces a translation in momentum.
Under a unitary transformation using the above operator
U, the Schrodinger equation for f' will have a modified
Hamiltonian. Since the functions p(t) and a(t) are arbi-
trary, we can use them to cancel unwanted terms in the
modified Schrodinger equation to transform the time-
dependent problem into a problem of a particle in the
presence only of a static magnetic field.

By substituting the expression for P in the Schrodinger
equation (1) we obtain the equation for P':

+I''i' =Hg,
at

where
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With this choice for P(t) and a(t), the modified Hamil-
tonian becomes

1 eH= p
— BXr

2m 2c

which is the Hamiltonian of an electron in a static mag-
netic field B. The solution of Eq. (3) with the Hamiltoni-
an H is well known and is given by the Landau wave
function.

Therefore, under U the problem of an electron in the
presence of the two laser fields and a static magnetic field
is reduced to the one of an electron in the presence only
of the magnetic field with the original wave function g
given by

p (r t)= eiPp seiarle1
v ~ L

ip„xi% ip, zlt( (
—i')z„r

III. TRANSITION PROBABILITY

Treating the nuclear potential V(r) as a perturbation,
the probability amplitude for the transition from the ini-
tial state i with quantum number v: (p„,p—„n) to the
final state f with quantum number v'= (p„'—,p,', n') is

ct(v~v')=( i / {'){if—f d r dt g„".v(r)g„. (5)—T/2

We write the Coulomb potential in the form

V(r)= 4rrZe fi gq—e
q

(6)

where r is the position of the nucleus. Substituting Eqs.
(4) and (6) into Eq. (5) and performing the integrations
over x and z, we obtain

r, =(fi/mco, )'l, y(l=p„/mco, .

In Eq. (4) y„(g) is the harmonic-oscillator wave function.

ct(v~v') =2iZe (2vrfi) g q exp[(iq r )/lit']5(p, ' —p„q„)5(p,' ——p, —
q, )I(y)

q
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and

I(y)= f dy X„(g—
g )e ' g„(g—

g )

A,;=eEO hpco /m(co; —co, ), i =1,2 .

is the field parameter.
Integrals in the y variable similar to the one in Eq. (7}

may be found elsewhere. The result is

I(y )=F(n, n', p),
where
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p=fi (q„+q~ )/2mfico, , (9)

and L„" "(p) is the Laguerre polynomial.
The integration over t in Eq. (7) may be performed after expanding the exponentials exp[( —iA, /iiico; )cosco, t] in the

form
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Then Eq. (7) may be written

a(v~v')=2iZe (2M) gq exp(iq r /fi)5(p„' —p„—q„)5(p,
' —p, —q, )F(n, n', p) g ( i)—
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In Eq. (10) JJ (x) is the Bessel function of order j and argument x.
Equation (10) is now squared to obtain the transition probability per unit time. We assume that the nuclei are ran-

domly distributed in space. Then the sums over the positions of the uncorrelated nuclei are

g g exp[i(q r —q' r .)/i)i']=N~5q q,
a a'

where N, is the ion density. The transition probability per unit time, summed over the nuclei, is

ia(v~v')i /r= g g T(l, m;v —+v'),
1= —oo m = —oo
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where qo= (p„' —p„,q~,p,
' —p, ) and po is given by Eq. (9) with qo instead of q. It followed from the 5 function of Eq. (11)

that the transitions are induced between Landau levels n and n with the absorption (l, m )0) or emission (I,m (0) of
~l

~
and ~m

~
photons of the two laser fields.

IV. KINETIC EQUATION

The change in N, (v'), the number of electrons in state v', may be written schematically as Eq. (12),
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where the third sum is over the quantum numbers of the
initial state. As in Ref. 2, we convert the schematic equa-
tion (12) to a mathematical equation by substituting the
transition probability (11). For example, the third term
in Eq. (12) becomes

&( —I, —m;v~v')N, (v)[1—N, (v')],

where N, (v) is the square of the matrix element of the
fermion destruction operator and [1—N, (v')] is the
square of the matrix element of the fermion creation
operator. These factors appear in the transition probabil-
ity when the electrons are treated using second quantized
theory rather than the first quantized theory used in Sec.
III. From Eq. (11}, it may be shown that
T(l, m; v —+v') = T( —1, —m; v' —+ v). Thus Eq. (12) may
be written

We now take the classical liinit of Eq. (13}letting

A~O, n~~,
such that

fico, (n+ ,' )~—,'m—u~~ .

Taking into account the degeneracy in p given by

(2irft) ' fdp„f'g=mco, /2irfi,

the sum over the quantum numbers of Landau state v is

Pl QP~
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Letting the sums over n and p, become integrals and us-

ing d„=(m /%co, )urdu~, we obtain in the classical limit
3
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(13)
A Maxwellian distribution is now assumed for the plas-

ma electrons. The classical limit of Eq. (13) is

B,(v') —mu /2k T —mU' /2k T=4z e N N m (m/2irk T) f d u(e —e )
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Where f, (v) is the electron distribution function. Equa-
tion (14) is the kinetic equation for the plasma electrons.

V. HEATING RATE

We proceed now to evaluate the sums and integrals in
the kinetic equation (14) from which the heating rate in
evaluated. From the beginning we have assumed the
laser fields to be linearly polarized plane waves

E;=E e„Osi ntco li =1,2)

so that the field parameters A.;=eEO;qo~co, /m(co; co,)—
appearing in the arguments of the Bessel functions in Eq.
(14) depend on the laser field strengths Eo, (i =1,2), the
laser frequencies co;, and the electron cyclotron frequency

The case co, &&co; is essentially the problem con-
sidered in a previous paper. We consider here only the

mWO

J (A,~/iiico~)5(Q —mfico2)

=
—,
' [5(Q—

A ~) +5(0+ki) ],

where Q=Q —I%co, 0—= —,'mv' —
—,'mv . The factor —,

'

may be verified by integrating both sites of the equation
over Q. The kinetic equation (14) becomes

interesting case co, =co;. We also consider the case where
one of the two laser fields, say, i =1, is a weak laser field
and laser i =2 is the strong pumping field. Then
A,z ))fico& and the argument of the Bessel function
J (A, i/A'co&) is large. For large values of argument, the
Bessel function j is small, except when the order n is
equal to the argument. The sum over m in Eq. (14) may
be written approximately
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df, (v')
=2Z e NN, m (m/2irk&T) exp[ —m(u') /2k&T]G,

G—= g J((k, /fi~, )f d v gqo ~F(n, n', po)~ [(e ' ' —1)5(Q —lb', —A~)
I = —oo

l&0
q

The first 5 function corresponds to the absorption and the second to the emission of A, z/iricoz photons of strong laser
field. Since X2&&Aco2, only multiphoton processes are significant. We assume that the electron temperature is low.
Then kz T « A, ~ and the emission term in Eq. (15) is negligible compared to the absorption term. Equation (15) becomes

=2Z e N;N, m (m/2irh&T) g J((A(/fico() f d u gqo ~F(n, n', po)~ exp( mv —/2ksT)
I = —oo q

1&0

x5(Q —lyrico, —Ai) . (16)

As for laser 1, the weak laser field, k, ((Ace, and the
Bessel function J& appearing in Eq. (16) may be written

approximately

1 1
J((r(,, /R(v, )

(1!)i 2 A(u(

and, consequently, only the l =+1 terms should be re-
tained; i.e., in the weak-field regime of laser 1 only
single-photon processes are significant. Also, in evaluat-
ing the heating rate from Eq. (16) we shall retain only the
l=+1 term (i.e., we neglect photoemission processes).
Proceeding further, in the limit of low temperature, the

Maxwellian distribution

N, (m/2irk&T) exp[ —(mv /2k&T)]

reduces to the 5 function 5(v). Before using this 5 func-
tion to evaluate the integration over velocity we notice
from the 5 function of Eq. (16) that v')) v for the intense
field case. Then, (v' —v). e„appearing in the expression
of the weak-field parameter, namely,

A, , =eEO, (v' —v) e„/((v; —cv, )

is written approximately as v' e„. Equation (16) then be-
cornes after integrating over velocity

df, (v')

at
1 «o& v 'e~ U'

=2Z e N, m g(q') ~F(n, n', p')~ — 5 m
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F(n, n', p') = n!
n'! e ei(n' —n )$ —p'/2

where q'=(p„', q,p,') and p' is given by Eq. (9) with q' in-

stead of q.
The expression for F(n', n, p') in Eq. (8) is very compli-

cated for arbitrary q because, in general, both the n ~n
and n ~n' (nAn') transitions are possible. For simplici-
ty we shall consider only transitions between neighboring
Landau levels n'=n+1 and also consider only upward
n =n+1 electron transitions. Which is valid if we as-
sume that the electron concentration in the plasma is
such that only the n =0 Landau level is fully occupied.
Under the foregoing considerations, Eq. (8) reduces to

1/2

gr( i) (n+r)
n P

(n+r )!
(n —1)!(r+1)!

F(o, l,p')=—e'~(p )'". (19)

The condition p' && 1 can easily be obtained by increasing
the magnetic field strength (p'~1/Ho). Equation (17)
then becomes

Bf,(v')

at

I 2
eEo, v -e

=2Z e N, m gp'(q')
2i6co )

With the use of these results for L„"(p') and taking into
account the situation where n =0, Eq. (18) reduces to

(p)(n—n)/21n' —n'(p)n) (18) x5 m(v ) eE02~2ql

((Oi QP~ )

If we now make use of the properties of the Laguerre
polynomials, ' Eq. (18) can be drastically simplified in the
case when p'«1 (p'=fiqi/2m', ). Under these condi-
tions,

(20)

Finally the rate of change of the average kinetic energy
of the Landau electrons is written as
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d(e) 3, m(v )

Ze~.m

4A co,

X J d u'(u')

.,—4~ m(u') eFo2ra2qt

(~2 ~2 )

Assuming now for the sake of the simplicity that the
electrons are moving parallel to the x direction, which is
actually the direction of maximum absorption of the
strong field photons (v' e„ is maximum), the sum over qs
and the integral over u' in Eq. (21) can easily be carried
out to give for the heating rate the final expression

d(e) 2 (fitr) Z a e N;ra&I, Iz
3cs/2m 2

(
2 2)2( 2 2)3

comparison with a previous calculation in which no
magnetic field was assumed, we find that Eq. (22) shows
laser-cyclotron resonance factors. In other words, the
presence of the strong magnetic field introduces a new
channel for absorptio~ of the laser energies by the elec-
trons. It thus follows that the heating rate can be made
very large whenever the laser frequencies equal the cyclo-
tron frequency of the plasma electrons. Absorption far
from resonance (ra, «co, ) is essentially the problem con-
sidered in a previous paper.

In closing, it has been proposed in this paper that plas-
ma be heated to thermonuclear temperature by the rapid
absorption of energy from two laser fields in the addition-
al presence of a strong (quantizing) magnetic field. We
have shown that the joint action of the two laser beams
plus the magnetic field results in a very large heating rate
whenever co;=co, (the resonance condition), in contrast
to the case where no magnetic field is present. This
shows that the plasma heating by two laser fields plus a
strong magnetic field may be one of the most eScient
mechanisms for the heating of a plasma by external fields.

where I, and I2 are the weak and strong laser intensities,
respectively, and a is the fine-structure constant.

VI. DISCUSSION AND CONCLUSIONS

Equation (22) is the plasma heating rate in the presence
of two laser fields under a strong dc magnetic field. Upon
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