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The strong-potential Born approximation has been formulated to include effects of elastic scatter-
ing in initial and final states. We use the standard distorted-wave theory and the eikonal approxi-
mation to derive closed-form expressions for scattering wave functions. Our results show that
lowest-order theories must account for off-energy-shell electron propagation in the strong potential
as well as for elastic scattering in initial and final states. Capture from inner shells and radiative

electron capture are computed to illustrate the theory.

I. INTRODUCTION

To describe collisions of highly charged ions with
atoms or ions of relatively low nuclear charge, Briggs' in-
troduced an expansion in powers of the ratio A. of the
small nuclear charge to the large nuclear charge. This
idea, which has long been used in the theory of bound
states of many-electron atoms, provides a comprehensive
framework for understanding collisions between highly
asymmetric systems. Further development has clarified
the analytic properties of the expansion in the small pa-
rameter A, for one-electron systems. The general
theory based upon Briggs's expansion parameter is now
referred to as the strong-potential Born (SPB) theory. '

Accurate representation, to lowest order in k, of both
asymptotic and intermediate states is necessary for a con-
sistant theory of electron capture. Previous work, which
emphasizes only one of these aspects, is incomplete. In
this paper we show how to incorporate both features
without undue numerical complications and examine the
effect of channel potentials which are needed to represent
asymptotic states to lowest order in k. In the formula-
tion given by Macek, ' several alternative forms of the
transition amplitude are considered. In an exact theory
all forms are naturally equivalent, but in approximate
computations where the power series in X is necessarily
terminated at low order the different forms are not
equivalent. Besides retention of all terms in a given
power of k inherent in a perturbation approach, it is
desirable that the matrix element not draw contributions
from regions of coordinate space where the approximate
wave functions are inaccurate. This is particularly im-
portant in scattering theory since some expressions for
transition matrix elements may draw contributions from
large distances where only exact functions are adequate.
For that reason expressions that draw the main contribu-
tion from regions concentrated near the "condensation
point, " ' where all particles are close together, are
favored. Then values of matrix elements are sensitive to
the asymptotic region mainly through normalization con-
stants.

Distorted waves that incorporate channel potentials
exactly serve both to describe elastic scattering in first ap-

proximation and to yield expressions for transition ma-
trix elements which emphasize the condensation region.
The main disadvantage of channel-distorted wave func-
tions is the difficulty of computing terms in the perturba-
tion expansion. For that reason the use of channel poten-
tials has been restricted to first-order calculations" and
to forrnal developments. ' As noted earlier, ' one effect of
the application of the channel-distorted wave-function
formulation is to exactly remove terms in the expansion
of the T matrix associated with the divergences noted by
Mapleton' and reemphasized in connection with the
SPB expansion for electron capture by Dewangan and
Eichler. ' These terms were left out in previous evalua-
tions of the SPB approximation. The original form of the
SPB approximation for electron capture may accordingly
be viewed as a derivation of the channel-distorted wave-
function formulation in which the distorted waves are ap-
proximated by undistorted waves after the cancellation
of these terms has been completed. The problem with
divergences is accordingly completely solved and of no
further concern in this paper. It is the inhuence of the
channel distortion beyond this cancellation that is the
main object in this work. Notice in particular that elec-
tron states pertaining to the smaller of the nuclear
charges are perturbed by the stronger field. The elastic
distortion of the corresponding channels can accordingly
not be ignored in a consistent expansion to first order in

We show in this paper that it is possible, within the
context of standard peaking approximations, to evaluate
these terms without undue complications. The theory
that emerges is more broadly applicable than the original
SPB theory. Most importantly, it applies to radiative
electron capture (REC) without the ad hoc modifications
needed to bring cross sections into agreement with exper-
iment and with more intuitive models. ' '

The notation and general formulation is given in Sec.
II. Various perturbation expansions are discussed in Sec.
III. Section IV introduces channel modified SPB wave
functions. The wave functions are evaluated using peak-
ing approximations that are consistent with expansions of
transition amplitudes in powers of k. We find that the
channel modified SPB wave function interpolates between
the impulse approximation (IA) and the unmodified SPB
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wave function depending upon the characteristics of the
channel potential. Capture from inner shells is con-
sidered in Sec. V. In Sec. VI we apply the theory to radi-
ative electron capture and show that it is essentially iden-
tical to the impulse approximation in this case. Our con-
clusions are summarized in Sec. VII. Atomic units are
used throughout, although we shall occasionally indicate
the mass of the electron m explicitly for clarity.

II. NOTATION AND GENERAL FORMULATION

In this work we are concerned with the following pro-
totype reaction:

Zp +(Zr, e ); ~(Zp, e )& +Zr+ph (2.1)

where Zp and Zz are the nuclear charge numbers of the
projectile and the target, ph represents a photon to indi-
cate the possibility of radiative electron capture.
Throughout the paper the three-particle system is treated
as a quantum-mechanical scattering problem. An entire-
ly equivalent description based on the time-dependent
impact-parameter method has been indicated in a
separate publication. '

The initial and final states of reaction (2. 1) are de-
scribed in terms of different sets of Jacobi coordinates.
We use a notation where rz and R~ represent the posi-
tion vector of the electron with respect to the target nu-
cleus and the position of the projectile with respect to the
center of mass of the target atom, respectively. In these
coordinates the initial state of reaction (2. 1) is

P aP —1

Kp 1 a (2.7)

Following the notation of Ref. 18, we define for later con-
venience the average momentum transfer vectors

K=PK —K„J=aK,—Kf ~' ( f (2.8)

In previous developments it has been customary to ig-
nore the internuclear potential Vp=ZpZz'/R from the
outset with the implicit understanding that an eikonal
transformation must be implemented if angular
differential cross sections are required. It should be no-
ticed that the validity of the eikonal approximation relies
on the fact that Mp and Mz are much larger than m for
ion-atom collisions. If positrons are used as projectiles
(Mp=m) or if positronium targets are considered
(Mr =m ), full inclusion of Vpr is essential for a proper
description of the reaction processes. ' ' The present
work is restricted to ion-atom collisions only. We may
therefore ignore the internuclear potential from the
outset. For completeness a general discussion is given in

Appendix A to show that any distortion potential com-
mon to initial and final channels can be eliminated in the
eikonal approximation.

The coupling to the radiation field will be ignored
throughout, except for radiative processes in which case
a first-order perturbation treatment of the coupling to the
radiation field suffices. The full Hamiltonian of the sys-
tem may therefore be written

&rr, Rrl+;) =q;(rr)(()K (Rr) . (2.2) H=HO+ Vp+ Vy-=Hy-+ Vp =Hp+ V (2.9)

Here y, is the initial-state wave function of the target
atom and (t & is a plane wave with wave vector K„

where Vr = Zr/rz. and—Vp= —Zplrp. The free Ham-
iltonian Ho is given by

Pz (Rr)=(2m) exp(iK Rr) .
i

(2.3)
1 1 1 1

H = — V ——V2 2 V ——V2 2

2LM; ~ 2 ~ 2p P 2
(2.10)

»Rpl+f ) %f(rp)( K (Rp) ' (2.4)

We use a sign convention such that Rz and Rp are al-
most equal. It is, nevertheless, important to retain the
small difference between the two vectors to account prop-
erly for the electronic and nuclear momentum exchange
during the rearrangement collision. The two sets of coor-
dinates are related according to

A similar set of Jacobi coordinates are used to
represent the final state of the reaction in Eq. (1)

The corresponding channel perturbation is accordingly
given by

V, =Vp .

Similarly, we write

(2.12)

where iu; (p&) is the reduced mass in the initial (final) ion-
atom configuration.

The initial state given in Eq. (2.2) is, by definition, an
eigenstate of the initial Hamiltonian

(2.11)

rp a —1

Rp 1 —aP P

where a and P are defined by

(2.5)

and

Hflc f )Hpl kf )Efl@f)

Vf = V~

(2.13)

(2.14)

M~

m +Mz-

Mp

m+Mp
(2.6)

and where M~, Mp, and m represent the mass of the nu-

clei and the electron, respectively. The corresponding
transformation in momentum space is

E,-=c., + K,
1

2p;
(2.15)

in the final channel. Using c., and cf to denote the inter-
nal energy of the initial and final electron states y; and

yf, the total energy of the states may be expressed as
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1
Ef =gf+ Ef .

2pf
(2.16)

V, = U, +8, , (2.17)

where the residual interaction 8', is effectively of short
range and the distortion potential U, is simple enough
that corresponding distorted waves l4,*) can be deter-
mined. That W, (rr, Rr) is of short range means that
Rz-8', goes to zero as R~ becomes large, while rz. is kept
fixed. Reaction cross sections may then be obtained in
the usual way from the absolute square of distorted-wave
transition elements

r~, = &cf l wflq, & .

Here, the exact scattering state is given by

le,') =(1+6+w, )lc,'&,
where G+ is the full Green's operator

6+ =(E H+i ri)—

(2.18)

(2.19)

(2.20)

More explicitly, we may write the distorted-wave T-
matrix element as

'rf; = ( 4f l ( Vf
—Uf ) + ( Vf —Uf )6+ ( V; —U; ) l 4,+

(2.21)

Since the. potentials in Eqs. (2.12) and (2.14) contain
long-range Coulomb terms, the standard T matrix is not
well defined on the energy shell. Rather a satisfactory
theory may be based on the distorted-wave theory of
scattering amplitudes. This relies on a separation of the
channel potential V, (c =i or f), into two components

actly eliminate all diagonal —so called secular —terms
from the coupling matrix by standard procedures. The
corresponding distortion potentials are given by'

U, (Rr)= f drrly, (rr)l V~(rp) (2.22)

in the initial channel and

Uf(Rp)= f drplyf(rp)l Vr(rr) (2.23)

in the final channel. This choice of distortion represents
the static potential between the aggregates in initial and
final channels and thus accounts for elastic scattering to a
reasonable accuracy at intermediate and high velocities.
It is, in principle, possible to go beyond the level of a stat-
ic channel potential to include polarization and virtual
transitions in the distortion potentials, but in the present
context it suffices to allow for such effects as higher-order
terms in a perturbation expansion of the exact T matrix
in Eq. (2.21}. Equation (2.21) has been previously dis-
cussed where U; and Uf were regarded as arbitrary. The
present considerations serve to obtain more precisely
defined channel distortion potentials U; and Uf. %e em-
phasize that the internuclear potential Vzz=Z&Zz/R is
correctly omitted in Eq. (2.21) within the eikonal approx-
imation. The formulation is accordingly valid for ion-
atom collisions, but not if light projectiles such as posi-
trons are involved. In a more general formulation, the re-
sidual potentials would remain unchanged since the inter-
nuclear potential in V, and U, would cancel, but the
complete distortion potential should be retained to define
the distorted initial and final states. Further, V~~ would
then be retained in the Green's operator in Eq. (2.21).
Practical evaluation beyond the eikonal approximation is,
however, a formidable computational task.

which is well defined on the energy shell E; =Ef=E pro-
vided the residual potentials V, —U, vanish faster than
1/R at large internuclear separations R.

Since the distortion potential U, is of long range, the
Lippmann-Schwinger equation cannot be used to define
the distorted states l4,+—). Rather these states may be ob-
tained directly by solving the Schrodinger equation with
suitable asymptotic conditions. The distortion potential
U, is formally arbitrary except for an asymptotic condi-
tion that makes 8', of finite range, but the choice of U, is
important in practice when the T-matrix element in Eq.
(2.21) is approximated by some perturbation expansion of
the exact scattering state in Eq. (2.19). In this connection
it should be realized that the phase variation of the initial
and final states over the region of space where the T-
matrix element receives its main contributions is as im-
portant for a correct determination of the magnitude of
the transition amplitude as is the absolute normalization
of the states. Phase variations are, however, difficult to
represent accurately over an extended interaction zone.
It is therefore essential to choose the distortion potentials
in initial and final channels so as to minimize the effective
range of the residual interactions.

To examine this problem further, consider the T ma-
trix in a multichannel representation using asymptotic
eigenstates as basis states. Then, it appears natural to ex-

III. PERTURBATION EXPANSIONS

Apart from the eikonal approximation to remove the
internuclear potential, the expression in Eq. (2.21) for the
T-matrix element is exact, but too complicated to be eval-
uated without further approximations. To arrive at a
manageable form the exact Green's operator G+ may be
suitably approximated, preferably by expanding in
powers of a small parameter. In the case of highly asym-
metric collisions Zz &&Z~ such an expansion is provided
by the strong-potential Born series

G+ =Gp++Gp+ V~Gp + (3.1}

where the first-order term is given by the projectile
Green's operator

Gp+ = (E —Ho —Vp +i g ) (3.2)

[1+6 ( V U;)]le,' & =G Vrl@,' & (3.3)

Then Eq. (2.21), with G+ approximated by Gp+, appears

Considering specifically an initial target state, we may
use the fact that ir)G~+l4,+) is identically zero since
l@,+ ) is asymptotically orthogonal to the complete spec-
trum of the projectile Hamiltonian Hz =Ho+ Vz to
prove the following identity, derived by Faddeev: '
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in the form

Tf& (Cf l(VT Uf)Gp VTl@& ) (3.4)

This may be viewed as the channel-distorted strong-
potential Born (DSPB) approximation for electron cap-
ture in asymmetric collisions. It retains, however, some
higher-order contributions in the small parameter
A, =Z~/Zp via the weak channel distortion included in
the distorted final state l4f ). These contributions may
be consistently omitted in lowest order by replacing
l4f ) by the undistorted final state l4f ). Since Uf in
Eq. (3.4) is chosen according to Eq. (2.23), it is easy to
show, following Macek, ' that the contribution from
Uf Gp V7 is exactly canceled by the elastic pole contribu-
tion from VzGzVz to obtain

T =(4 lV G'+V l4+) (3.5)

where Gp+ is the projectile Green's operator excluding
intermediate scattering in the final electron state

l~„)(~„ln n

„~fE —E„+ig (3.6)

We note that if the distortion in the initial channel is ig-
nored Eq. (3.5) is readily shown to be identical to the
form evaluated, for example, by Macek and Alston and
by Sil and McGuire.

In formal derivations and in approximate evaluations
using various peaking approximations, it has been useful
to introduce the SPB approximation to the complete
scattering state. ' ' In the present distorted-channel
generalization the SPB wave function is defined by

le+ '")=[I+Gp'(vp —U, )]le,')
=G+v la+) (3.7)

where the last equality derives from Eq. (3.3). The origi-
nal form of the SPB wave function is obtained if the dis-
tortion is ignored. In most applications, l%,

+ ) is fur-
ther approximated. Usually, the final-state pole contribu-
tion to Gp is then automatically omitted. This is the case
in the often employed near-shell approximation. Under
this proviso we have

TDSPB (@ l
V lql+DSP )fi f T i (3.&)

Te"C, DsPB (4 l( V —U )G+ V l@ ) (3.9)

Here, Gp+ is the complete projectile Green's operator and

The compact form of the electron-capture amplitude
given by Eq. (3.5) and of the scattering state given by Eq.
(3.7) is peculiar to the SPB expansion. The expression for
the capture amplitude is particularly interesting because
it emphasizes the double-collision nature of the capture
process and that the leading term in an ordered expan-
sion in powers of A. =Zz-/Zp is proportional to k . In
this connection it is of interest to compare with a similar
development for target excitation by a highly charged
projectile. As in case of electron capture, we may use the
relation given by Eq. (3.3} to show that Eq. (2.21) in this
case may be expressed as

the distortion must be retained in the residual interaction
in the final channel since the final state pertains to the
target atom and accordingly is distorted by the strong
projectile field. It is seen from Eq. (3.9) that a consistent
theory for target excitation by a highly charged ion is of
first order in the small parameter k. Comparing Eq.
(2.21) with (3.9) shows that the double-scattering term
must be retained as for electron capture. This is to be
contrasted with the much simpler situation in case of ex-
citation by a weak perturbation where the ordinary first
Born approximation provides a consistent first-order
theory.

IV. STRONG-POTENTIAL WAVE FUNCTIONS

To obtain a physically transparent interpretation of the
strong-potential Born expansion it is useful to examine
the channel distorted SPB wave functions in some detail.
The original work of Macek and Taulbjerg demonstrated
how the SPB approximation relates to the impulse ap-
proximation and it was emphasized that off-energy-shell
effects play an essential role in this connection. In this
section we analyze the channel-distorted SPB wave func-
tions introduced in the previous section, and find that the
distortion plays an equally important role.

By definition, the channel-distorted SPB wave function
is given in two equivalent forms in Eq. (3.7). The com-
pact version is most useful in the following derivation.
The distorted initial state is written as a product of a
plane wave Pz and a distortion factor D K,

I

(rT RTI+ ) =q, (rT)'((~ (RT)DQ (RT) (4. 1)

(4.3)

Here the two complimentary sets of wave vectors
(q, Q) and (k, K, ) are related according to Eq. (2.7) as

q=k —v, Q=uK, +k, (4.4)

where v =K, /p, is the incident velocity vector and terms
of order 1/M have been ignored. The operation of the
Green's operator on the product of plane waves in Eq.
(4.3) is now readily evaluated since the interatomic kinet-
ic energy operator in Gp+ may be replaced by
(Q+S) /2pf. The remaining part of the operator only
acts in the electron coordinate space. The result is

To evaluate Eq. (3.7) we introduce the Fourier transforms
y;(k) and D K (S} of the initial electron wave function

and the distortion factor and use the Schrodinger equa-
tion in momentum space to write the Fourier transform
of the product V(rT)q&;(rT) as

VTy;(k) =(E, —
—,'k')P;(k) . (4.2)

We then obtain

y+DsPB(r R )

=(2m) i Jdk(E, —
—,'k )p;(k)

X IdS D K (S)Gp+fg+s(Rp )Qq(rp )
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(r R )=(2~) fdky, (k)

c. ——'k
X fdSDK(S)

E,s

Xyq+. (rp)yq+s(R, ),

where cs is given by the relation

c =—'q'+c ——'k —v.S

(4.5)

(4.6}

and where terms of order 1/p; have been neglected.
Note that terms of this order have implicitly been ig-
nored already in the eikonal approximation, which we
have used to remove the internuclear potential. The elec-
tron wave function in Eq. (4.5) is given by

the internuclear wave is a 6 function, y (q, c, ) is identical
to g+(q, e). The ordinary SPB wave function is, accord-
ingly, properly identified from Eq. (4.11) in this limit.
Similarly, the impulse approximation is obtained from
Eq. (4.11) if y+ is unity. More generally, y+ in Eq. (4.13)
appears as a suitable average of the off-shell factor g+
over the momentum distribution in the elastic channel.

To evaluate this modified off-shell factor y we insert
Eq. (4.9) into Eq. (4.13) to obtain

y+(qe, ) =(2q )'"exp(n v/2)

X I (1+iv)( ,'q——e)(2m )

X fdSD z (S)[—,'q —e+v.S)] ' '" . (4.14}

Using the representation

f'+, (rp)=[1+(as+ —,'V, —Vi, +i') 'Vp]P (rp), (4.7)
—b ~ bb=ib

I (b) o
x 'exp( —ix A )dx, (4.15)

and is off-the-energy shell according to Eq. (4.6).
Assuming that U &&ZT, and using that q=v it is seen

from Eq. (4.6) that the off-shell wave function in Eq. (4.5)
is near the energy shell provided that the momentum dis-
tribution of the distorted interatomic wave is sharply
peaked about K;. We may then introduce the near-shell
approximation

Q'+, (rp ) =g +(q, e)P'+(rp ), (4.8)

where f'+(rz) is an ordinary Coulomb wave and the off-

shell factor g +(q, e ) is given by

g+(q, e) =I (1+iv)exp(mv/2)[( —,'q —e)/2q ] '", (4.9)

where v =Zi, /q is the Sommerfeld parameter corre-
sponding to momentum q.

In this approximation, valid for

(4.10}

we obtain

(rp, RP)= f de;(k) y+( q, e)g'+(r p) it&( Rp),

(4.11)

where c is the value of c.s for S=0, i.e.,

(4.12)

The parameter y+(q, e) is given by

y+(q, E)=(2~) fdSD K (S)
c.——,'q

g+(q, es) .

(4.13)

In the derivation of this expression we have ignored a fac-
tor ex (ipS R}.iThis .approximation is valid if Eq. (4.10)
is fulfilled for R~, i.e., if Rz is restricted to the same re-
gion of space around the origin as required for the validi-
ty of the near-shell approximation Eq. (4.8).

It is readily seen from Eq. (4.13) that if the channel dis-
tortion is ignored, i.e., if the momentum distribution of

with A =(—,'q —e —v S) in Eq. (4.14), the S integral can
be expressed in terms of the distortion factor DK (R) in

I

coordinate space, and we find

y+(q, e)=(2q )'"(—,'q —e)i

iv —ix[(1/2)q s]D+ (
0

It was already noted in connection with Eq. (4.13) that
the original off-shell factor g+ is obtained from y+ if the
distortion is ignored. This result is also obtained from
Eq. (4.16) if DK (R)=1 everywhere. Alternatively, if a

I

pure Coulomb potential is used for the distortion poten-
tial in all space the distortion factor is a conAuent hyper-
geometric function. Equation (4.16) may also be evalu-
ated analytically for this case and we find y+(q, e) =1 to
an excellent approximation. In this way, we recover the
impulse approximation, which as previously been ob-
tained by the ad hoc omission of g+ in the SPB approxi-
mation. Note that the impulse approximation is obtained
even though the Coulomb form at large distances of all
two-body potentials is retained. The essential feature is
that the residual potential Vz —U; in Eq. (3.7), when

operating on l4,+ ), vanishes faster than I/Rz for finite
values of rT. Then, our factor y+(q, e) generally extracts
a residual inhuence of off-shell propagation characteristic
of intermediate states of an effective short-range potential
in the electronic coordinate rz.

To evaluate y for more realistic distortion potentials
we again employ the eikonal approximation for the dis-
torted nuclear wave DK. Note that the forward cone,

l

where the eikonal approximation is inaccurate, is avoided
in the integral in Eq. (4.16}. In the present case U,.(R) is
asymptotic to —Zz/R. Since the eikonal phase is loga-
rithmically divergent, it is most appropriate to write the
distortion factor as a product of a pure Coulomb term
and a term due to the residual short-range potential. The
eikonal approximation is then given by
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Dir (R)=(vR —v R)

Y Zp
Xexp ——f U;(R')+, d&', (4.17)—oo R'

where Y is the coordinate of R along the asymptotic ve-

locity vector v=K, /p, , and where vp is the Sommerfeld
parameter corresponding to momentum v, vp=Zp/V.
The overall phase is chosen for later convenience. Insert-
ing in Eq. (4.16) and replacing q by v in all slowly varying
functions in anticipation of a peaking approximation in
the integration over the momentum distribution of the in-
itial electron state in Eq. (4.11},we find

y+(q, c)=if "dx e "exp ——' f"
0 xv /( —q

—p)2

Zp
U;(R)+ dR (4.18}

Zp Zp 1

R Ro exp(R/Ro) —1
(4.19)

where Ro is a range parameter. This potential is, in fact,
a realistic approximation to the proper channel potential
and provides —as documented below —an accurate ap-
proxirnation to the y+ factor. Introducing the parameter

xo =Ro( —,'q —s)/U,

we find in the Hulthen case

(4.20)

(4.21)

It is seen that the limit R0=0 in Eq. (4.21) recovers the
impulse approximation and the limit Ro~~ recovers
the original off-shell factor. Equation (4.21} interpolates
between these two limits. Generally, it is seen that y+
approaches unity for small values of xo, i.e., if the devia-
tion from the energy shell is sufficiently small or if the
collision velocity is high enough. It is realistic to assume
that Ro is of order 1/Zr, while (—,'q —e} is positive and
of order (Zr) according to Eq. (4.12). This implies that
xo is of order v~=Z~/v, which is generally assumed to
be smaller than unity under conditions where strong-
potential expansions are considered valid. The parameter
xo is accordingly effectively restricted to the range be-
tween zero and unity.

The static channel potential defined by Eq. (2.22) is

Equations (4.11) and (4.18) represent the main result of
this section. We recall that the derivation was based on
the near-shell approximation for the electron motion in
intermediate states and on the eikonal approximation for
the internuclear motion. As in previous develop-
ments ' of the SPB approximation, the near-shell ap-
proximation is considered valid for high velocities in
symmetric collisions and also for intermediate velocities
in asymmetric collisions. The eikonal approximation is
valid for high wave numbers, i.e., in general, for ion-atom
collisions, but not for positrons or positronium species.

The y+ factor in Eq. (4.18) is evaluated numerically
below for the static channel potential pertaining to a 1s
initial target state. For more qualitative purposes we first
examine a model potential for which the y+ factor can be
evaluated analytically, namely the Hulthen potential

readily evaluated for hydrogenic wave functions, but the
integrals in Eq. (4.18) must be evaluated numerically to
obtain the corresponding y+ factor. In fact, special care
is required in the numerical integration because of the
logarithmic divergence of the phase factor in Eq. (4.18) in
the limit of small-x values. In case of a 1s initial state the
channel potential appears as

Zp Zp
Ui, (R)= — + (1+ZrR )exp( 2ZrR )

—. (4.22)

y+ =1+ax + . (4.23)

where a is a suitable complex parameter. An expression
for u is readily derived from Eq. (4.21},

a =i [%(1)—4( 1+ivp )], (4.24)

where q'(z)=I"(z)/I (z) is the digamma function. For
high velocities, i.e., for small values of the Sornmerfeld's
parameter vp, a may be approximated as

a = m vp/6.2

vp~0
(4.25)

Notice that the static channel potential in Eq. (4.22) is
very well approximated by the Hulthen potential in Eq.
(4. 19) if the screening radius Ro is determined by the ra-
dius of the initial state, Ro =1/2Zr.

We have evaluated the y+ factor numerically for the
static channel potential in Eq. (4.22) for a sequence of ve-
locities and found that the resulting y+ factor is well ap-
proximated by the analytic result [Eq. (4.21)) derived
from the Hulthen potential. The comparison of the two
factors is illustrated for a representative case in Fig. 1

where an extended region of the parameter xo is shown to
document the quality of the Hulthen factor Eq. (4.21)
even far off the energy shell. Our conclusion is that the
Hulthen potential for all practical purposes, may be ap-
plied in place of the static channel potential. Note that
an analytic expression is important for most applications
in order to complete the integration over the momentum
distribution in Eq. (4.11).

The modified y+ factor in Fig. 1 converges towards the
original off-shell factor g+ at large (positive or negative)
values of the parameter xo, i.e., far off the energy shell.
However, xo is small in the physically relevant region
and y+ is close to unity and analytic in xo,
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This implies that y+ is unity to second order in the devi-
ation from the energy shell at high velocities. The pure

impulse approximation is accordingly obtained in this
limit. At low velocities, on the other hand, it is found
that o. becomes purely imaginary and diverges as

a = —ilnvz .
y&~ oo

(4.26)

A more careful analysis is accordingly needed in this lim-
it. The correct result

y+ = exp( —ixolnvp ) (4.27)

is, however, readily derived directly from Eq. (4.21).
Note that the factor lnv~ is never large for realistic
values of v~. Equation (4.27) shows that y+, for strongly
asymmetric systems at intermediate velocities, is well
represented by a simple phase factor. A qualitatively
similar result has been derived elsewhere in the case
where the distortion potential was modeled by a cutoff
Coulomb potential. The analytic properties of y+ should
be contrasted with the highly singular behavior of the
original off-shell factor in the on-shell limit.

The modified y+ factor is shown in Fig. 2 for various
model potentials for which it may be evaluated analyti-
cally. In addition to the Hulthen potential, this includes
model potentials that are constant inside and Coulombic
outside a certain cutoff radius Ro. The case where the
potential is continuous across Ro was considered in Ref.
8. In a similar way a simple expression for y+ may be de-
rived when the potential vanishes inside Ro. We note
that while the Hulthen parameter is accurately deter-
mined by a comparison with the static channel potential,
there is no reason to expect that the cutoff radius can be
uniquely determined. In the figure the cutoff radius is
equated to the screening radius of the Hulthen potential,
but it appears that a suitable scale factor might be more
appropriate in the sense that common curves for magni-
tude and phase could be derived by a judicious choice.
Since, however, the analytic expression in Eq. (4.21) for
y+ is simple to work with, and since the Hulthen poten-
tial is physically well justified, it is preferred in practical
applications. Figure 2 is presented here primarily to il-
lustrate that a strong variation in the magnitude of y+ is
generally accompanied by a strong variation in the phase
of y . Noting that the xo parameter is restricted to posi-
tive values where the magnitude of y+ is larger than uni-
ty, it is seen that there is a cancellation effect between

I I I I
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FICx. 1. Off-shell factor y+ for the static channel potential
pertaining to a 1s initial target state as a function of the off-
energy-shell parameter xo=RO(q /2 —c.)/v with Ra=1/2ZT.
The corresponding factor for the Hulthen potential is included
(dashed line) for comparison. The Sommerfeld parameter is
vp =1.

FIG. 2. Off-shell factor y+ as a function of the off-energy-
shell parameter xo=RO(q /2 —c)/v, for different model chan-
nel potentials: ( ) Hulthen, ( ———) discontinuous cutoff
Coulomb, (—- —- —) continuous cutoff Coulomb. The discon-
tinuous absolute value of the Coulomb off-shell factor g+ is in-
cluded for comparison. The Sommerfeld parameter is vp = 1.
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magnitude and phase when the integral over the momen-
turn space wave function of the initial state is performed.
This effect was already noted in connection with the
original SPB theory for electron capture where the com-
bined effect of magnitude and phase of the off-shell factor
g+ at low velocities was found to give rise to a reduction
of the cross section in spite of the fact that the magnitude
of g+ was much larger than unity. The general implica-
tion is that the detailed choice of the distortion potential
is less important in such cases. A more critical depen-
dence in the choice of the distortion potential appears if
selective components of the momentum distribution dom-
inate the considered process. This is the case for radia-
tive electron capture discussed in Sec. VI.

V. ELECTRON CAPTURE IN ASYMMETRIC
COLLISIONS

In this section we complete the analysis of the
electron-capture cross section in the channel-distorted
SPB approximation. A peaking approximation is applied
to connect directly with previous results and to compare
with experimental data.

The T-matrix element for electron capture is given by
Eq. (3.8) in the channel-distorted SPB approximation.
Introducing the Fourier transform VT of the target po-
tential and the expression given by Eq. (4.5} for the
channel-distorted SPB wave function, we integrate over
the internuclear coordinate Rp to obtain

—k '/2
TfDspa=(2~) ~ fdky, (k)fdSD tt (S)(pf(re)~e ~gq+, (rp)) Vr( —J—k —S),

E,s
(5.1)

where J is the average momentum transfer vector defined
in Eq. (2.8) and 4'+ is the off-energy-shell Coulomb wave
function given by Eq. (4.7) with q=k —v as in Eq. (4.4).
The energy parameter ss is given by Eq. (4.6). The ex-

pression in Eq. (5.1) is the most general form of the
channel-distorted strong-potential Born approximation
for electron capture. The original SPB T matrix in a
similar form is readily identified if the channel distortion
is ignored, i.e., if DK is replaced by a 5 function. Note

(

that while Eq. (5.1) properly includes pole contributions
from the spectrum of bound states it is understood that
the pole contribution corresponding to the final state is

explicitly excluded as discussed in Sec. III.
The general form of the DSPB T matrix in Eq. (5.1} is

not easily computed without further simplifications. A
more tractable form may be obtained if the approximate
form of the DSPB wave function Eq. (4.11) is used in Eq.
(3.8). We then obtain

Tf; =(2') ~ fdky, (k) y( qc, )V ( r—J—k)

X(yf(r )~e ~O'+(r )) .

(5.2)

It is also easy to derive this form directly from the ex-
act DSPB T matrix in Eq. (5.1). One makes the near-
shell approximation for the off-shell electron wave func-
tion and a peaking approximation in which S is set to
zero in VT and in the factor exp( iS r~}. Th—ese latter
approximations presume that DK (S) is sharply peaked

on an atomic scale, and this is in accord with the restric-
tion of the off-shell DSPB wave function in the matrix
element in Eq. (5.2) to values of r~ of the order of the
spatial extent of yf.

The expression in Eq. (5.2) may be reduced to a trans-
parent form by the further application of the so-called
full peaking (FP) approximation which is valid at
sufficiently high velocities. In this approximation k is ig-

nored compared to v in the ionization matrix element in

Eq. (5.2} to obtain

T " "=V (
—J)(y (rp)~e

' '~+'+(rp))

X(2~) '"fdky, (k)y+(q, s) . (5.3)

Comparing with the corresponding form of the impulse
approximation, i.e., the case where y+ =1, we obtain

TDSPB-FP MT IA-FP
f( f

where

(5.4)

fd ky;( k)y+(
q, s)

M=
dk g&;(k)

(5.5)

The original M factor of the SPB theory is obtained
when y+ in Eq. (5.5) is replaced by the complete off-shell
factor g+.

The M factor is readily evaluated numerically when the
y+ factor is available in closed form. As discussed in
Sec. IV, the Hulthen potential provides an accurate rep-
resentation of the channel potential pertaining to an ini-
tial ls state. Using the expression given by Eq. (4.21), it
is easy to see that the M factor depends only on the pa-
rameters p=ROZT/Zp and vp =Zp/U.

The magnitude of M is shown in Fig. 3 for a sequence
of values of p. In conformity with our previous notion it
is seen that ~M~ interpolates between the impulse ap-
proximation and the original form of the SPB when p (or
RH} varies from zero to infinity. In the 1s case con-
sidered here Ro is given by Ro=1/2ZT, which implies
that p=ZT/2Zp, i.e., that p is proportional to the asym-
metry parameter k. Generally, it is seen that inclusion of
the channel potential implies that the capture cross sec-
tions at fixed vp tends towards the impulse approxima-
tion as the asymmetry is increased. The deviation from
the IA is, however, not insignificant for practical values
of A, . This is illustrated in Fig. 4, which shows the cross
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agreement between the theory and the experimental data
at high energies is somewhat misleading since the data in-
clude contributions —on the order of 20% according to a
simple n estimation —from excited states. It remains
an open question to what extent the more pronounced de-
viation at lower energies is due to inaccuracies of the
full-peaking approximation. Note in this connection that
the FP was found to be accurate in this energy range in
the original SPB calculations, but not in the correspond-
ing IA calculations. The evaluation of the DSPB T ma-
trix under less restrictive conditions is needed to clarify
this point.

0
0.1 1

v/z&(a. u. )

10

FIG. 3. Ratio of DSPB to IA cross sections for 1s to 1s cap-
ture. The channel potential is of the Hulthen form. The param-

eter p is given by p =ROZ&/Zz.

section for electron capture from the K shell in proton-
argon collisions. The theoretical curves represent the
full-peaking results for the cross section for ls to ls cap-
ture in a standard one-electron model for ion-atom col-
lisions involving inner-shell processes (see, for example,
the review by Madison and Merzbacher ). The SPB and
the IA cross sections were adopted form Alston*s work.
The channel-distorted SPB cross section was obtained us-

ing Eq. (5.4). The experimental data represent the total
cross section for capture from the K shell. The perfect

VI. RADIATIUK KI.ECTRON CAPTURE

The amplitude for radiative electron capture of a loose-
ly bound electron by a highly charged ion is given by

~=(e~~e V, ~e,+) . (6.1)

The energy of the emitted photon is determined by the
energy-conservation condition

U2
co= +c —c +v Ji f (6.2)

where J is the momentum transfer vector defined in Eq.
(2.8). Note that the transition operator in this matrix ele-
ment only depends on the electron coordinate rp. The in-

tegral over the complementary Jacobi coordinate R~ is
therefore readily done if the distorted wave of relative
motion is suitably approximated. When the channel-
distorted wave function, given by Eq. (4.11), is used the
Rp integral provides a 5 function with the argument k+ J
so that the integral over the momentum distribution of
the initial electron state is trivial. The result is

A =p, (
—J)y (q, s)(q&(rz)~e V, ~P'+(rp)), (6.3)

Z:o 10—

LLj

O
CC

3 10
ENERGY (MeV)

20

FIG. 4. E-shell capture cross sections for protons on argon:
(
———) impulse approximation, ( ——~ —~ ) strong-potential

Born approximation, ( ) channel-distorted strong-potential
Born approximation. Experimental data are Horsdal-
Pedersen (Ref. 27).

where the vector q= —J—v is determined by the general
relation given by Eq. (4.4) with k= —J, and e is given by
Eq. (4.12).

As discussed in Sec. III, y+ is generally close to unity
at high velocities. At intermediate velocities y+ is better
represented by the phase factor given by Eq. (4.27). Since
phase factors may be ignored when the absolute square of
the amplitude is formed, to obtain the di8'erentia1 cross
section y+ may be omitted in this approximation, and

Eq. (6.3) is therefore essentially equivalent to the impulse
approximation for REC. This is particularly satisfactory
since the IA reflects the physically transparent picture of
REC as a free-bound radiative transition in the projectile
frame.

In previous evaluations of REC the original form of
the SPB wave function was used. ' Then Eq. (6.3) is also
obtained, but with the complete off-shell factor g+ in
place of y+. Since ~g+~ is typically much larger than
unity (see Fig. 2 for positive values of the argument), it
appears that the inclusion of the channel distortion is ab-
solutely essential for a proper description of the REC
process.

The elimination of the off-shell factor was already indi-
cated in Jakubassa-Amundsen's work. ' She realized that
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the theory of radiative electron capture and radiative
recombination of free electrons must merge in the zero-
energy limit, i.e., that a genuine free-bound description of
REC should apply in the limit of a vanishing binding en-
ergy of the initial electron state. To test that this limiting
procedure is strictly valid in the channel-distorted SPB
theory, we note that the modified factor y+ incorporates
the channel radius Ra and the binding energy c., in the
combination xa=(k /2 —s;)RD/v = ~a;~R0/U. As the
binding energy vanishes, the corresponding bound-state
wave function, and hence the channel radius RQ, increase
without limit. Then s, Ra/V is indeterminate and further
considerations are needed. For a wide class of states,
however, the mean radius of bound-state functions relates
to the binding energy according to Ra=1/Qe;, so that
xa=e, R~=+s;~0 as the binding energy vanishes. It
follows that the bound-free transition matrix element is
indeed the limiting form of the REC amplitude as the
binding vanishes. Note that this result requires the
simultaneous use of the off-energy-shell electron wave
function and the channel-distorted wave functions for rel-
ative motion. We recognize that the situation is more
complex when the limit c„~O is taken along a Rydberg
series n~~, since then R o(-n . In this instance high ve-
locity components remain as c„~0,and the IA may not
represent the appropriate picture.

The expression given by Eq. (6.3) is based upon the ap-
proximate DSPB wave function given by Eq. (4.11). It is,
accordingly, not the most general form of the REC am-
plitude in the channel-distorted SPB theory. To derive a
more accurate expression we may use the complete DSPB
wave function given by Eq. (4.5) to approximate the exact
scattering state in the ket of Eq. (6.1). As above, the in-
tegral over Rz is readily evaluated since the radiative
transition operator is independent of this coordinate. We
then obtain

X & q&f (r ) ~e.V',
~

4'+, (r ) )

where

6; —A: /2

es —
q /2

(6.4)

k= —J—S, q= —J—v —S, (6.5)

and where Es is given by Eq. (4.6). This is the most gen-
eral form of the DSPB amplitude for radiative electron
capture. The special case where the distortion factor was
omitted was evaluated in Ref. 15. To insure that the am-
plitude approached the free-bound amplitude, i.e., the
proper radiative recombination limit as the binding of the
initial state vanishes, a term corresponding to the free-
bound amplitude was split off' in Jakubassa-Amundsen's
work' and the off-energy shell factor omitted in that
term. With our more general form, it is now possible to
justify this procedure as a first approximation.

Our previous form Eq. (6.3) is obtained if the near-shell
approximation Eq. (4.8) is applied to the off-energy-shell
wave function and if the peaking approximation S=0 is

applied in the resulting free-bound transition element and
in the initial-state wave function. Notice that while the
near-shell approximation becomes better as the binding
energy of the initial state is reduced, this is not the case
when qr, (k) is approximated by y, ( —J) since the momen-
turn space wave function becomes more sharply peaked
in this limit. In a more careful evaluation where p;(k) is
kept under the integral, it can be shown that the general
DSPB amplitude given by Eq. (6.4) indeed reduces to the
proper radiative recombination limit when the binding of
the initial state is reduced to zero (Zr~0). Details are
given in Appendix B. This justifies the procedure used in
Ref. 15 where the off'-shell-factor was omitted in the pole
term of the REC amplitude. Presumably, exact evalua-
tion of Eq. (6.4) would yield an REC amplitude very
nearly equal to the amplitude obtained by splitting off the
pole term for special treatment, but would be applicable
over the entire REC spectrum.

VII. DISCUSSION

We have examined lowest-order approximations to
transition matrices and associated wave functions for
strongly interacting atomic species. We find that the
lowest-order wave function for strong potentials involves
the strong-potential Green's function to describe electron
propagation in intermediate states and a distorted initial
wave function to describe elastic scattering of the rela-
tively massive projectile. Our calculations show that
both aspects are essential and can be incorporated into a
single factor y+(q, s). This factor has been evaluated us-
ing eikonal waves and it is shown that a relatively simple
form derived from the Hulthen potential is quite accu-
rate. With this new factor we have computed capture
from inner shells and find improved agreement with ex-
periment at high energies where the theory is expected to
hold unequivocally.

Combining elastic scattering and off-shell propagation
places the theory of radiative electron capture on a sound
ab I'nitio basis. Intuitive models that treat the bound
electron as initially free yield the impulse approximation.
Here we have correctly incorporated the structure of the
initial bound state and shown how channel distortion and
off-shell propagation combine to yield the impulse ap-
proximation which neglects both of these effects at the
outset.

The strong-potential Born approximation derives from
an expansion in powers of the parameter A, =Z~/Zz,
which is independent of velocity. The expansion might
therefore seem to apply over the whole velocity range just
as the first Born approximation appears to apply to exci-
tation or ionization of strongly bound systems by weak
perturbations if no subsequent approximations are em-
ployed. It is, however, well known that the first Born ap-
proximation for excitation or ionization is inaccurate at
low velocities unless it is amended to account for binding
effects which are exactly equivalent to the channel dis-
tortion effects that we have identified in capture-type re-
actions. The binding corrections in first Born type exci-
tation processes correspond, however, to the channel dis-
tortion of the initial and final states due to the weak per-
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v&=ZT/v ((1 . (7.1)

Note that this condition is usually implied in applications
of various peaking approximations in practical evalua-
tions. Here, the condition appears on more fundamental
grounds. In addition to the limitations implied by the
neglect of the distortion in the final channel, the condi-
tion in Eq. (7.1) should probably also be satisfied in order
that the static channel approximation may provide a
proper description of the strong elastic distortion in the
initial channel. Further work is accordingly needed to
develop the present formulation of the theory of electron
capture in asymmetric collisions to a level that may com-
pare with the binding corrected versions of the first Born
approximation for inner-shell ionization by low-charged
projectiles.
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turbation. The implication is that a proper treatment of
electron capture at low velocities involves the retention
also of the weak channel distortion in the final state.
Since this distortion has been omitted in the present for-
rnulation of the DSPB theory it appears that the corre-
sponding Somrnerfeld's parameter must be small for the
theory to hold,

(A3)

and recognize that the three terms on the right-hand side
are of the order (p, )', (p,;), and (p;) ', respectively.
The last term in Eq. (A3) may, accordingly, be ignored in
ion-atom collisions. We then obtain

l++&=D+[1+[E (H —U, )+—iq] 'w, ]4, & . (A4)

The eikonal form of the distorted-wave T-matrix element
is correspondingly given by

T~( (4f IDf D;+ Wf I 1+[E (H —U, )—
(A5)

Since H —U; =HT+ 8';, it is seen that the residual effect
of long-range forces is combined in the product of two
eikonal phase factors while the remaining components in
Eq. (A5) exhibit simple short-range properties.

The Green's operator that appears in Eqs. (A4) and
(A5) after the complete eikonal phase factor has been ex-
tracted from the initial state is generally rather compli-
cated, from an analytical point of view, since a corre-
sponding set of eigensolutions is not readily available. It
is therefore more useful to extract only the eikonal phase
factor that pertains to the common internuclear Coulomb
potential. The product of the Coulomb phase factors is,
in an excellent approximation, given by

APPENDIX A: REMOVAL
OF THE INTERNUCLEAR POTENTIAL

2lZT Zp /U

f (A6)

It has been customary to ignore the internuclear poten-
tial from the outset in perturbation treatments of ion-
atom collisions. This is usuaHy justified in a distorted-
wave formulation by retaining the internuclear potential
in initial and final channels and by applying the eikonal
approximation for the corresponding distorted waves.
More generally, it is readily seen that any distortion po-
tential U(R ) common to the initial and final channels can
be ignored in so far as total cross sections are concerned.
In this appendix we consider more generally the eikonal
approximation when different distortion potentials U;
and Uf are employed in the initial and final channels.

Writing the distorted channel functions as

(Al)

D,—is a simple phase factor in the eikonal approximation

D,*(R)=(UR+v R)'"
r

Xexp ——f U, (R ')+, d F'Y Z
—ao R'

(A2)
where Y is the coordinate of R along the asymptotic ve-
locity vector v. The potential U& is considered to be
asymptotic to the Coulomb form —Z/R and v is the cor-
responding Sommerfeld parameter v =Z /v. Now we
may write the identity

where b is the component of the internuclear coordinate
in the plane perpendicular to K;, i.e., the impact parame-
ter. It is readily shown that this factor may be omitted in
the T matrix and still provide the correct result for the
total cross section

iTp =(211}p(pf f dQI Tfj I

l

(A7}

APPENDIX B: DETAILED ANALYSIS
OF THE REC AMPLITUDE

Equation (6.3) is the most general form of the SPB am-
plitude for radiative electron capture. The special case

The internuclear potential is therefore usually ignored
with the understanding that the theory only applies for
differential cross sections if a suitable eikonal transform is
subsequently made to incorporate the internuclear
scattering. More precisely, the transition matrix element,
which is a function of momentum transfer K~ perpendic-
ular to the initial momentum K;, may be transformed to
the impact parameter representation via

I

Af;(b)=(2m. )
' f Tf;(K~)e ' d K~, (A8)

2lZpZT /U
multiplied by b, and transformed back to obtain a
T-matrix element which includes the internuclear scatter-
ing.
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where the distortion factor was omitted was evaluated in
Ref. 15. To insure that the amplitude approached the
free-bound amplitude as the binding energy of the inital
state vanishes, a term corresponding to the free-bound
amplitude was split off and the off-energy-shell factor om-
itted in that term only. With our more general form, it is
now possible to justify this procedure as a first approxi-
mation.

To see how this emerges we note that the pole term
representing free-bound transitions just corresponds to
the near-shell approximation for the ofF-shell wave func-
tion in Eq. (6.4). For REC the vector K= —J—v is
large, of the order of —v, while J is small. Indeed, at the
peak of the REC cross section we have J=O. It is then
appropriate to neglect S compared with K and write

and where k = —J—S and q =k —v. Our previous
derivation corresponds to neglecting S in p, (

—J—S).
Since y, represents a loosely bound electron, the neglect
of S is not obviously correct as the initial binding energy
vanishes. We therefore evaluate the integral more exact-
ly for capture from a hydrogen 1s state of the target near
the cross-section peak at J=0. To investigate the validity
of the peaking approximation it is sufficient to examine
the mathematically convenient case where the channel
potential assumes the pure Coulomb form. Introducing
tp, (k)=N, (ZT+k ) and Eq. (4.15) to represent the
phase factor of g+ combined with the denominator in
Eq. (82), we have

—iZ~ x/2I(0)=—,'i(2U ) N, f dx x'"e (2sr)

~ = ( gf I e V, I
O~+ )I(J),

where I(J) is given by

(81) &xv s
X f dSD K (S)

ZT2+ S2
(83)

8; —k /2
I(J)=(2tr) ~ fD K (S) g(q, es)y;(k)dS,

es —
q /2

(82)

We now return to coordinate space for the distortion fac-
tor and use the explicit form DK (R) =(UR —v R) to

obtain

I(0)= N(2U ) f dx x e fdR [v ~xv+R~+v (xv+R)]
8m 0 R

(84)

Introducing the coordinate r=R/xu, and evaluating the
x integral we find

I(0)= N, 2 ' 'f'd 1 (1+Iv+rl+v r) '
(85)

(Zrvr +iZT/2)

which may be expressed as

I(0)=y(0)i vr2 f dr rf (r)(r +i vr/2), (86)

The remaining integral in Eq. (86) peaks strongly at r =0
since vT =Zr/U is small. The integral over r in Eq. (86)
divides into two regions 0 ~ r (1 and 1 ~ r & 00, and the
integral over the second region is easily seen to be bound-
ed by a constant independent of vT. In the region
0 & r ( 1 we expand f ( r) in a power series in r and evalu-
ate the integral in terms of hypergeometric functions. It
is seen that the lowest-order term dominates thus con-
firming the simple peaking approximation f (r) =f(0) in

Eq. (86). Our result is

where I(0)=y, (0)+0(v&lnvT ) . (88)

1f(r) =
—,
' f d cos8[1+(1+r +2r cose)'

—1

+r cos8] (87)

This confirms the approximation used in Eq. (6.3) where
we omitted the $ dependence of g( —J—S) at the outset,
and shows that the approximation becomes exact in the
limit vT ~0.
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