PHYSICAL REVIEW A

VOLUME 41, NUMBER 4

15 FEBRUARY 1990

Quenching of Einstein coefficients in plasmas

Yong-Cong Chen* and Joel L. Lebowitz'
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903
(Received 31 May 1989)

We investigate possible mechanisms for the recently observed selective quenching of spontaneous
emission coefficients of carbon and nitrogen ions (C1v, C111, and N V) in laser-produced plasmas.
Various effects of the plasma electrons on the spontaneous emission of the ions are considered. We
suggest (by exclusion) that the cause of the phenomenon is the weak trapping of plasma electrons by
the radiating ions (producing C111, C11, and N 1v ions in highly excited states). These highly excited
electrons so strongly shift and change some low-frequency lines that they are not observed. The
branching ratio of line intensities from the same upper level then becomes proportional to the frac-

tion of ions not having any trapped electrons.

1. INTRODUCTION

The motivation of the present work is a search for an
explanation of the experimental observation of large
selective changes in the spontaneous emission coefficients
of an ionized atom in a dense plasma. The experiment re-
ported in Ref. 1 involved the measurement of the branch-
ing ratio of two lines from a threefold ionized carbon
atom CI1v, in a CO, laser-produced plasma. The two
lines correspond to transitions in the isolated ion from
the same initial hydrogenlike levels 3p 2P (denoted as lev-
el 3, which has two sublevels with a small L-S split) to
the final levels 3s %S (580}).5 and 5812.1 A, level 2) and
25 %S (312.42 and 312.46 A, level 1). The corresponding
isolated ion Einstein coefficients are A3, =0.32X 10® and
A3, =45.6X10% sec™!, respectively. It was observed
that, as the density of the plasma increased, the branch-
ing ratio of the intensity I3, /I, decreased by an order of
magnitude. We refer the reader to Ref. 1 for details. It
was noted there, in particular, that there was (a) almost
no change in the frequencies of the lines and (b) strong
evidence that the change in the ratio is due almost entire-
ly to a decrease in the emission coefficient of the lower
frequency line—the higher frequency line remaining
essentially unaffected by the plasma. Similar phenomena
were observed in laser produced NV and CIiI ions® as
well as for some spontaneous emission inside laser cavi-
ties® (the latter is, however, not considered in the present
work).

The explanation of these observations presents a
theoretical challenge. Many “obvious suspects” turn out
not be involved at all or to give effects which are too
small by some orders of magnitude.? Examples of ex-
planations that have been tried include (a) collisions be-
tween the bound and plasma electrons, (b) long-range
quasistatic effects of the plasma electrons and ions, and
(c) change of index of refraction in a plasma medium.
Further thought and explicit computations show, howev-
er, that (a) does not work because collisions, while giving
rise to broadenings and shifts of spectral lines, do not (un-
less they occur with a “very high” frequency) substantial-
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ly modify the total line intensity, and the experiment was
carefully done to capture the whole line by fitting it with
appropriate Lorentzian distributions,? (b) does not work
because calculations show that the effects are too small.
Besides, it would also predict a large line shift which was
not observed in the experiment."? Finally, (c) does not
work because the plasma frequency at the density
N ~10" cm ™3 is much smaller than either of the two fre-
quencies. Readers are referred to Ref. 2 for more discus-
sions on a number of other suspects.

It should be mentioned that variations of Einstein
coefficients also occur in other, very different, systems.4
Their theoretical explanation relies on the effects of some
kind of nonuniform medium (or environmental) polariza-
tions, which effectively decouple the interactions between
the radiators and the photon propagating modes. In view
of this it is natural to ask whether the plasma can play a
similar role: indeed, an order-of-magnitude estimate indi-
cates that the density of the plasma electrons near an ion
is greatly enhanced at low temperatures due to the
Coulomb attraction. However, a detailed analysis given
here does not support this conjecture.

In this work we study various effects of the plasma
electrons on a partially ionized radiator. At low tempera-
tures we find that owing to the strong, long-range
Coulomb interaction between the plasma electrons and
the bound electron(s) of the ion, a full quantum-
mechanical description is necessary for certain types of
problems. In Sec. II the general formalism for the Ein-
stein spontaneous emission in plasmas is presented, with
careful distinctions between different kinds of effects.
Qualitative and quantitative computations and discus-
sions are given in Sec. III, including comparisons with
the experiments. Some algebraic work is left to the ap-
pendixes.

The major conclusions of this work can be summarized
as follows. The effects of plasma polarization in the vi-
cinity of the ion, which appear large at first sight, are
suppressed when all orders are included. This is in con-
trast to the fact, mentioned above, that in other systems*
nonuniform medium polarization is believed to be re-
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sponsible for similar phenomena. What does seem to
offer an explanation are the effects of plasma electrons
weakly trapped near a partially ionized atom. A trapped
plasma electron (spectator) does two things: (i) It induces
screening of the zero-point electric-field fluctuations,
which couple the ion with the photon field and hence
cause spontaneous decays (while the photon modes and
their frequency distribution remain basically unchanged
since the overall density of the plasma is low); (ii) it stays
close to the ion for a long time and so produces much
larger shifts in the energy levels of the atom than do the
collisional electrons. Our study favors (ii), although in
some cases (i) might be significant too.

We believe that the phenomena observed in Refs. 1 and
2 are likely to have the following origin. The radiating
ions consist of two classes: those without and those with
weakly trapped plasma electrons. The latter are, of
course, nothing but highly excited states of the “previ-
ous” ions. In the first class the major effect of the plasma
is the usual quasistatic Stark and impact collisional
broadenings of a few angstroms; these have been widely
studied in the literature.” The line structure of the
second class differs sharply from that of the first. For
these ions the line shifts due to the presence of the
trapped electrons are particularly large (~10* A) for the
low-frequency lines. As a result, the spectral lines dis-
solve into a background that does not have either a
Lorentzian or a Gaussian shape. The crucial point here
is that the ‘“spectator” electrons induce very large line
shifts in the low-frequency lines. On the other hand, the
similar (but perhaps smaller) shifts in frequency do not
produce profound effects on the high-frequency lines
since they are typically covered by instrumental broaden-
ings (characterized in terms of wavelength). This picture
is supported by our semiquantitative numerical analysis
described in Sec. III. We find that there is a semiquanti-
tative fit to the experimental results in C1v and NV by
assuming a simple dependence of the trapping probability
on the plasma density.

II. GENERAL FORMALISM

Consider the production of photons with wave vector
k, polarization vector e, , and frequency w, by a radiator

centered at the origin having (for simplicity) one bound
electron with position R and momentum P. The whole
system can be divided into three parts: the photons in
the given mode, the plasma electrons, and the bound elec-
tron. We shall denote these parts by the subscripts ph,

1

YONG-CONG CHEN AND JOEL L. LEBOWITZ 41

pl, and e, respectively. The interaction between the pho-
tons and the bound electron can be written as
172
2mh (bf +b, P-e ,
wk o o o

e
H, =—
ph-e m

2.1

where bl and b, are the usual creation and annihilation
a o

operators for the photon mode. The interactions of the
photon mode with the plasma electrons are conveniently
expressed in terms of {a,:r ,a,}, the creation and annihila-
tion operators of the plasma electrons with eigenstates
|n ) to be specified below. We have
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with p= —i#iV the momentum operator which operates

on the wave functions of the plasma electron states; we
shall always ignore the spin of the electrons. The interac-
tions between the plasma electrons and the bound elec-
tron can be expanded in powers of R and the zero-order
term included into the total static potential. The dipole
and quadrupole interactions are then given by
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where T is the unit tensor. They are equally important for
the line shifts, as will become evident below.

The static potential ¥V (r) felt by the plasma electrons
near the radiator will, for a partially ionized atom, be
mainly an attractive Coulomb potential, whereas for a
neutral atom it will be of short range (either repulsion or
resonance scattering). This interaction is most naturally
taken care of by letting |n ) be the eigenstates of the plas-
ma electrons in the potential ¥ (r). The set {|n )]}, will,
therefore, in general contain bound states as well as con-

tinuum scattering states.

A. Transition rate

In the Heisenberg picture, the equation of motion for
the photon operator bI (¢)is

db! (1) e [ 22 72
d—‘;=iwkbla(z)+7n— Ty [P(t)+n’2ntl(n|exp(+ik-r)ﬁ|n')a:(t)a,,'(t) e (2.4)
and its conjugate for bko(t). The solution of (2.4) is given by
. e [ 20 |2
tooy_pt . , . e | 2m to
bka(t)—bka(O)exp(ta)kt)+fodt explioy(t —1)]— o, M), (2.5)

where
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M, (t")= [P(¢' )+2<n!cxp (—ik-r)pln’da)(

nn'

“a,(t") (2.6)

We need to specify an initial state of the whole system. Since we are only interested in the spontaneous emission cor-
responding to the transition of the bound electron from an upper lever |i ) with energy E; (initial state) to a lower lever
|f) with energy E + (final state), we may assume that the photon field is initially in its ground state while the plasma
electrons are described by a density matrix p( {at,a }) to be specified later. The expected number of photons at time ¢ is

then

(b] ()b, ()= |5

where ( ) is the average over the ensemble density of the
system at time ¢ and Tr; means the trace over the plasma
electrons and we have inserted the final state |f) in the
middle to project out the contribution from the particular
transition we are interested in. As usual, the spontaneous
emission rate per unit time is given by

(b} (Db (1))
W, = lim ———— . (2.8)
t— t
The total line intensity can be obtained by integration
over photon modes near the frequency wo=(E; —E;) /.
The formalism used above, though somewhat awkward
for the conventional discussion of quasistatic or collision-
al line broadenings (which depends on the “fluctuations”
of the plasma), is useful for discussion of the effects of po-
larization as well as trapping of plasma electrons. In any
case, the use of second quantization is merely symbolic
since in reality one is always far away from having a de-
generate Fermi gas.

B. Polarization of the plasma electrons

Note that the second term in (2.6) does not explicitly
involve R(?). The dependence on R(¢) will come from
the coupling of the plasma electrons with the bound elec-
tron. Physically it represents the effect of medium
polarization—the bound electron can be indirectly cou-
pled to the photon field through the medium, i.e., the
plasma electrons. The interactions (2.2) induce perturba-
tions of the plasma electron states. We shall need aJ (1)
and a,(?) to first order in R(z). This is sufficient for the
dipole transition since the linear polarization will dom-

2
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and its conjugate for a,(¢), where €, and g, are the

eigenenergies. For the calculation of the matrix element
(fIM,|i) the time dependence of R(¢) may be taken
proportional to exp( —iwyt). Writing

a(=al1)+8a] (1), (2.10)

and similarly for a,(t), then, to first order in the pertur-
bation, (2.9) yields

{(n|(e’r/r*)|n")-R(2)

= 0) .
5,(1) nz (e —c. )+ Fiog a,”’(t), (2.11a)
ninlte’r/r?)n ) -R(2)
8a, (1) , 2.11
a, (1) Za (6. —e,)—Fiag (2.11b)
where {a°(1),a!%(t)} are the zeroth-order Heisenberg

operators and some time-independent terms have been ig-
nored.
Using (2.6), (2.10), (2.11), and the relation

(flPt)lz)

(fFIR()]i)= (2.12)

we obtain for the transition matrix element (ignoring the
effects of photons on the operators of the plasma and
bound electrons)

inate the contribution [for other cases, e.g., forbidden (fIMli)=CfIP@]i)- I+2, T, () ]'ek (2.13)
transitions, inclusion of higher orders of R(t) might be wn
necessary]. The equation of motion for a,, Ye)is where
T(o)(t) (0)(t) 2 3 " ), —ikra " 2 3 ' —ikrQ|,, 7
P . .a, a, (nl(e?r/r3)n"Y{(n"e pln’)  (n"le’r/r’)n')(nle pln)
8= —1 (2.14)
mawy pr fwy+ (g, —¢, fiwy—(e,n—€,)

Going back to (2.7), we need to carry out the average over the initial distribution of the plasma electrons. We must

distinguish the discrete line a)o from the continuous background. There are two types of diagrams in (2.7):
operators a.” and aT(0 in ¥, , T, , are connected to those in ¥, ,, T :,

(a) The
This corresponds to transitions of the plasma

electrons into dlﬂ"erent final states and results in a continuous large spreadmg of the spectrum over the frequencies near

(0) T(O

. (b) The operators @, and a,

are connected within each ¥, . T

mn' OF X p L,, itself, which gives rise to

modifications of the discrete line at(_’a)o. Evidently only the latter is relevant to our consideration and we can bring the

averageinside ¥, T, ,and ¥, . T

nn This yields an effective matrix element
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<f]Mk<t)|i>eff=(f|P(t)|i)-ekg(T+<°f>av) ,

with

(T)y=3 exp
n,n’
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(2.15)
N KN
7l En e ima,
(nl(er/r3)n" ) (n"[g™® pln’) (n"|(e’*r/r*)|n"){nle "*Ppln") (2.16)

X2
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where { ), refers to the average over the distribution of
the plasma electrons.

Initial distribution of the plasma electrons

The determination of the initial state of the plasma
electrons presents some problems. A simple choice
would be the usual grand canonical ensemble which leads
to the Fermi (or in our case, Maxwell) distribution func-
tion f(g,). Some care needs to be taken, however, since
the plasma electrons are not just centered around this
particular radiator and there are bound states. We show
in Appendix A that as far as the continuum states are
concerned this choice is fairly convincing and, further-
more {|n )} can be most naturally identified as the set of
scattering states {Izpp)}, a plane wave plus outgoing
spherical scattering waves.

On the other hand, there are some problems with the
trapping of plasma electrons near the radiator. These
evidently depend on the details of the inelastic processes
which determine how the whole system evolves (e.g.,
Civ—C1ll— - --). The simple canonical ensemble
description therefore may fail for the bound states and
|

Alm=i2e at i+ S AL(ta](t)a (t){(a'<n
a 4 a a' n n'

where the quadrupole term has now been included. Note
that it is customary to ignore the perturbations of
{a:(t),a,,(t)} in this context.’ As one can see, the non-
vanishing diagonal matrix element of the quadrupole
term already gives energy shifts to the unperturbed
states, while the shifts due to the dipole term usually have
to enter via the mixing of different states—their magni-
tude depends on the spacing between the levels. The
former is, in fact, a dominant source of the so-called im-
pact broadenings and the latter causes the well-known
quasistatic Stark broadenings; both of them play impor-
tant roles in practice.’ In this work we turn our attention
to a less extensively discussed problem, the effects of trap-
ping of plasma electrons near the radiator. These “spec-
tator electrons’ are, we believe, most relevant to the un-
derstanding of the observations reported in Refs. 1 and 2.

III. IONIZED ATOM IN A PLASMA

To study the radiation of a partially ionized atom in a
dense plasma we have to consider the wave functions of

ﬁwo—(sn”_sn‘)

the actual trapping probability becomes uncertain. Since
a trapped electron stays for a long time close to the ion
and may cause large effects on its spectral properties, we
divide ions into two classes according to whether they do
or do not have trapped electrons. The effects of the plas-
ma on the two classes are quite different and we discuss
them separately. We then investigate the statistics and
dynamics of the trapping and escape of the plasma elec-
trons.

C. Line shifts and broadenings

The collisional line shifts and broadenings do not ap-
pear in (2.16). In fact, they arise from the perturbations
of P(¢) in the matrix element (fiMk(t)|i> and we have
to study the perturbations of all the eigenstates of the
bound electron. Denoting the creation and annihilation
operators of these states by { A1, 4.}, we have

P(1)= S (alPla’y 4} () 4 ,(1), (2.17)
while
T R+2R- |32 R n’>|a>], (2.18)
r r r
the plasma electrons inside the static long-range

Coulomb potential. Let the net charge of the ion be Ze,
then the attractive potential is

2 2
V(,)Z_Zﬁ“ or V = AnZe’
r p;p (p_pl)Z

in the momentum representation. Note that the two ma-
trix elements in (2.16) can be transformed into each other

via
(r

where we have ignored the factor exp(ik-r) in (2.16) since
k-r<<1. Even if one includes various screenings, i.e.,
when (3.1) is no longer valid, (3.2) still holds since we also
replace

ezr
r3

(3.1

e’r
3

(3.2)

N Sin’
1n> —7 (& g, nlpln’),

1 _ I A
— VV(r)—Zﬁ[p,H].

7 (3.3)
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A. Plasma electrons in the continuum states

Collisions of the incident plasma electrons with the ion
usually induce spectral line shifts and broadenings, which
has been a subject of extensive studies in the literature.
In addition, there might also be effects of plasma polar-
ization. For ¢, >0, we have {|n}={|¢,)} (where |¢,) is
the scattering wave function mentioned in Sec. IIB).
Therefore
(,1__,>av=2 Lf (ep)—fley)]

mZ

(e ) (BBl ) (BBl

(fiwg) — (g —¢,)?

p.p’

(3.4)

To proceed further, it is convenient to use the so-called
Coulomb unit where all lengths are scaled by the unit
length

7 _ 05294
me’Z VA '
In terms of this, the dimensionless momentum p,p’ are
usually very small (in our case, ~0.2-0.1). It is well

known that in a Coulomb potential the wave function
(I‘I‘l/Jp ) has the simple expression®

(rly,)=e™?I'(1—i/plexplip-r)

ro (3.5)

XF(i/p,1,ipr —ip-r), (3.6)

where F(a,y,z) is the confluent hypergeometric function
and I'(z) is the I function. The calculation of the matrix
element in (3.4) is rather lengthy and is left to Appendix
B. The result is

— 8%y (0)Y,(0)exp(—7/p’)

(Y 1Py, )=
¢p|p!¢p (p_pl)Z(pIZ_p2+i0+)
X A(p,p')[pB(p,p’)—p'B*(p’,p)], (3.72)
where
22 o |IPTIP
Ap,p)= |20 (3.7b)
(p—p")
and
. . . )2
B(pp)= |1+ |F|-L 14 L 2,1 - PZR)L
p p p (p+p")
(3.7¢)

with F(a,f,7,z) the hypergeometric function. For z =0
it is 1, whereas for z =1 we have

1+i F —i,1+—i7,2,1
p p p
__I+i/p—=i/p") (3.8)
r(1+i/p)T(1—i/p') * ’
Furthermore, at the origin
1,(0)2= 27 (3.9)

pll—exp(—27/p)] °

2131

Combining these together and substituting them into
(3.4) we then obtain the influence of the incident plasma
polarization on the spontaneous decay rate.

In the limit p,p’>>1 the result agrees with the first-
order perturbation result (with the conventional units re-
stored)

<‘fm>av

(4m)Z#e [ (p—p ) p—p) ]S (ep)— fley)]
. m [(p—-p’)2]2[(ﬁw0)2—(ep:—sp)z](ep'—ep) ’

(3.10)

In the opposite limit p,p’ <<1 one might expect, at first
sight, that (3.9) would increase this by some orders of
magnitude. However, (T),, is further suppressed by in-
cluding all the higher-order corrections (which is precise-
ly our case). This is because the matrix element (3.7) is
always suppressed (at least partially) by the exponential
factor exp(—m/p) or exp(—mw/p’) except for
(p—p')*<<(p +p’)* where the first-order result (3.10)
persists. Furthermore, inclusion of additional scattering
waves from short-range non-Coulomb interactions® or
virtual transitions between the continuum states and
bound states does not change this feature. Finally, (T),,
always tends to increase the spontaneous emission rate, as
can be easily understood from the well-known effect that
the refraction index in the plasma is usually smaller than
1 for frequencies higher than the plasma oscillation fre-
quency.

One can easily estimate the order of magnitude of the
plasma density required for the effect of polarization to
be significant. Equation (3.10) may be further simplified

372 oo,
kT

8Zme* 7
37k TH

272

T —
KT ll=N |2

’

(3.11)

where

' a2y a2

Y= 7 [ dpdp 22 lexp(—p ) —exp(—p")]
IS v ar [x?=(p*=p>*1p*—p?)

?_+_ ’

Xln -
p—p

. (3.12)

Taking, for example, the data given in Ref. 1 for the
lower-frequency lines of the C1v ion, Z =3, kT =5 eV,
wofi=2 eV, (p)=02mkT/#)'?=10°/cm, we get
KT ), l|=(2X1072)N, which is obviously too small
for the density N ~ 10'° cm 3 considered here.

B. Weak trapping of plasma electrons

Screening of trapped electrons

The existence of many bound states for the long-range
Coulomb potential raises new questions and possibilities.
Note that we are basically interested in the weak trapping
case where the trapped plasma electrons are still far away
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from the center. We first look at the screening of a
trapped electron. Let us assume that the electron is lo-
cated in a given energy eigenstate, say |n,). Equation
(2.16) can be readily generalized to this case. In fact, we
should now add an additional contribution from the
trapped electron to (3.4). This is given by

2e, —e, ) no){nolpln ) (n|plny)

A(T),,= (3.13)
% Zm [(fiwy) — (e, —€,)’]
Using
(nlﬁln')=ém(sn—s,,,)(nlrIn') : (3.14)
then in the limit #iw,—0 (3.13) yields
=g 1(—’
A(T)avlﬁwoA,():—;I, for fiwy—0 (3.15)

due to the completeness of the eigenfunctions. This is ob-
viously a “perfect” screening of the photon electron field
by the trapped electron. Equation (3.15) still holds when
the trapped electron spreads over several eigenstates, ex-
cept that now the off-diagonal correlation might induce
some satellite lines [cf. (2.16) and its derivation]. A cru-
cial question is then when does (3.15) become invalid as
fiw, is increased. Clearly, from (3.13) a sufficient criterion
for the validity of (3.15) would be fiw,<< the energy
spacing around the state |n,). This is too strict, howev-
er, and, in fact, in our case fiw, is roughly of the order of
the energy spacing between different eigenstates. This
causes further complications, but since the matrix ele-
ments in (3.13) are well known,” numerical evaluations
can and should be obtained.

Energy shifts and line broadenings

Another and, we believe, the most important conse-
quence of the trapping of the plasma electrons is to give
rise to large energy shifts in the electronic levels of the
ion (and therefore broadenings). This is due to the fact
that the trapped plasma electrons remain close to the ion
for a long time. We first roughly estimate the order of
magnitude of the induced energy shifts. For the dipole
interaction, the energy shifts are about

_IRIeE?* _ |R|%*
ﬁa—’o ﬁw0r4 ’

(8E), (3.16a)

where fio, and R stand for the relevant level spacing and
matrix element between eigenstates, whereas for the
quadrupole,
~ IRJ%e?

T -

r

(8E), (3.16b)
Note that from (2.18) the average over the quadrupole in-
duced shifts is zero since the average distribution of the
trapped electrons should be spherically symmetric so that
the quadrupole vanishes. In contrast, the average over
the dipole induced shifts is, in general, nonzero and
therefore require more attention.

Considering now as an illustration the CIV ion,
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fiv,=2.1 eV and a good estimate of |R| can actually be
made from the knowledge of the Einstein A4 coefficient.
Using the value presented in the Introduction and the
well-known formula A =4e’w’|R|?/(3%c?), we obtain
|R|=0.9 A. Thus
4
To
r l ’

3
Fo

r ] ’
in eV. For a trapped plasma electron in a hydrogenlike

state | ¢, ) we have’
4

(8E);~(8.3X10% (3.17a)

(3.17b)

(8E), ~(2X10%)

o | _ 3n’—1(+1)

r 2n3(1+3/2) I+ D) +1/2)0(0—172)
(3.18a)

, 3

A 1 . (3.18b)

r n3+ 1)U +1/2)1

Taking, for example (cf. the discussion below), n =10 and
=8, we have (8E);~6.5X107° eV and (8E )g
~3.9X107% eV; whereas for n =7 and | =5, we get
(8E);~0.2 eV and (8E), ~0.03 eV.

It is possible to study more quantitatively the dipole in-
duced energy shifts. Going back to (2.18) we need the
matrix elements between two hydrogenlike eigenstates
[¥im ?» and |¥,.p.,,.) for the trapped electron. From (3.2)
and (3.14), we obtain

2
er
<¢n1m } r3 ¢n'/’m'>
2

2

e 1 1 < r >
== (s | = (i) . (3.19)

41‘(2) n2 72 1»[}1 o 1/’ 1

Taking, for example, the 3 %S state of CIV and assuming
that there is a trapped electron with quantum number nl,
then the perturbing level n'(/ —1) will induce an energy
shift (within a factor of 2)

1<r/r0 Y wwa -l [ 1 1
O8E),; w1 —1)=2500 - —_ |,
( )nl,n(l 1) 2.13_(8,1_8"') nz n,2
(3.20)
where (r/ry), -1, stands for the usual radial in-

tegrals of the hydrogen wave functions (see, e.g., pp.
131-133 of Ref. 7) and all energies are measured in units
of eV. Equation (3.20) can be used to evaluate quite pre-
cisely the energy shifts. Note that for large n it is possi-
ble to find an »n' such that the denominator
[2.13—(e, —¢,.)] becomes very small and therefore in-
duces a large shift. For instance we take / =n’=6 then
n=9 B8E=0.057; n=10, S8E=-—0.041; n=11,
8E=—0.005; and n =12, 8E=—0.0022. These shifts
will all lie well outside the line profile of 3 2P —32S (ex-
cept, perhaps, the last one). Nevertheless, since the max-
imum angular momentum is given by n’, for a given ener-
gy level the number of states inducing large energy shifts
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remain nearly the same. The crucial point here is that
one either gets a very large shift (much larger than the
L -S coupling), with an “effective” trapped electron, or a
very small shift without it.

We now summarize the expected behavior of the radia-
tion in the presence of a trapped electron. We believe
that there are three important consequences for CIV
(similarly for N v, but there are some differences for C 111,
see below): (a) The additional interaction with the
trapped electron may overcome the L -S interaction so
that the L-S splitting of the upper 3P states will be
changed. It therefore follows that we no longer observe
the simple structure of two lines with the statistical
weight 2:1 and the distance 11 A between them. Conse-
quently, fitting of plasma broadenings based on this as-
sumption does not work appropriately. (b) The energy
shifts are distributed over a large scale. For a given ion
the shifts may have discrete values, but these will be fur-
ther heavily broadened by the collisional electrons since
the effective size of the ion becomes huge. (c) The upper
frequency line is affected much less than the lower fre-
quency one due to either smaller energy shifts or the
“visual” effect: A shift of 0.05 eV that will induce for the
former a change of ~ 150 A in wavelength and thus total-
ly destroy it within the range of observation, gives the
former only a small shift of 0.4 A which still stays inside
the line profile. We therefore conclude that for ions with
effective trapped electrons the lower (but not the upper)
frequency line will be so drastically altered that it will ap-
pear missing.

C. Modeling the trapping of the plasma electron

The above discussion suggests a possible explanation of
the “quenching” of the Einstein coefficients. It is simply
that the observed intensities of the lower frequency lines
come entirely from those ions which do not have any
trapped plasma electrons. They therefore preserve the
usual L -S splitting, cf. (a). The fraction of such ions can
become very small as the density of the plasma electrons
increases. The low-frequency spectrum of the other ions
dissolves into the background. The branching ratio
should therefore be multiplied, in this simple picture, by
the ratio R of “normal” radiating ions N,,, i.e., those with
no trapped electrons, to the total density of ions,

N, 1

R = = ,
N,+N, 1+N,/N,

(3.21)

with N, the radiating ions with trapped electrons. The
ratio N, /N, will certainly be a function of the plasma
density N, the temperature, and the internal structure of
the ions.>° It may also depend, if the laser produced
plasma observed in Refs. 1 and 2 is not in local thermo-
dynamic equilibrium on the specific kinetics of the
different competing processes, involving ionization, weak
trapping, and recombination. It appears that while the
ion recombination rate, e.g., CIv—C1II is two orders of
magnitude smaller than the relevant spontaneous emis-
sion rate,>®° collisional transition rates (with energy
transfer of the order of the lower-frequency lines) are
much larger than the latter."? Therefore during the
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course of a spontaneous emission, electrons can be cap-
tured into, and escape from, the highly excited states
many times. This would suggest that a local equilibrium
treatment may be reasonable.

Saha-Boltzmann approximation

It is argued’ that the populations of these highly excit-
ed states (cf. the criteria given in Ref. 9) should be in
Saha-Boltzmann equilibrium. It then follows that the ra-
tio N, /N, is determined by the Saha formula

N, N gqexplle, | /kT)

=a(T)N ,

= (3.22)
N, ~2(27mkT /#*)3"?

with g, the statistical weight of the nth level and N the
density of the plasma electrons. Taking kT =5 eV,
N=10" cm~3, and n,_, =12, we have N,/N,=10"".
This appears slightly small for the effect of trapping to be
important. However, since there are some uncertainties
in the temperature and density (perhaps a factor of 2 for
the former and 3 for the latter®), the two densities may
become comparable.

Nonequilibrium distribution of the trapped electrons

We tried to fit the experimentally observed R in Refs. 1
and 2 with the form (3.22), assuming T to be constant
over the region of observation and using a as a fitting pa-
rameter. This, however, did not work well. What does
work is the ansatz that N,/N, is proportional to the
square of the plasma electron density

1
1+(N/N,)?

I

R , (3.23)

where N, is the density at which R is reduced by a half,
is a fitting parameter. Since the C1v and NV ions have
similar internal electronic structures, we expect that they
should have roughly the same N,. We find indeed that
(3.23) is consistent with the results of the experiments
with the same N, for C1v and N v. This is presented in
Fig. 1. The data are taken from Refs. 1 and 2 and we
converted the density N into the experimentally mea-
sured ‘““distance from the target” according to Fig. 3 of
Ref. 1. The only fitting parameter for the two curves is
Ny=1.2X10' cm™>. The agreement between (3.22) and
experiment for the NV ion is exceptionally good. There
are some fluctuations in the CIv data; at large distances
it is probably due to the self-absorption discussed in Ref.
1 and at small distances the intensities of the lower line
might have been underestimated due to strong plasma
broadenings and background radiations (data for NvVv
were taken later and more carefully treated?). The exper-
iments on CIV and NV were carried out with the same
CO, laser and the relation between electron density and
distance was the same in both.!°

We do not have, at the present time, any convincing ki-
netic model which would yield the required N2 depen-
dence for the ratio N,/N,. Assuming, as is usual, that
the capture of an electron is a three-body process and
therefore proportional to N? while escape is by collisions
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FIG. 1. Comparison of the theoretical prediction using (3.23) with the experimentally observed normalized branching ratios: O for
Nv data and A for CIV data; the solid line is the corresponding theoretical curve (distance from the target is measured in centime-

ters). The common fitting parameter for both cases is Ny=1.2X10'® cm >

leads to the linear dependence (3.22). The N? dependence
might be caused by some deficiency in the escape mecha-
nism causing an accumulation of ions with trapped elec-
trons or by the existence of some other detrapping mech-
anism which is effectively independent of the plasma den-
sity in the region considered. It is important to note that
the C 111 ion does not fall into the same groups as NV and
C1v. The branching ratio for CIII starts decreasing at
rather lower densities’ compared to those of C1v and
N v. This evidently indicates that any explanation ignor-
ing the detailed internal electronic structure of the ions
would face serious difficulties. The difference is, we
think, related to the fact that the spacings between the
relevant energy levels are small so that more trapping
states are important. See, for example, pp. 213 and 214
of Ref. 5 and references therein, and note that the Stark
effect for C 111 is much larger than that for the other ions.

/ Trpy,

J

p(—to)=exp (—B3(e,—ua ;‘O’a o
P

where y is the chemical potential and {a!®,a”} are the

creation and annihilation operators of the momentum
states {r|p)=exp(ip-r). We now consider two ways of
imposing the static potential: (a) suddenly switch on
V(r) att = —t, and (b) adiabatically switch on V' (r).

exp [—B S(e,—pal®al® ] ] ,

3
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APPENDIX A: PLASMA DISTRIBUTION

We now discuss the initial distribution problem. As-
sume that at time t = — ¢, the density matrix of the plas-
ma electrons is given by the grand canonical ensemble of
noninteracting particles

(A1)

1. Sudden switch on of the static potential

In case (a), the density matrix at time ¢ =0 becomes

p(0)=exp _életO p(—ty)exp éHP,t0 , (A2)
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, is the true Hamiltonian (i.e., including the
Applying (A2)

where H,
static potential) of the plasma electrons.
to (2.16), we have

(a]@a?), =exp[ —ity(e,

—g,) 13 {pln X {(n'lp) f(g,)
P

(A3)

with f (g) the Fermi distribution function. This is a high-
ly oscillating function unless €, =¢,.. For ¢, >0 the ener-
gy spectrum is continuous. Summing over all possible n
and n' in (2.16) then leads to the result that only the &
functions at €, =g, and ¢,.=¢, contribute. Summing (or

P
integrating) over all directions of p then yields

(a] @), =f(e,)8, . » (A4)
which coincides with the usual Fermi distribution. This
is easily seen from the fact that in the region far away
from the radiator (which contributes the & function dis-
cussed above), {|n )} approaches to a different (or same)
set of eigenstates for a free electron, therefore (n|p ) —0
for e,7¢€, and 3 ,/p) {pl| can be simply taken out. Note
that (A4) is independent of possible choices of different
sets of {|n)}.

For ¢, <0, there is a finite probability of having the
plasma electrons trapped near the radiator even though
we started with all plasma electrons having positive ener-
gies. This is presumably due to the sudden switch on of
|

Vip—pi) -
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the interaction which involves some inelastic parts. This
cannot, however, be used for quantitative results since it
depends on how we switch on the potential, cf. below.

2. Adiabatic switch-on of the static potential

In case (b) we let 1,— oo and switch on the interaction
V(r) adiabatically. Note that we can equivalently de-
scribe the problem by slowly switching on V(r) starting
at t =0 and observing the system at t =t,— o, i.e.,

(a]%a\?), =Tr,[p(0)a)(1)aP(D]l,=, , (A5
where p(0) is given by (A1) and [a O(t)} are the
time-dependent Heisenberg operators evolvmg under the
adiabatic switch on of V(r) and the initial condition

T(0)(0)_ T(O’, a(o’(0)~ ,(,0’. They can be further ex-

pressed as linear combinations of { O(1),ald (1)},

a;”o’(t zza;"(m ¢ (pln> , (A6)

and its conjugate for a'°(¢). The Heisenberg operator
p 9(t) can be solved perturbatively as ¢t — oo. This yields

# p

a;‘o’(t)———zla;(,o’exp ~¢ t}(!l!p'!P) for 1 — oo
P

(A7a)

where

V(p,—1—Pn)

(Yplp) =58y +2 b

5,
= ipy p, ) (E

P

it —e ). —i0t — :
D, i0 £) (ep,. i0 € )

(A7b)

n—1

Here I7(p) is the Fourier transform of ¥ (r) and the states |1/1p } can be identified as the usual outgoing-wave scatter-

ing states.® Combining these we have, as t,— o,

(a]90) =3 f (e (dyln ) Cn'l9y)
P

(A8)

Choosing for €, >0{|n}={|¢,) ], we then recover the result (A4). But the right-hand side of (A8) vanishes for ¢, or
€, <0 because the eigenstates are orthogonal. This shows that a smooth switching on of the static potential tends to
reduce the trapping probability. Therefore the trapping of the plasma electrons need separate considerations.

APPENDIX B: MATRIX ELEMENT FOR THE COULOMB POTENTIAL

Equation (3.7) can be obtained by applying the method described in the appendixes of Ref. 6 (this must exist some-
where in the literature, but we failed to find a good reference). To start with, we use the integral representation of the

confluent hypergeometric function®

(rly,) =y, 00 f . —2

t)r/p—l(l_t) I/Pexp[l 1—1) p r+l(pt +10+) ]

where the contour C passes round both the points ¢t =0 and 1, see Fig. 2. Using this, we have

dtdt

<‘/’ph’l'pp)““lﬁc f(” p't't/r+

(1—¢')p'lexp[ —i (1 —=t)p-r—iptr +i(1—¢t')p’r+ip't'r —0*r],

(B2)
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Contour C

t plane

FIG. 2. Contour of integration C for the integral expression
for the wave function 1,(r).

where
A =ﬁ¢;(0)¢p:(0) (B3a)
and
flt)=(=0)~ P~ (1—y)i/P
X (=) /P (=)~ (B3b)
Integration over r can now be done and we obtain
didt’
(Y IPlYy)=—8m4 §———f(1,1")
Volbldy i sﬁc(—zm)zf
i[p't'B+a(l1—1t')p’]
X , (B4)
(a?—B?)?
J
(p—p))i
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t—

[(p—p P —(p?—p*)—2i0%plt +(p'*—p*)+2i0%p

This then leads to

41
with
a=p't'—pt+i0* (B5a)
and
B=(1—t')p'—(1—1t)p . (BSb)

Both the numerator and denominator in (B4) can be fur-
ther written as

i[(1=t")p'a—p'Bl=ipp't'(1—t)—ip'pt(1—t’')  (B6a)
and

a’—B-B=1'S,(1)—8,(1), (B6b)
where
S (0)=2(p-p’—pp’')t +2(p'—p)-p' —2i0"p’ (B6c)
and
S,(1)=2[(p'—p)-p+2i0*plt +(p—p')* . (B6d)

Equations (B6b)-(B6d) are written for convenience of
integration over ¢’ and the second term in the right of
(B6a) can be transformed into the first term. We there-
fore write

(Bl ) =874 {C(p,p")+[C(p',p)]*} , (B7)
where
drdt’ N —ipt'(1—1)
Clp,p)= ——f(t,t")
(p,p Pﬁc(_zm.)zf ['S1(D—S,(n]
i - i/p+1
_ — _ i/p'—1
pﬁc == [—S,(0)]
X[S,(0)=S,(0] /771 . (BS)

It can be further simplified by the following transforma-
tion

, - ?—p?+2i0*
Clp,p')= N2 12 pz F E—F 2 £
(p—p' ) (p"“—p~+2i07p’) (p—p’)
i/p+1
dt 1—t (p—p)?
Xﬁc Nl T 1= t
(—2mi) | —t (p+p')

Now using the formula (see, e.g., the Appendix E of Ref. 6)

$c

and combining (B6)-(B9), yields Egs. (3.7).

i/p+1

dt (1—zt)~ /P 1=

(—27ri)

1—t¢

—t

F

1++
p

(B9)

i/p’

—p—p? __|”

p,2_p2+2i0+p;
—i/p'—1
(B10)
i i

~Lie Lo, B11)




41 QUENCHING OF EINSTEIN COEFFICIENTS IN PLASMAS

*Present address: Department of Physics, University of Science
and Technology of China, Hefei, Anhui, People’s Republic of
China.

fAlso at Department of Physics, Rutgers University, New
Brunswick, NJ 08903.

Y. Chung, P. Lemaire, and S. Suckewer, Phys. Rev. Lett. 60,
1122 (1988).

2Y. Chung, H. Hirose, and S. Suckewer (unpublished); S.
Suckewer and Y. Chung (private communication).

3F. Aumeyr, J. Hung, and S. Suckewer (unpublished).

4E. Yablonovitch, T. J. Gmitter, and R. Bhat, Phys. Rev. Lett.
61, 2546 (1988), and references therein; see also S. Haroche
and D. Kleppner, Phys. Today 42 (1), 24 (1989).

5H. R. Griem, Spectral Line Broadening by Plasma (Academic,

2137

New York, 1974).

6L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-
relativistic Theory), 3rd ed. (Pergamon, New York, 1977).

7E. V. Condon and G. H. Shortley, The Theory of Atomic Spec-
tra (Cambridge University Press, London, 1959).

8S. Suckewer, Nukleonika 14, 893 (1969); 14, 1069 (1969), J.
Phys. B 3, 380 (1970); 3, 390 (1970); C. J. Keane, Ph.D. thesis,
Princeton University, 1986.

9K. N. Koshelev, J. Phys. B 21, L593 (1988); R. Konig, K.-H.
Kolk, N. Koshelev, and H.-J. Kunze, Phys. Rev. Lett. 62,
1750 (1989).

105, Suckewer (private communication). For details, see Y.
Chung, Ph.D. dissertation, Princeton University, 1989.



