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Nearest-neighbor distance distributions and self-ordering
in diffusion-controlled reactions. II. A +8 simulations
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Monte Carlo simulations of transient, di6'usion-controlled A +8~0 reactions are performed on
one-, two-, and three-dimensional Euclidean lattices and on a fractal lattice (two-dimensional criti-
cal percolation cluster). The particle distributions are analyzed by partial nearest-neighbor distance
distributions (NNDD), taxicab NNDD, and linearized NNDD. Comparisons are made with
NNDD and interparticle distributions of the A + A ~0 and A + A ~ A reactions (extending some
of the simulations of the preceding paper [Phys. Rev. A 41, 2113 (1990)]),revealing some empirical
connections. The aggregation of like particles and the segregation of unlike particles are monitored
in time, for the various di6'usion topologies. The relations between the partial NNDD, the micro-
scopic and mesoscopic ordering, and the global rate laws are discussed.

I. INTRODUCTION

Paper I of this series exhibited the self-ordering in
transient A + A reactions constrained to low-
dimensional spaces: one-dimensional and two-
dimensional lattices as well as square-lattice critical per-
colation clusters. The interparticle distribution function
("gaps") and the nearest-neighbor distance distributions
(NNDD) were the tools for analysis. The first one (gap)
has been used in analytic approaches (in one-dimensional
continuum only), but has as a drawback that it is limited
to one dimension. The equivalent NNDD can be gen-
eralized to any dimension (even fractal ones) and has been
used with a taxicab ("Manhattan" ) metric. (The taxicab
geometry is a non-Euclidean geometry, named for its ap-
plicability to models of urban geography for the case in
which square networks represent the interconnecting
streets, e.g. , for the Manhattan Borough of the City of
New York. ) This approach considers particle distances as
the sum of their Cartesian coordinate differences. It has
been shown' for the A + A reactions that the NNDD are
good order indicators, that they scale with reactant con-
centration, and that there is a simple relation between the
NNDD and the global rate laws. The surprising
differences in the NNDD of A + A ~0 and A + A ~A
reactions have been shown to diminish with increasing
dimensionality.

In this paper we extend our investigation to A +B re-
actions and to higher dimensionality (cubic lattices) and
we add some methods for particle distribution characteri-
zation. The somewhat surprising results reveal empirical
connections between the A + A and the A +B reactions.
While the aggregation of like-like particles (AA, BB) is
rapid, this is not followed by a rapid segregation of the
AB particles. The aggregation and segregation are moni-
tored via partial NNDD functions. The partial AB
NNDD functions are actually very similar to the NNDD

of the A + A reactions, particularly for the annihilation
(A + A ~0) reaction in one dimension. These similari-
ties are preserved in the higher dimensions (including
d =3), even though the differences between the annihila-
tion and the fusion ( A + A~0) reactions become smaller
with increasing dimensionality.

To make the simulation of the particle distributions
also feasible in three dimensions, we use a linearized
(linear cuts) NNDD approach (explained in Sec. II). This
reveals the local, microscopic ordering that takes place in
three dimensions (creating local "black holes" ).

We also attempt to fit empirically some of the NNDD
functions, with partial success. These empirical fits are
also tested against a local-rate laud formalism-.

II. METHOD OF CALCULATIONS

The mechanisms for the chemical reaction calculations
are similar to those described in paper I. BrieAy, parti-
cles with two distinct identities are placed randomly on
lattices of one-dimensional, two-dimensional, and three-
dimensional topologies. No two particles of any type are
allowed to occupy the same site simultaneously.
Diffusional motion is simulated as random walks by all
particles, in the spirit of all previous work on this sub-
ject. ' If particles of opposite type are found to occupy
the same site at any one time, they are annihilated, signi-
fying a chemical reaction. Two A or two B particles are
not allowed to collide or react. The search for the
nearest neighbors is performed in the same method as
previously. The breadth-first search (BFS) technique is
also used here for locating the nearest neighbor in the
random percolating clusters. The simulations were per-
formed on various Microvax Computers. Key numbers
are given in Table I.

The distributions in two dimensions and three dimen-
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TABLE I. Kinetic and distribution data. N is the number of
particles of each component.
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FIG. 1. NNDD for one-dimensional A +B~O reactions.
Shown are the t =0 curve (random distribution, same for all
cases) and the t =1000 like-like (AA), like-unlike (AB), and
particle-particle (PP) distributions for nearest-neighbor dis-
tances (2000 runs). Also shown is the distribution for gaps for
the like-unlike case (5000 runs). Total number of lattice sites is
10000 and the initial (t =0) concentration is 0.05 for A and
0.05 for B (0.1 for P).
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III. RESULTS AND DISCUSSION

sions for the linear neighbors are obtained as follows:
Each direction (front-back, left-right, up-down, as the
case may be} is searched separately. For the two-
dimensional lattices first all rows are searched, one by
one. Neighbors only on the same row are recorded, while
all other particles are being ignored. Cyclic boundary
conditions are used in all directions. In many instances
no such neighbors are found, in which case there is no
contribution to the distribution function. After all rows
have been searched, the columns are treated similarly and
added to the previous function to improve on the statis-
tics. Finally, for the three-dimensional lattices the same
is done to the heights. We note that the search obeys the
cyclic boundary conditions, but is terminated at r =I,
where I is the linear dimension of the lattice (200 for
square lattice, 40 for cubic lattice).

cle partial NNDD (AA as well as BB) is "compressed"
into a superexponential shape while the like-unlike (AB)
partial NNDD is Wigner-like, ' i.e., with a well-
developed maximum. This is even more pronounced for
the interparticle (gap) AB partial distribution. We note
that the AB gaps are all located at reaction interfaces,
while the AB NNDD has contributions from "shielded"
particles (e.g. , in an A AB cluster, both the short and the
long AB distance contribute to the AB NNDD, while
only the short one contributes to the AB gap). Figure 2
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Figure 1 shows the NNDD distributions for A +8~0
on a one-dimensional lattice. The initial (t =0) distribu-
tion is the random (Hertz) Poissonian distribution. ' '

After 1000 reaction steps the overall particle-particle
(PP) distribution is still essentially the same (random).
However, there is significant structure visible in the par-
tial distribution functions (the given t = 1000 curves differ
little from t =100 and 2000 curves). The like-like parti-
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FIG. 2. Same as Fig. 1 in semi-log form.
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is a semilog presentation, emphasizing the non-
Poissonian nature of all the partial NNDD's.

Figure 3 compares the above AB NNDD to the
NNDD of an A + A ~0 reaction (paper I), under similar
conditions (same lattice, po=0. 05, t = 1000). It is obvious
that the two distributions are essentially identical (ac-
cidentally?). We note that presently there is no analytical
form available for the A + A~O NNND (or gap). We
only know that in the large distance limit the NNDD de-
cays exponentially (see paper I), that for the short dis-
tance limit it rises linearly (paper I) and that overall the
skewed-exponential form (xe ') is an approximate, but
crude fit (paper I), as can be seen from Fig. 4.

Figure 5 gives the A +B~0 NNDD and partial
NNDD functions for a two-dimensional (square) lattice.
The A A partial NNDD is significantly shifted
(compressed) relative to the t =0, random (taxicab Hertz)
distribution (which is practically the same as the Hertz
distributions of paper I). On the other hand, the AB par-
tial NNDD is practically indistinguishable from the
Hertz NNDD, at this level of simulation. The particle-
particle (overall) NNDD appears to be nonrandom, and
in between the A A and AB distributions (as expected).
Based on the present quality of simulations, the AB dis-
tribution may or may not differ from the two-dimensional
A + A reaction distributions (paper I). We further note
that the two-dimensional random (Hertz) NNDD has a
skewed Gaussian form (paper I), which may or may not
also be the case for the AB NNDD, but is certainly not
the case for the A A NNDD (and PP NNDD).

Figure 6 gives the A +B~0 partial NNDD curves for
the critical percolation cluster on a square lattice. The
AA partial NNDD differs significantly from the t =0
(random) NNDD while the AB partial NNDD may differ
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FIG. 3. Comparison graph of the A + A~O and A +8~0
reactions in one-dimensional space. The A + A ~0 NNDD
data (,t =1000) is taken from paper I while the AB NNDD is
taken from Fig. 1.

from it only slightly (and is shifted in the opposite direc-
tion?). This "fractal kinetics" case, with a fractal dimen-
sion of 1.896 and a spectral (fracton) dimension of 1.333
appears, indeed, to be in between the one-dimensional
and two-ditnensional situations (d =1 and 2, respective-
ly). The AB partial NNDD is also quite similar (within
the simulations uncertainties) to the A + A NNDD
curves (paper I).
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FIG. 4. Plot of P' [defined as 1n P (r) —1n(r I( r ) )+1n( r ) ] vs (r —1)/( ( r ) —1) for the data of Fig. 3.
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FIG. 9. Linearized NNDD (see text) for three-dimensional
A+A and A+B reactions. All curves are for t =10 steps, ex-
cept the t =0 (random distribution). Top to bottom (right-hand
side): (1) A+ A~A; (2) A +BE, AB NNDD; (3) A+B~O,
PP NNDD; (4) A + A~0; (5) t =0, random NNDD; (6)
A+B~O, AA NNDD. 5000 runs on a 40X40X40 cubic lat-
tice with initial density pa= 0.05 for each component. (r) is
given by p

(compare to Figs. 1 and 5). This is also clear from Fig. g,
which demonstrates again that only the overall (PP)
NNDD is quasirandom, while the partial ( A A and AB)
NNDD deviate significantly from a Poissonian form. We
note that while this statistical analysis is one dimensional
(along the cut), the chemistry (reaction) is still two di-
mensional, so that there is no reason to expect the one-
dimensional kinetics results of Figs. 1 and 2. For corn-
parison purposes, Figs. 7 and 8 include also the
A + A ~0 and A + A ~A kinetic NNDD curves (com-
pare paper I). Qualitatively these curves again resemble
the AB NNDD (compare Figs. 3—5).

Figures 9 and 10 give the linearized NNDD represen-
tations of the three-dimensional (40X40X40 cubic lat-
tice) A +B and A + A reactions. The finite size efFects
are even more severe here. To avoid them in part, the ki-
netic results are given for t =10 (there is little change
with larger t). Instead of (r), we use here p '. This im-
proves the x-axis normalization, but does not completely
correct for the finite size effects. Figure 9, however,
suffices to establish the presence of local gaps (black
holes) due to the reaction process. These are only of the
order of the reaction cross section (a lattice unit), and
thus expected from the standard Smoluchowski —de
Gennes approach. ' '" Even the two-dimensional lattice
"holes" are not much larger than the reaction cross sec-

FIG. 10. Semilog plot of Fig. 9 data.

tion. Figures 8 and 10 probe more clearly the potential
difference between the two- and three-dimensional kinet-
ics: The deviation from a random (Hertzian) distribution
is restricted to very small interparticle distances in three
dimensions (this is also true for t =100). This is only
slightly less true for the two-dimensional lattice (but
much less so for the lower dimensions). In addition,
there is not much difference between the NNDD of the
A + A and those of the A +8 reactions. It thus becomes
obvious that on the time scale of these kinetic runs, no
large-scale (macroscopic) segregation takes place, in con-
trast to the asymptotic (long-time) results of Ovchinnikov
and Zeldovich, ' Toussaint and Wilcek, ' and others. ' '
This is also corroborated by the similar behavior of the
A + A reactions, where no segregation is possible. Our
interest is thus focused on the microscopic (or mesoscop-
ic) ordering, which obviously does occur.

In summary, we have found interesting empirical
correlations among the nearest-neighbor distributions of
the A +A and A +8 reactions. We hope that this will
spur further analytical investigations concerning the spa-
tial distributions of the A +B (and A + A) reactions in
the short- and medium-time domains in all dimensions.
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