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Nearest-neighbor distance distributions and self-ordering
in diffusion-controlled reactions. I. A + A simulations
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Monte Carlo simulation of transient, diffusion-controlled annihilation (3 + A ~0) and fusion

(A + A ~3) reactions have been performed on one- and two-dimensional lattices and on the frac-
tal, critical percolation cluster of a square lattice (applying a breadth-first search algorithm). Fast
self-ordering is demonstrated via analyses of the interparticle distributions and the nearest-neighbor
distance distributions (NNDD). Good agreement is obtained with the few existing analytical results

in one dimension. For the higher dimensions (where there are no analytical results and where the
interparticle distances are not uniquely defined), we find the NNDD via a "taxicab" approach. We
obtain the kinetically self-ordered particle distributions and relate them to the global rate laws.

I. INTRODUCTION

DifFusion-controlled coagulation (fusion) reactions
were first treated by Smoluchowski' and have been of in-
terest in astrophysics, materials science, chemistry,
biology, ' and engineering. They are often symbolized
as A + A~A, A+A ~ inert, or A +A~ product.
Closely related is the annihilation reaction '

A +A~0. An important implicit assumption is that
any A + A collision results in reaction (with probability
unity). Obviously, in the opposite limit (low reaction
probability), the overall reaction becomes "reaction limit-
ed" rather than diffusion limited. The classical rate laws
are always valid for reaction-limited reactions, but impor-
tant exceptions exist for the diffusion-limited case. While
the short-time deviations (from classical theory) have
been known since Einstein's work, it is only in the past
decade that extreme deviations from the classical picture
have been found under long-time and steady-state condi-
tions. '

While ex post facto it is obvious that deviations from
the classical rate laws imply that the reacting particle dis-
tribution must be partially ordered (rather than randomly
distributed), ' this self-ordering of reactants has only
been addressed very recently. ' ' Actually, the more
complicated binary reaction ( A +8) has been discussed
much earlier' in terms of the reactant self-
segregation, which is a special case of self-ordering. The
latter ordering can be macroscopic and does occur, in
principle, in three dimensions (after long times, and with
no convection currents). However, it is actually diScult
to observe it experimentally. On the other hand, the
A + A reactants self-order quickly, but only on a meso-
scopic scale and for dimensions below two. Evidence for
such self-ordering has been found very recently from
simulation, ' ' ' from analytical theory, " and also from
experiments. '

Quantitative questions of interest are the following. (i)
What is the critical dimension for ordering? (ii) What are
natural order parameters? (iii) What are the ordered dis-
tribution functions? (iv) What is their relation to the glo-
bal rate laws? (v) Is there a one-to-one relation between
them? (vi) Are the distribution functions universal? (vii)
Are the theoretically derived asymptotic distribution
functions valid at finite times? (viii) What are the effects
of steady-state generation? (ix) What is the role of the
source term? (x) How good are empirical distribution
functions? This work attempts to answer some of these
questions.

We find the critical dimension to be two, in accordance
with scaling arguments. ' ' The interparticle (gap)
distribution in one dimension is skewed-Gaussian
(Winger-like' ' ') for the A + A ~A reaction, in agree-
ment with Doering and ben-Avraham's analytical form"
and with earlier simulations. ' However, for the
A+A~0 reaction it differs in agreement with the
asymptotic arguments of Bramson and Griffeath23 (and
previous simulations '), i.e., at long interparticle dis-
tances the distribution is fitted by an exponential decay
(and at intermediate distances by a skewed exponential).
The resulting nonuniversality does not contradict the
well-known, universal, global rate laws' "" (these glo-
bal rate laws are obtained from a newly derived local rate
law).

We also replace the interparticle (gap) distribution
functions with nearest-neighbor distance distribution
(NNDD) functions, in order to generalize from one to
higher dimensions. These NNDD's are also used to
define order parameters. The simulations are performed
and analyzed for transient fusion (A + A ~A) and an-
nihilation ( A + A ~0) reactions on one- and two-
dimensional (square) lattices, as well as on the connected
percolation cluster at criticality (on a square lattice).
These results for transient reactions are compared to
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some results on steady-state reactions. ' ' '

The generalized Hertz NNDD definition, ' ' ' i.e.,
the probability density function P(r) for the nearest-
neighbor distance r, is adapted to lattices and fractal to-
pologies, using a "taxicab geometry" (see the appendix}
that is meaningful for reaction kinetics. (The taxicab
geometry is a non-Euclidean geometry, named for its ap-
plicability to models of urban geography for the case in
which square networks represent the interconnecting
streets. ) To obtain these modified NNDD functions we
use a powerful computer algorithm, breadth-first
search (BFS), in connection with the percolation cluster
analysis. In contrast, we note that the gap (interparticle)
distribution is defined only in one dimension: The distri-
bution of distances between sequential particles.

TABLE I. Kinetic and distribution data. (N is the number of
particles. )

A+A~0
N

One-dimensional

0
100
500

1000
2000
5000

10.25
27.13
50.83
70.10
97.55

152.54

500
217.5
117.1
85.7
61.8
39.5

10.24
20.54
33.22
43.70
58.64
89.70

500
311.8
200. 1

155.3
116.1
77.0

0
100
500

1000

19.92
45.64
84.24

114.54

One-dimensional gap
500
217.4
117.1
85.7

19.92
31.92
49.64
63.91

500
312.0
200.2
155.2

0
100
500

1000
2000
5000

2.88
7.40

14.04
18.96
25.84
38.66

Two-dimensional
2000

332.6
91.7
50.6
27.6
12.3

2.84
5.74

10.31
13.67
18.49
27.63

2000
579.2
176.8
99.4
54.7
24.3

0
500

5.16
23.22

Two-dimensional p,
522.3
66.03

5.15
16.95

520. 1

121.6

0
10

100
500

Three-dimensional
3200
1773.1
385.2
89.1

3200
2281.5

688.2
173.5

II. METHOD OF CALCULATIONS

We utilize regular one-dimensional and two-dimen-
sional lattices, and fractal lattices made of percolation
clusters exactly at the critical point. The one-dimension-
al lattices are 10 000 sites long, while the two-dimensional
are 200X200 with square planar geometry. The percola-
tion clusters are formed by using binary lattices with the

occupational probability p exactly at the critical percola-
tion threshold (p, =0.5935}. The largest cluster is iso-

lated using the cluster multiple labeling technique
(CMLT}. Details of these procedures have been previ-

ously reported. ' Typical initial densities are p0=0.05
particles/site (see Table I).

The details of the reaction mechanism are as follows:
Initially, a certain density of particles is generated ran-
domly on the lattice. No two particles are allowed to oc-
cupy the same site, i.e., we impose an excluded volume
effect. If a particle happens to fall on top of another par-
ticle it is simply not allowed to occupy this site and a new
trial is initiated. At this point there is a difference with
the Hertz formalism, which is good in the continuum,
and therefore has no such effect imposed on it. We thus
expect a somewhat longer average interparticle distance
than in the Hertz case, and this is exactly what we find.
For example, for the one-dimensional lattices, for
pa=0. 05 particles/site, the expected Hertz average inter-
particle distance is (r ) = f 0"rP(r)dr =1/(2po)=10,
while our simulation result (Table I) is (r ) =10.25. The
average interparticle distance (r ) is found by first con-
structing the complete probability distribution function
(PDF) P(r) of nearest-neighbor distances. The nearest-
neighbor distances are defined via a taxicab geometry.
This is fairly straightforward for the case of perfect lat-
tices, as in this method the distances are calculated sim-

ply from the difference of the particle x and y coordi-
nates, i.e., r = ~b,x ~+ ~ Ay ~. For a disordered random sys-
tem, such as a percolation cluster, the situation is sorne-
what more complicated, as the random voids present in
the lattice make the previous method inapplicable. To
be kinetically meaningful, the taxicab path is constrained
to be only within the cluster. Thus here we use an a1go-
rithm called breadth-first search. This algorithm
searches for the nearest neighbor of a given particle by
first looking only at the immediate neighboring sites.
Here, for the square lattice the four nearest neighbors are
picked. We label them as visited by this search and place
their (x,y) coordinates and distance from the original
particle (in this case r =1) in a roster, which is kept in

memory until the end of the search, i.e., until the nearest
neighbor is found. Next, we look for the nearest neigh-
bors of all sites in the previous roster in the same way.
We place their coordinates (x,y) and distances r at the
end of the roster, one site at a time. Every new site that
is encountered is labeled as visited; its distance is simply
the distance of the previous (mother) site plus 1. If a site
is encountered that does not belong to the largest cluster
(nonpermitted site) it is ignored. Thus a traveling wave
(breadth) is formed in all directions, but it covers only the
region of the largest cluster, and it follows all the random
paths of this cluster. Eventually the distance between
two particles in whose direct path happens to be a closed
site is calculated around this site and not over it. The
process is continued until the first particle is found. This
is, by definition, the first neighbor, and its distance is
recorded and placed in the PDF. Once the PDF is comp-
leted, the average distance (r ) is found quite simply by
averaging over all realizations in our calculation.

The reaction proceeds in the usual way, i.e., all parti-
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1.0 with time of the chemical kinetics formalism ' (see
below).

0.8

0.6

0.4

0.2

0.0 1.0 2.0

(r -1) / (&r&-1)

3.0 4.0

FIG. 5. Distribution P(r) for fractal two-dimensional lattice
kinetics. The data here is for pa=0. 05 from calculations similar
to that in Fig. 4, but the reaction here is limited to the largest
percolating cluster at the critical point. 10000 runs for the
A+ A~ (stars) kinetic data (t =500) and 1000 runs for the
A + A ~ A (circles, t =500). The random curve (solid) is for a
low density (7000 runs).

B. Rate laws

The above discussed self-ordering has a drastic effect
on the macroscopic kinetic equations. ' Only a random
ensemble is guaranteed to lead to the classical kinetic
equation (rate law)

—p 'dp/dt =kp . (6)

Our ad hoc assumption replaces' ' ' the above equation
with

—
p 'dpldt =kP(r ~1)

for a lattice (with lattice distance normalized to 1). For
the A + A ~ A equation in one dimension we obtain
from Eq. (1), for the random (Hertz) distribution,
P(r~l)-p, in accordance with classical kinetics, i.e.,

~dp/dt~-p . However, for longer times, Eq. (2) [with
Eq. (7)] gives P(r~l)-p . This is in accordance with
the third-order rate law ( ~dpldt

~
-p ) discovered in re-

cent years . O'bviously, there are other possible P(r)
distributions that will give the same third-order rate law,
such as that of Eq. (5). We note that Eq. (5) is only a
crude approximation for the A+ A ~0 reaction, though
we know that ~dpldt~-p is the correct asymptotic
( t ~ ae ) rate law.

(t = 1000) functions in one dimension are consistent
with x =1, in agreement with the analytical solution"
for A + A ~A and with earlier A + A ~0 simula-
tions. ' ' ' Obviously, the two-dimensional Hertz func-
tion is also consistent with x = 1 (see the Appendix). On
the other hand, the critical percolation cluster exhibits
x=1.2 and the kinetic NNDD's in two dimensions
(square lattice) give x =1.3 —1.4. The latter is consistent
with a conjecture' discussed below.

IV. DISCUSSION

A. Self-ordering

10--0

5 ~ i

4 ~ ~

3

10 '--

7"
5 ~ ~

4 ~ ~

3 4 ~

In all the systems simulated, the ensemble develops
from a random particle distribution (Hertz) to a kinetical-
ly ordered particle ensemble (KOPE). This transforma-
tion is mostly complete in a very short time (order of 100
steps for the densities we studied) and practically steady
thereafter. The asymptotic KOPE distribution, which is
achieved so rapidly, is obviously a partially ordered distri-
bution. Our simulations show the self-ordering pattern
for one-dimensional systems (Figs. 1 and 2), two-
dimensional (square lattice) systems (Fig. 4), and two-
dimensional fractal (percolation cluster) systems (Fig. 5).
The self-ordering in the one-dimensional lattice fusion re-
action (A t A ~ A) follows that predicted by Doering
and ben-Avraham" for the one-dimensional continuum
space (Figs. 2 and 3). For the one-dimen-
sional annihilation reaction ( A t A ~0) the interparticle
distribution is consistent (Fig. 3) with the Bramson and
Griffeath prediction (for asymptotically large interparti-
cle gaps). This self-ordering underlies the fast change

10--
7"
5"

10 I
l

10-a 2 3 4 5 7 0-a 2 3 4 5 7 10o 2 3 4 5 7 10110
r/&r&

FIG. 6. P(r) vs r j(r ) in log-log form. Top to bottom (left-

hand side): (1) t =0, random one-dimensional NNDD; (2)
A + A ~0, one-dimensional NNDD; (3) A + A ~A, one-
dimensional NNDD; (4) t =0, random two-dimensional NNDD
(smoother curve); (5) A + A ~0, two-dimensional critical per-
colation cluster NNDD; (6) A + A ~ A, two-dimensional criti-
cal percolation cluster NNDD; (7) A + A ~0, two-dimensional

NNDD; (8) A+ A A, two-dimensional NNDD. All curves
are for t =1000, except the percolation cluster (t =500). The
data are the same as in the previous figures.
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P(r 1)-p' r" f (9)

For d =1 (f —
—,') this agrees with the analytical solu-

tion" and for 2 =3 (f =1) with the random Hertz distri-
bution.

For the square lattice, the situation is more complex
because of the logarithmic corrections in the kinetic ex-
pression

p'dp—/dt =kp/lnp .

This leads to the expression

P(r~1)-p/Inp,

(10)

with an even more complicated r contribution. Alterna-
tively, for simplicity, effective f numbers have been as-
signed to the square lattice problems. ' ' A typical
value is f =0.87, leading to

P(r I) 1.15r1.3 (12)

The power of r (x = 1.3 } is consistent with the simulation
result (Fig. 6) which gives x =1.3 —1.4 (see above). In
contrast to this apparent success for the two-dimensional
lattice, this approach [Eq. (9}]is suspect for fractals, and
does not seem to work for the percolation cluster, where
we expect x =1.9/0. 67—1=1.8 and find only x =1.2
from the slopes in Fig. 6.

C. Summary

We have found an important degree of kinetic self-
ordering for the A + A reactions up to d =2 (we show in
the following paper II some residual kinetic ordering
even for d =3). This is consistent with d =2 being the
upper critical dimension for A + A kinetic
anomalies. ' z The self-ordering is surprisingly rapid (al-
most complete after 100 steps). The kinetically ordered
particle ensembles are consistent with the predictions
based on analytical approaches. " There appears to be a
simple relation between the NNDD, P(r), and the global
rate equation —p 'dp/dt-KP(r + I). However, —the
universality of the global rate equations, i.e., fusion and
annihilation reactions giving the same exponents, is not
preserved in the self-ordering. Here difFerent P(r) func-

It has been shown that

—p 'dp/dt =kp', t 00 (8)

where f is the time exponent ' in the relation S-tf
and S is the number of distinct sites visited by a random
walker. ' We can thus hypothesize that, to satisfy
Eq. (7), one may have (t ~ ao )

tions are found for fusion and annihilation, giving a
many to-on-e correspondence between P (r) and the global
rate law.
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APPENDIX: HERTZ DISTRIBUTIONS
FOR TAXICAB GEOMETRIES

P (r) = A p exp( —
p V), (A 1)

where V is the volume of a sphere of radius r and A its
surface area. For a continuum Euclidean space V=a;r'
and 3 =i a; r' ', so that

P(r)=ina;r' 'exp( —na;r') . (A2}

We note that for a taxicab geometry Eq. (Al) can be used
[but not (A2)]. For a square lattice the two-dimensional
"sphere volume" is

V=(r+1) +r =2r +2r+1,
and the one-dimensional "sphere area" is

A =4r +2,

(A3)

giving a Hertz function

P(r)=(4r+2)pexp[ p(2r +2r+1)]-
which for r )) 1 is approximately equal to

P(r)= 4pr exp( 2pr )—. —

(A5)

(A6)

This should be contrasted with the two-dimensional
continuum result (from A2)

P(r)=2ttpr exp( ttpr ) . —

From our simulations we find that

(A7)

(A8)

Combining (A6) with (A8) gives Eq. (3) (text)

P(r)=(tt/2)(r/(r ) )exp[ (tt/4)(r/(r ) ) ] . (A—9)

The generalized Hertz distribution for all dimensions
(including fractals ) is
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