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The probability of 6nding a nearest neighbor at some given distance from a reference point in a
many-body system of interacting particles is of importance in a host of problems in the physical as
well as biological sciences. We develop a formalism to obtain two different types of nearest-

neighbor probability density functions (void and particle probability densities) and closely related

quantities, such as their associated cumulative distributions and conditional pair distributions, for
many-body systems of D-dimensional spheres. For the special case of impenetrable (hard) spheres,
we compute low-density expansions of each of these quantities and obtain analytical expressions for
them that are accurate for a wide range of sphere concentrations. Using these results, we are able to
calculate the mean nearest-neighbor distance for distributions of D-dimensional impenetrable
spheres. Our theoretical results are found to be in excellent agreement with computer-simulation
data.

I. INTRODUCTION

In considering a many-body system of interacting par-
ticles, a key fundamental question to ask is the following:
What is the effect of the nearest neighbor on some refer-
ence particle in the system? The answer to this query re-
quires knowledge of the probability density which
characterizes the probability of finding the nearest neigh-
bor at some given distance from the reference particle,
i.e., the nearest-neighbor distribution function H~.
Knowing Hp is of importance in a host of problems in
the physical and biological sciences, including stellar dy-
namics, ' liquids and amorphous solids, and the transport
properties of heterogeneous materials, ' to mention but
a few examples. Hertz evidently was the first to consider
its evaluation for a system of "point" particles, i.e., parti-
cles whose centers are Poisson distributed. To our
knowledge, however, there is presently no theoretical for-
malism to obtain Ht, for distributions of Pnite sized in--
teracting particles at arbitrary density. One of the goals
of this paper is to provide such a formalism for D-
dimensional spheres and to compute H~ for such models.

A different nearest-neighbor distribution function Hv
arises in the scaled-particle theory of liquids. ' This
quantity (defined more precisely in Sec. II) essentially
characterizes the probability of finding a nearest-
neighbor particle center at a given distance from an arbi-
trary point located in the space exterior to the particles.
Interestingly, although H~ and H~ are different quanti-
ties, we show here that they are, in fact, related to one
another for a certain range of nearest-neighbor distances.

We refer to Hz and Hz as the "void" and "particle"
nearest-neighbor distribution functions, respectively.

There are other quantities closely related to the
nearest-neighbor probability densities that we also obtain
representations for and compute in this study. These are
the so-called exclusion probabilities Ez and Ep, and the
conditional pair distribution functions G v and Gp,
defined in Sec. II.

In Sec. II, we define and describe the void and particle
nearest-neighbor distribution functions, exclusion proba-
bilities, and conditional pair distribution functions for
distributions of identical, interacting D-dimensional
spheres. In Sec. III, we obtain exact integral representa-
tions of each of the void and particle quantities for such
model microstructures. In Sec. IV, we calculate low-
density expansions of the void quantities for D-
dimensional impenetrable (hard) spheres and, for arbi-
trary density, compute them exactly for D =1 and ap-
proximately for D=2 and 3. In Sec. V, we carry out
analogous calculations for the particle quantities which,
to our knowledge, are all new results. In Sec. VI, we use
the results of the previous section to compute the mean
nearest-neighbor distances for hard-sphere systems. Fi-
nally, we make concluding remarks in Sec. VII.

II. DEFINITIONS AND GENERAL RELATIONS

A. Systems of interacting spheres

We shall consider studying nearest-neighbor distribu-
tion functions and closely related quantities for a general
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system of X identical, interacting D-dimensional spheres
of diameter 0. spatially distributed in a volume Vaccord-
ing to the N-particle probability density P~(R ).
PN(R ) characterizes the probability of finding the par-
ticles labeled 1,2, . . . , X with configuration
R = {R&,Rz, . . . , Rz), respectively, and normalizes to
unity. Then the reduced n-particle probability density p„
(n & N) is defined by

X~
(Rn) — '

J P (RX)dRN n (2.l)

where dR "=dR„+, dR~. p„(R")characterizes
the probability of simultaneously finding the center of a
particle in volume element dR, about R„the center of
another particle in volume element dR2 about Rz, etc.

The ensemble average of any many-body function F(R )

is given by

(F(R )) = JF(R )P~(R )dR (2.2)

If the medium is statistically homogeneous, the p„(R")
depend upon the relative displacements Rz —R&,

R3 R &, ~ ~ ~, R„—R, ~ In such instances, it is implied
that the "thermodynamic limit" has been taken, i.e.,
N~ oo and V~~, such that p=N/V=p, (R, ) is some
finite constant. We should note that many of the results
of this paper will be valid for the general case of statisti-
cally inhomogeneous media.

Let us examine two different types of nearest-neighbor
distribution functions Hv(r) and Hr(r) defined as fol-
lows:

Hv(r)dr =Probability that at an arbitrary point in the system the center of the nearest

particle lies at a distance between r and r+dr;
Hp(r)dr =Probability that, given any D-dimensional sphere of diameter o at some arbitrary position

in the system, the center of the nearest particle lies at a distance between r and r +dr .

(2.3)

(2.4)

H~ and Hp are referred to as void and particle nearest-
neighbor distribution functions, respectively. We refer to
the Hr(r) as a uoid nearest-neighbor distribution function
since it provides a measure of the probability associated
with finding the nearest particle at a distance r from a
spherical caui ty centered in the void region (when
r ~ cr/2), i.e., the region exterior to the spheres. Hp(r) is
termed a particle nearest-neighbor distribution function
since it provides a measure of the probability associated
with finding the nearest particle at a distance r from an
actual particle at the origin. The void nearest-neighbor
distribution function defined here is identical to the one
defined in the scaled-particle theory of Reiss, Frisch, and

Lebowitz. To our knowledge, the distinction between
H~ and H~, however, has heretofore not been made.
Indeed, in the past, these functions have been incorrectly
thought to be identical to one another. Note that both
these functions are actually probability density functions
and have dimensions of inverse length. Observe further
that for statistically inhomogeneous media, Hv(r) and
Hp(r) will depend also upon the position of the arbitrary
point and the location of the central particle, respective-
ly

9

It is useful to introduce "exclusion" probabilities Ev(r)
and Ep(r) defined as follows:

Ei,(r) =Probability of finding a region Qv, which is a D-dimensional spherical cavity

of radius r (centered at some arbitrary point), empty of particle centers,

=Probability of inserting a "test" particle of radius r —o /2 (at some arbitrary

position) in the system of N particles; (2.5)

Er(r) =Probability that, given any D-dimensional sphere at some arbitrary position, the region Qp, which is a

sphere of radius r encompassing this central particle, is empty of particle centers . (2.6)

Figure 1 gives a schematic representation of the regions
Qi, and Qr. Note that the first and second lines of (2.5)
are equivalent since the region excluded to a particle
center of radius o. /2 by a test particle of radius r —a. /2 is

a sphere of radius r. The test particle serves to probe the
void region. It follows that the exclusion probabilities
are related to the nearest-neighbor distribution functions
by the expressions
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gions 0v and Q~. Differentiating the exclusion-
probability relations with respect to r gives

0
.W r-e/2

and

—aE (r)
Hv(r)=

Br
(2 9)

Hp(r)= (2.10)

and

Ev(r) =1—f H~(x)dx
0

Et, (r)=1—f Ht, (x)dx .
0

(2.7)

(2.8)

The integrals of (2.7) and (2.8), respectively, represent the
probabilities of finding at least one particle center in re-

(a)

FIG. 1. Schematic representations of the regions 0& and Qp.
(a) 0& is the cross hatched region which is a sphere of radius r.
The sphere of radius r —o. /2 can be interpreted as a "test" par-
ticle of the same radius; (b) A=Op+0 is a sphere of radius r
surrounding the central particle. Qp is the crosshatched region
which is the concentric shell of inner radius o and outer radius
r. 0 is the crosshatched region which is a sphere of radius 0.

For statistically homogeneous media, it is helpful to
write the nearest-neighbor distribution functions as a
product of two different correlation functions.
Specifically, for D-dimensional particles let

and

Hv(r) =psD(r)GV(r)E&(r) (2.11)

Hp ( r ) =psD ( r )Gp ( r )Ep ( r ) (2.12)

s, (r)=2,
$2(r) = 27Tr

s3(r) =4m.r

(2.13)

(2.14)

(2.15)

Given definitions (2.3)—(2.6), the conditional "pair" distri-
bution functions Gz and G~ must have the following in-
terpretations:

where sD is the surface area of a D-dimensional sphere of
radius r,

psD(r)Gr(r)dr =Probability that, given a region Q„(spherical cavity of radius r )

is empty of particle centers, particle centers

are contained in the spherical shell of volume sDdr encompassing the cavity; (2.16)

psD(r)GP(r)dr=Probability that, given a region 0 (sphere of radius r encompassing any particle centered

at some arbitrary position) is empty of particle centers, particle centers are contained in the

spherical shell of volume sDdr surrounding the central particle . (2.17}

Note that Gv(r} is simply the "radial" distribution func-
tion for the test particle (of radius r o /2) an—d a particle
(of radius o /2) at contact, i.e., when this pair of particles
are separated by the distance r [cf. Eq. (2.5)]. Equations
(2.11) and (2.12) may be regarded as definitions of Gv and
Gr, respectively. When r =o, then G~(cr ) =6~(o ) is just
the standard radial distribution function g2(o ) for identi-
cal spheres at contact, i.e., at an interparticle separation
of o.. For equilibrium distributions of hard spheres,
g2(o ) is simply related to the pressure of the system. '

Also as r~ oo, the sphere of radius r (in either the void
or particle problems) may be regarded as a plane rigid
wall relative to the particles and, in particular, to the par-
ticles in contact with the wall, hence G~(~ )=Gp(~ ).
To summarize, Gz and Gz are identical when r =o and

(2.19)

which are obtained by use of (2.9)—(2.12). The combina-
tion of (2.9), (2.10), (2.18), and (2.19) yields

Hv(r) =psD(r)G~(r)exp —f psD(y)Gv(y)dy
0

r=(x). We know generally they are not the same for
r ~o [cf. (2.25) and (2.31)]; but are they related to one
another for r ~ o.? This interesting question, for the spe-
cial case of impenetrable spheres, is examined shortly.

The exclusion probabilities are related to the pair dis-
tribution functions via the expressions

E„(r)=exp —f psD(y)G„(y)dy (2.18)
0

Ep(r)=exp —f psD(y)GP(y)dy
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and

Hp( r) =
psD ( r) Gp(r )exp —f pso (y )Gp(y )dy (2.21)

Therefore one can compute the nearest-neighbor distribu-
tion functions given either the exclusion probability func-
tions [cf. (2.9) and (2.10)] or the pair distribution func-
tions [cf. (2.20) and (2.21)].

Finally, we can write down an expression for the
"mean nearest-neighbor distance" I between particles as
follows:

l =f rHp(r)dr . (2.22)

Thus l is defined to be the first moment of r, where r is
distributed according to the particle nearest-neighbor dis-
tribution function.

For the case of hard-sphere systems described below,
Eq. (2.22) can be used to obtain a operational definition
for the random close-packing density. Specifically, one
can define it to be the density for which l ~o. This is
reasonable since each particle at the random close-
packing density must touch its nearest neighbor.

rsD(r)
Ev(r)=1 —p, for 0&r &o/2

D

and hence by (2.9) we also have

Hv( ) =psD(r), for 0 & r & o /2 .

(2.26)

(2.27)

For r cr/2, prsD/D is just the probability that the cavi-
ty of radius r is occupied and hence Ev(r) is just one
minus this latter quantity. Note that for r & o /2, the test
particle may be regarded as a point particle that is capable
of penetrating the mutually impenetrable particles.
Hence, for r &cr/2, decreasing r then increases Er, ac-
cording to Eq. (2.26), until Er reaches its maximum value
of unity at r =0. Note that for r =o /2,

Ev(o /2) = 1 —ri

where

(2.28)

homogeneous media, the exclusion probability is then
given by

rt= pvD(cr /2) (2.29)

B. Systems of impenetrable spheres

Ep(r)=1, for 0 r &cr

Hp(r)=0, for 0&r &o

(2.23)

(2.24)

because one particle excludes another from occupying the
same space. From (2.12) or (2.19) it immediately follows
that

Gr(r)=0, for 0& r & o . (2.25)

Furthermore, in the case of the void problem, a spheri-
cal cavity of radius r and volume rsD/D can contain at
most one particle center if r ~ cr/2. Thus, for statistically

Consider the special case of distributions of mutually
impenetrable (hard) spheres of diameter cr, i.e., systems of
spheres characterized by a pair potential which is zero
when the interparticle distance x is greater than cr and
infinite when x ~ 0.. Calculations of the nearest-neighbor
distribution functions and the auxiliary quantities, the ex-
clusion probabilities and conditional pair distribution
functions, are generally nontrivial for such models. How-
ever, for such microstructures, one can state exact rela-
tions for certain small ranges of r. For instance, it is
clear frotn the definitions (2.4) and (2.8) that

is a D-dimensional reduced density, equal to the particle
volume fraction $2', therefore $, =1—$2 is just the void

volume fraction. Here

rsD(r)
vo(r) = (2.30)

and, therefore, the quantity vD(o/2) appearing in (2.29)
is the volume of a D-dimensional of particle. From (2.11)
or (2.13) and the equations immediately above, one also
has

Gr(r)=, for 0 & r & o /2 .
1

1 prsD r D'— (2.31)

For particles that can overlap one another, relations
(2.23}—(2.27) and (2.31) will not hold. This point shall be
elaborated upon in the ensuing sections.

Although the void and particle quantities are not the
same for r (cr, they are, in fact, related to one another
for r & o in the case of a statistically homogeneous medi-
um of hard spheres. This is demonstrated by reinterpret-
ing the particle exclusion probability Ep(r). Referring to
Fig. 1 and noting that any particle center can come no
closer than a diameter cr to the central particle, Et, (r) for
r ~ o. is the following conditional probability:

Ep(r)=Probability that, given that a region 0 (which is a sphere of radius o centered at some arbitrary

position) is empty of sphere centers, the region Qp is empty of sphere centers . (2.32}

A key part of (2.32) is the conditional statement that a
sphere of radius cr is empty of sphere centers This condi-.
tion (for a statistically homogeneous medium of hard
spheres) is effectively equivalent to placing a hard sphere
of radius o /2 at the same point as the spherical void re-

gion. In other words, the environment around a hard
sphere of radius o. /2 is the same as the environment
around a spherical void region of radius cr. Therefore,
since the void exclusion probability E~(r) gives the prob-
ability of finding the region Ov=A +Q~ empty of
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sphere centers, we have, in the thermodynamic /imit, that

(2.33}

The combination of (2.33) with (2.9) and (2.10) gives the
following expression relating the different nearest-
neighbor distribution functions:

Hv(r)Hp(r)=, r ~ o .
Evrr '

Now from (2.11) and (2.12) we exactly have

Gp( r) Hp( r) Ev( r)
r&cr .

Gv(r) Hv(r) Ep(r)
'

(2.34)

(2.35)

The substitution of (2.33) and (2.34) into (2.35) then yields

Gp(r)=Gv(r) r —0'
~ (2.36)

It is important to emphasize that relations (2.33), (2.34),
and (2.36) are valid only for infinite hard-sphere systems.
For inhomogeneous systems of hard spheres, these equa-
tions will not hold. We shall make use of these relations
in Sec. V.

In closing, we note that for an equilibrium distribution
of D-dimensional impenetrable spheres, one can relate the
void pair distribution function at r =o to this function at
r = 00; for D = 1, 2, and 3, respectively, one has '

Hv(r) =H, (x,;8;8),
Ev(r) =H) (8;x„8),

H2(8;x, ;Ri)
Gv(r }= lim

~x~
—

R&~ r pEv(r)

(3.1)

(3.2)

(3.3)

where 8 denotes the null set. Note that since we are con-
sidering statistically homogeneous media, the right-hand
sides of (3.1) and (3.3) do not depend upon the position
x&, but, as noted earlier, implicitly depend upon the ra-
dius b

&

=r cr /2 of the—test particle.
The starting point for the development of the formal-

ism of Ref. 11 is an explicit expression for the charac-
teristic function of the space D, available to a test parti-
cle centered at x, =x,

I'

xeD,
0, otherwise

I(x;r)= . (3.4)

H„(x;xp;Rq), which depends (in his notation) upon
the radii b&, . . . , b of the test particles, where n =p+q.
The arguments x, x~, and R refer to positions of m

points on certain surfaces within the system, the centers
of p —m test particles, and the centers of q particles, re-
spectively. Hv, Ev, and Gv are subsets of H„.In partic-
ular, to obtain the void quantities, we need only consider
the addition of one test particle of radius r —o /2 (or b,
in Torquato's notation), with the correspondence that

Gv(ao )=Gv(o ),
Gv(ao )=1+2gGv(o ),
Gv( oo )=1+4rlGv(rr) .

(2.37)

(2.38)

(2.39}
N

I(x;r)=g [1—m(~x —R, ~;r)], (3.5)

in terms of the positions of the particles R . It was found
that

Hence, in light of our previous observations that
Gv(o ) =Gp(tr ) and Gv( ~ ) =Gp( ~ ), we also have analo-

gous relations for the particle pair distribution functions
which are identical to Eqs. (2.37)—(2.39). Note that rela-
tions (2.37)-(2.39) are simply the scaled equations of state
(reduced pressures) for D =1, 2, and 3, respectively.

III. EXACT INTEGRAL EQUATIONS
FOR THE VOID AND PARTICLE QUANTITIES

Torquato" has given exact series representations of a
very general n-point distribution function H„from which
one can obtain the void quantities Hv, Ev, and Gz for
systems of spheres which interact with an arbitrary po-
tential. The coefficients of these series are multidimen-
sional integrals involving the n-particle probability densi-
ty functions pN [cf. Eq. (2.1)]. In what follows, we shall
briefly review the procedure used by Torquato to derive
the aforementioned series representation; this is instruc-
tive since we shall subsequently use a similar formalism
to obtain integral representations, for the first time, for
the particle quantities Hz, Ep, and Gp.

where

1, y(r
m(y;r)=

0, y)r. (3.6)

N

Ev(r)= g (
—1)"Ev'"'(r),

k=0

where

kE'"'(r)=, J pl, (R")g m(ix —R;i;r)dR;,
i=1

(3.7)

Result (3.7) was first given by Reiss, Frisch, and
Lebonitz, using a different argument. Differentiating
(3.7) according to relation (2.9) yields an explicit series
representation for Hv(r) in terms of the p„,

Torquato and Stell' were the first to state and Use result
(3.5) for point test particles, i.e., r =cr /2.

It turns out that Ev(r) is simply the ensemble average
of I(x;r). From Ref. 11, we have

A. Void quantities

Torquato" actually considered adding p ~ 1 test parti-
cles to the system and, as a result, was able to consid-
er a very general n-point distribution function

Hv(r)= g ( —1)"Hv" (r),
k=1

k

k, &
fp «"}g

(3.8)
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Observe that expressions (3.7) and (3.8) are valid for sta-
tistically inhomogeneous media as well; for such media,
Ez and H~ will depend not only upon r but upon the po-
sition of the test particle x.

Finally, we can get an expression for the void pair dis-

tribution function Gv(r) by use of (2.11), (3.7), and (3.8)
or by evaluating the function H2 of Ref. 11 according to
Eq. (3.3). The latter procedure, for statistically homo-
geneous media, yields

aa
( 1)k k+ 1

Gv(r)= lim p+ g, fpk ~(R"+')g m(lx —R;l;r)dR,
~x

—R)~ rpEv r k i k! l=2
(3.9)

This particular representation of Gv, to our knowledge, is new. This result may be rewritten as

Gv(r)= g ( —1)"Gv"'(r),
k=0

where the Gv"'(r) are obtained by combining (3.7) with (3.9); for example, the first two terms are given by

Gv '(r) =1,
Gv"(r)= lim —f [p&(Ri, R2) —

p ]m(lx —R2l;r)dR2 .
1

/X
—Rl /

r

(3.10)

The comparison of (3.9) to (2.11) reveals that the quantity within the large parentheses of (3.9) is related to the nearest-
neighbor distribution functions, i.e.,

aa
( 1)k k~1

H„(r) ((m sa(r=) p+ X „,J pr+, (R"+') ii m((x —R;(;r)dR;
k=1 l =2

~x —Rl ~

—r

(3.11)

Thus, although (3.11) is equivalent to (3.8), it is a different
representation of Hv(r).

To summarize, given the n-particle probability density
functions p„for the ensemble under consideration, we
can now determine Ev, Hz, and Gv using the exact ex-
pressions (3.7), (3.8), and (3.9), respectively, for general
distributions of spheres.

l. Impenetrable particles

Consider the case of a random distribution of mutually
impenetrable particles. Let us first use the series
(3.7)—(3.9) to verify the exact relations (2.26), (2.27), and
(2.29), which apply when r &o l2. For this model, the
product

k

p (R")g m(lx —R;I;r),

appearing in the kth term of (3.7), is identically zero
when r ~o I2 for all k ~2, since m(y;r)=0 for y &r
while p„(R")=0for all lR; —R, l (o, for any i and j
such that 1 ~i (j ~ k, i.e., we have exactly

Ev(r) =1—fp, (R& }m(lx—Ril;r )dRi,

which is identical to (2.26) in the case of homogeneous
media. Equation (3.8), under such conditions, yields
(2.27) for Hv(r). In general, the expression within the
large parentheses of (3.9) is nontrivial; however, in the
limit lx —R, l

~r ~ o.l2, it is simply given by p and hence

(3.9) for Gv(r) reduces exactly to (2.29).
Exact evaluations of series (3.7)—(3.9) for impenetrable

particles is generally not possible because the infinite set

pz p„(n~ ~ ) is never known. However, density ex-
pansions of these series can be obtained, and, in addition,
accurate approximations of Ez, H~, and Gz can be de-
rived and computed. Such results are reported in Sec. V.
We emphasize here that these quantities depend upon r,
o, and p.

and

Ev(r) =exp[ —pUD(r)],

Hv(r) =pso(r}Ev(r),

(3.12)

(3.13)

Gv(r)=1 . (3.14)

These results are well known and date back to at least the
work of Hertz, who obtained these quantities for D =3.
For this simple model, the corresponding particle quanti-

2. Fully penetrable particles

Consider now the case of fully penetrable particles, i.e.,
randomly centered or spatially uncorrelated spheres.
This simple model may be regarded as a uniform distribu-
tion of independent point particles (hence the sphere di-
ameter becomes a meaningless parameter) for which the
n-particle probability densities are trivial, namely,
p„=p", and therefore we find from (3.7)—(3.9) that
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ties are exactly the same (in the thermodynamic limit), as
shall be shown. Note that Ev(o /2) =exp( —

7) ) =(!),,
where Pi is the void volume fraction and i) is the reduced
density defined by (2.29). Hence, for fully penetrable in-
clusions, the inclusion volume fraction P&= 1 —P,
=1—exp( —il), in contrast to the totally impenetrable
case for which $2= i) [cf. (2.28)].

B. Particle quantities

Here we derive, for the first time, exact integral repre-
sentations for the particle quantities Ep Hp and Gp for
systems of spheres which interact with an arbitrary po-
tential. Following the procedure used above for the void
quantities, we define the characteristic function

N

J(R;r)=g [1—m(IR —R;I;r)]

g m(IR, —R;;r)+ g m(IR, —R, l'r)m(IR, —R, l;r)
(=2 1=2

i (j
N

m(lR, —R;l;r)m(lR, —Rjl;r)m(lRi —Rk , r)+'
I =2

i (j(k
(3.15)

where m is the step function defined by (3.6). Note that we are singling out particle 1 (unlike the case of the void quan-
tities) since the particle quantities always involve a centrally located particle at some position which we take here to be
R, . In the second line of (3.15), the nth sum is over all unordered n tuplets of particles and hence contains
(N —1)!/[(N n —1—)!n!]terms.

Now the particle exclusion probability Ep is related to the ensemble average of XJ over all possible configurations of
the particles, except the one located at R, ,

N J R&'r P~ R R

where the specific N-particle probability density P~ is defined above (2.1). This quantity gives the probability of finding
a region Qp (surrounding an particle centered at position Ri) empty of other particle centers (see Fig. 1). Hence, since
Ep is the conditional probability defined by (2.6), we find

Ep(r) = fJ(R, ; r )P~(R )d R
pi Ri

Substitution of the second line of (3.15) into (3.16) yields

(3.16)

Ep(r)=1 — fm(lRi —R2l;r )Piv(R )dR

pl 1

1=1— fm(lR, —R, ;r)pz(R, ,Rz)dRz

1+ fm( Ri —R2l;r)m(lRi —R 3;lr) p(3R„R,2R)idRqdR 3—
2p, R,

N —1

1 )kE(k)( r)
k=0

(3.17)

where

1
k+lE'"'(r)=, fpk, (R"+')g m(R „;r)dR, ,

p, R, )k! 1=2

and

E,'"(r)=1 .

Here R,i
= lR, —Ril. The second line of (3.17) follows

from definition (2.1). The partial sum of (3.17) from k =1
to k =N —1, multiplied by —1, represents the probabili-
ty Ep of finding at least one particle center in a region
O,p, which is a concentric shell, of inner radius o. /2 and
outer radius r, encompassing any particle (centered at
R, ). [Ep is also given by the integral of Eq. (2.8).]
Hence the first term of this partial sum of (3.17) (apart
from a minus sign) is the probability of finding any single
particle in Qp. Now since this term by itself overesti-
mates the contribution to Ep, then one must add the
probability of finding any two particles in Qp, which is
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just the second term of the partial sum. Now we have
added too much and so we must subtract the triplet con-
tribution which is just the third term of the aforemen-
tioned partial sum, etc. Hence the absolute value of the
kth term of the sum of (3.17) gives the probability of
finding any k +1 particles in Qp. Result (3.17) is valid
for statistically inhornogeneous media in which case EI,
will depend upon r and the position R, .

From relation (2.10) and (3.17), the particle nearest-
neighbor distribution function is given by

where

N —1

(r)= y ( 1)k+)H(k)(r)
k=1

(3.18)

(k) 1
k+1

H'"'( )= „,Jp„,(R"+')g (iR, —R;i; }dR; .
k! r 1=2

For statistically homogeneous media, the conditional
pair distribution function is expressed as

from (3.18) and (3.19), respectively. In Sec. V, we shall

compute the particle quantities for r &0.. We again em-
phasize that the particle quantities Ep, Hp, and G& gen-
erally depend upon r, o and p.

Ez(r) =exp[ —pvD(r)],

Hp(r) =psD(r)E~(r),

Gp(r)=1 .

(3.21)

(3.22)

(3.23)

For reasons mentioned earlier, these results are identical
to the corresponding void results (3.12)—(3.14). Recall
that for this geometry, r) = —ln(1 —(I)z), where
r)=pvD((r /2)

2. Fully penetrable particles

Let us again consider the simple case of fully penetr-
able particles. Since p„=p",then it is a simple matter to
evaluate the series (3.17)—(3.19) for the particle quanti-
ties. It is found that

Gr(r)= g ( —1)"Gp"'(r),
k=0

(3.19)
C. Bounds on the void and particle quantities

Hz(0;x),'R()
Ep(r) = lim

(x, —R) (-0 p, (R, )
(3.20)

Using (3.20) and relation (2.10) yields the corresponding
expression for the nearest-neighbor distribution function
Hp(r)

I. Impenetrable particles

For r ~ (r, series (3.17) is trivial to compute for the case
of impenetrable particles since the quantity

(Rm( r2)p„(R , . ). . , R„),
which appears in the kth term of this series, is identically
zero for such r. In other words, we recover (2.23). Using
similar arguments it is easy to verify (2.24) and (2.25)

where the Gp"' are obtained by combining relations (3.17)
and (3.18) with the definition (2.12); for example, the first
two terms are given by

G(o)(„)—p2( r)

p'

pz(r)
Gp (r) = m (R ) 2,'r )p&(R) 2)d R2

p
1

R&2
—r m R&3,'r

p sD(r)

&p3(R)z, R)3)dR,dR3 .

In general, Gp"' is arrived at by collecting all (k+2)-
body diagrams. Of course, by (2.36), (3.19) is equivalent
to (3.9) for hard spheres when r & cr, but is a different rep-
resentation.

It is interesting to note that both Ez and Hp are also
special cases of the general n-point distribution function
H„studied by Torquato. " Specifically, for the exclusion
probability we find

Torquato" has given rigorous upper and lower bounds
on the general n-point distribution function
H„(x;x)';R~)for particles which interact with a posi-
tive pair potential. Since the void and particle exclusion
probabilities and nearest-neighbor distribution functions
are just special cases of H„,then we also have strict
bounds on them for such models. Let X represent either
Ey Hy Ep or Hp and X' ' represent the kth terms of ei-
ther the sums (3.7), (3.8), (3.17), or (3.18). Furthermore,
let

I
W= g (

—I)"X'")
k=0

(3.24)

be the partial sum. Then it follows from Ref. 11 that for
any of the exclusion probabilities or nearest-neighbor dis-
tribution functions, we have the bounds

X~ 8', for l even

X ~ 8', for l odd .

(3.25)

(3.26)

IV. CALCULATIONS OF THE VOID QUANTITIES

A. Low-density expansions

In order to compute the low-density expansion of the
series (3.7)—(3.9), we require the low-density expansions

The results of Sec. III are applied to obtain exact low-
density expansions of the void quantities Ez, Hz, and Gz
for a statistically homogeneous and isotropic distribution
of D-dimensional impenetrable particles. We then consid-
er the evaluation of these functions for such models for
arbitrary density and in particular obtain several approxi-
mations for D =3 which are accurate over a wide range
of densities. Hv shall be made dirnensionless by multiply-
ing by the diameter, but instead of writing O.Hv we will

simply write Hz, taking o. =1.
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of the n-particle probability densities. For example, for
equilibrium as well as for some nonequilibrium distribu-
tions (such as random sequential addition' ), one has'

Gi (x)=1+ 4 — rl, x & —,
' .

3

2x
(4.1 1)

p3(R, ~, R,3) =p H(R i2
—cr)

)]+O( } (4 1} Recall that for impenetrable inclusions $2=rl.

B. Arbitrary density calculations

XH(R i3
—
cr }H(R 23

—o')+O(p ), (4.2)

where wD(x) is the intersection volume of two D
dimensional spheres whose centers are separated by the
distance x (see, for example, Ref. 14) and H(x) is the
Heaviside step function.

Consider evaluating the series (3.7) through order g
[where g is the reduced density defined by (2.29)]. For
such a calculation, we need only employ (4.1) through
second order in p. We find the void exclusion probabili-
ties to be given by

1. Hard rods

For an equilibrium distribution of impenetrable
spheres, i.e., hard rods, one can evaluate the series
(3.7)—(3.9) through all orders in density. This is true be-
cause in one dimension the n-particle probability densi-
ties are known exactly. The two-particle probability den-
sity p2 was first given by Zernike and Prins. " Higher-
order probability densities are given in terms of products
of two-particle probability densities. ' Using these re-
sults, one can find

Ev(x)=1 —2xg+ g, x & —'(2x —1)

Ei,(x)=1—4x rl

(4.3)

Ev(x) = (1—
rl )exp

—2rI(x —
—,
'

)

1 —g
(4.12)

+—12x (4x —1)'i —2(4x —1) r Hv(x ) =2q exp
—2rl(x —

—,
'

)

1 —g
1x)—
2

(4.13)

—16x~(l —x }cos ' g, x & —',
2x

Gi,(x)=, x & —,
' .

1

1 —g' (4.14)

(4.4)

Ev(x)=1 8x rl+(32x 32x +18x 1)r) x &

(4.5)

Hi (x)=2g —2(2x —1)g, x & —,
' (4.6)

Hv(x ) =8x rl —16x (4x ——1)'1

—32x(1 —2x )cos ' rl, x & —'
2x

(4.7)

in D =1, 2, and 3, respectively, where x =r/a. Recall
that for x (—,', the exact result is given by (2.25).

Similarly, through order g, the void nearest-neighbor
distribution functions [as calculated from (3.8}]are given
by

G(r)=G(o'/2)=, r &o/21

1 —q' (4.15)

In order to get these results we actually begin with series
(3.9) for Gv(r). For the case of one dimension, it is
shown that the quantity within the large parentheses of
(3.9), in the limit ~x —Ri~~r, is exactly pEr (r)/(1 —i))
or pEv(r)/p„where pi=E&(o/2) is simp'ly the void
fraction and Ev is given by (3.7). This result then gives
(4.14). Equations (4.12) and (4.13) are then obtained by
the use of (2.18), (2.20), and (2.30).

The results [(4.12)—(4.14)] were first obtained by
Hefland, Frisch, and Lebowitz using physical argu-
ments. They reasoned that for r & o /2 (or, equivalently,
x & —,'), since no two particles on opposite sides of the cav-

ity of radius r can ever interact, then the particles cannot
tell what size cavity they are next to for such r. Thus
Gi, (r) must be independent of r for r & o /2. Using this
observation and the fact that G~(r) is continuous at
r =o /2, one then has that

Hv(x)=24x rI (192x —96x +—36x )rl, x & —,
' (4 8) which is just Eq. (4.14).

Gr (x)=1+g, x & —,
'

1
Gi, (x }= 1+—4vrx 2(4x —1)'—

(4.9)

+4(1—2x }cos ' il, x & —' (4.10}
2x

in D =1, 2, and 3, respectively.
Employing (2.11) and the results immediately above,

we find the void pair distribution functions through order
g for D = 1, 2, and 3, respectively,

2. Hard disks and spheres

For two- and higher-dimensional systems of hard
spheres, exact evaluations of the series (3.7)—(3.9) are im-
possible for arbitrary density because the n-particle prob-
ability densities are not exactly known. One must there-
fore settle for approximate means of computing these
series. The scaled-particle theory of Reiss, Frisch, and
Lebowitz provides one approximation scheme. In two
and three dimensions, the scaled-particle approximations
for the conditional pair distribution functions are given
respectively by
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G~(x)= 1—,x & —,
'1

(1—q)~ 2x

G~(x)=a+ —+, x & —,
' .

b c
x

(4.16)

(4.17)

In Eq. (4. 17) a, b, and c are the density-dependent
coefficients given by

a(rl) = 1+ +
(1—q)
—3g(1+q)by=
2(1 —g)

(4.18)

(4.19)

(4.20)

Ev(x) =(1—rl)exp (4x —4gx+2rl —1)
(1 —g)'

x & —,
' (4.21)

E v ( x ) = ( 1 —
rl )exp [ —rl ( 8ax + 12bx +24cx +d )],

x & —,
' (4.22)

where

The comparison of (4.16) and (4.17) to the exact low-
density expansions (4.10) and (4.11) reveals that whereas
(4.17) for hard spheres is exact through first order in rl,
(4.16) for hard disks is exact only through zeroth order in

g 0

The use of (2.18) in conjunction with relations (4.16)
and (4.17) yields the exclusion probabilities in the scaled-
particle approximation for the cases of D=2 and 3, re-
spectively,

( I +2g —3g/2x )Gvx = x) —,
' .

(1—g)
(4.26)

The combination of (5.26) with (2.18) and (2.20) yields in
the Percus- Yevick approximation

Ev(x) =(1—g)exp — [8(1+2g}x'
(1—g)

—18gx + —5g —1], x & —,
'

Hv(x) = [(1+2')x ——', gx]24'
(1—g)

(4.27)

Xexp z [8(1+2g)x
(1 —g)

is exact through O(g), while (4.25) is exact through
O(g ).

We now shall derive new expressions for the void quan-
tities for three-dimensional systems of hard spheres. This
is done by exploiting the observation that Gv(r) is noth-
ing more than the radial distribution function for a spe-
cial binary mixture of spheres, namely, one for a single
test particle of radius r —a/2 (i.e., test particles at
infinite dilution) and an actual inclusion of diameter o at
contact, i.e., when such particles are separated by the dis-
tance r. We consider two di6'erent approximation
schemes to obtain this binary-mixture radial distribution
function: the Percus- Yevick solution found by Le-
bowitz' and the Carnahan-Starling equation. '

If one considers Lebowitz's general Percus- Yevick
solution for the exact Ornstein-Zernike integral equation
of a binary mixture of hard spheres under the limits de-
scribed above, one finds

d(q)= 11' +7g 2

2(1 —g)
(4.23) —18gx + —,'rl —1], x & —,

' .

Expanding these expressions for the exclusion probabili-
ties in powers of g shows that whereas (4.21) is exact
through first order rl [cf. (4.4)], (4.22) is exact through
second order in g [cf. (4.5)].

The combination of (2.11), (4.16), (4.17), (4.21), and
(4.22) yields the void nearest-neighbor probability densi-
ties in the scaled-particle approximation for D =2 and 3,
respectively, as

4q(2x —g)H„x=
1 —g

g(r)p s

(4.28)

X exp (4x —4x g+ 2' —1)
(1—g)

x & —,
' (4.24}

H y(x ) =24'(1 g)(ax + bx +c )—
Xexp[ —q( 8ax + 12bx +24cx +d )],

0
0 0.5

x& —' (4.25)

These relations could also have been obtained by use of
either (2.9) or (2.20). For reasons mentioned above, (4.24)

FIG. 2. Void exclusion probability EI.{r)for a distribution of
three-dimensional impenetrable spheres, as calculated from Eq.
{4.33), for values of the sphere volume fraction $2= g=0.2, 0.4,
and 0.6.
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Hv(x)=24ri(1 ri)(ex +fx+g )

where

Xexp[ —rI(8ex +12fx +24gx+h )],
x & —,

' (4.34}

eH„(r)s

h(ri) = —9g +7g —2

2(1 —
r) )

(4.35)

0
0 0.5

FIG. 3. Dimensionless void nearest-neighbor probability
density oHV(r) for a distribution of three-dimensional impe-
netrable spheres, as calculated from Eq. (4.34), for values of the
sphere volume fraction P, = r) =0.2, 0.4, and 0.6.

(1+2r) 3rII2x ) —rI (2x —1)
(1—r)) 2(1—ri) x

To our knowledge, Eqs. (4.26}—(4.28} are new. As in the
case of D =3 scaled-particle expressions (4.17), (4.22),
and (4.25), relations (4.26)—(4.28) are exact through the
third virial level.

By studying "exact" molecular dynamics data for
equisized hard-sphere virial coefficients, Carnahan and
Starling' were able to show that these coefficients
satisfied a recursive formula to a close approximation.
Using this formula, they were able to find a very accurate
empirical equation for the radial distribution function at
contact. For binary mixtures, under the special limits de-
scribed above, their equation' yields

It is of interest to determine which of the three approx-
imations for D = 3 (scaled-particle, Percus- Yevick, and
Carnahan-Starling approximations) is the most accurate.
Torquato and Lee have recently determined Ev and H~
from Monte Carlo computer simulations. Although all
three approximations give values of Ev and H~ which
are very close to one another and to the computer-
simulation data, the Carnahan-Starling approximations
yield the best agreement with the data (Percus- Yevick
equations giving the next best agreement). Figures 2 and
3 depict Ez and AH~, respectively, for values of the
sphere volume fraction Pz=r)=0. 2, 0.4, and 0.6 as ob-
tained from (4.33) and (4.34), respectively. (Note that
Pz=0. 6 corresponds to about 94% of the estimated ran-
dom close-packing value. ') The largest deviations be-
tween the approximations themselves and between the
approximations and the data occur at the highest densi-
ties. (For r)=0.5, the highest density studied in Ref. 20,
the Carnahan-Starling relations for Ez and Hv are, on
average, within 1% of the simulation data. ) The Percus-
Yevick approximation of the conditional pair distribution
function (4.26) appreciably underestimates G~ at large Pz',

the Carnahan-Starling expression (4.29) being the most
accurate predictor of Gv. These results for Gv are not
surprising as they are consistent with similar observations
made for the contact value of the radial distribution func-
tion of hard-sphere Auids. ' A comprehensive study of
the comparison of the aforementioned approximations
with computer-simulation results is carried out in Ref.
20.

where

=e+ —+, x)—
X

(4.29)

V. CALCULATIONS OF THE PARTICLE QUANTITIES

e(r)) = 1+'g
(1 —ri )

r)( 3 + rI )

2(1—rI)
2

g(g)=
2(1 —g)

(4.30)

(4.31)

(4.32)

Here we consider computing the particle quantities EI.,
H+, and Gp for statistically homogeneous and isotropic
distributions of D-dimensional impenetrable inclusions.
%e obtain both exact low-density expansions and formu-
las applicable for arbitrary density. Again, the dimen-
sionless quantity oH~ shall be written as H~ with 0.=1.
To our knowledge, all of the following results are new.

Note that the first term on the right-hand side of (4.29) is
identical to the Percus-Yevick Gz(x) [cf. (4.26)]. The
substitution of (4.29) into (2.18) and (2.20) yields, respec-
tively, the new approximate relations for the exclusion
and nearest-neighbor distribution functions,

E~(x}=(1—7))exp[ —ri(8ex +12fx +24gx+h }],
x & —,

' (4.33)

A. Low-density expansions

Consider calculating the series (3.17) for the exclusion
probability through order g . This requires the use of ex-
pansions (4.1) for pz and (4.2) for p3. Combining these
equations and performing the elementary integrations
yields for D = 1, 2, and 3, respectively,
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Ez(x)=1—2(x —1)ted+2(x —1)(x —2)q, x & 1 (5.1)

Ep(x)=1 —4(x —1}g+—16m(1 —x ) —6&3+12x (4x —1)'~ —2(4x —1) ~ —16x (1—x )cos ' rl, x & 1
7T 2x

Ep(x)=1 —8(x —1)q+(32x —96x +18x~+46)g, x & 1 .

(5.2)

(5.3)

(5.4)

H (x)=8xil ——16x(4x —I)'i1

m

—32x(1—2x }cos ' -32@x
2x

x & 1 (5.5}

Note that at x = 1 (i.e., when the distance is exactly equal
to a particle diameter), then Ez(l)=1 as expected [cf.
(2.23}].

According to (3.18), diff'erentiation of the expressions
immediately above then gives the particle nearest-
neighbor distribution functions through 0(g ) to be

Hi, (x)=2rl+2(3 —2x )i}, x & 1
Ep (x)= exp

—2rl(x —1)
1 —g

(5.10)

= 2nHp(x) = exp1-~
—2g(x —1)

1 —g
(5.11)

1Gz(x)=, x &1 .
1 —g' (5.12)

1. Hard rods

For the case of hard rods (D = 1), the arbitrary-density
results (4.12)-(4.14) for the void quantities are exact.
Hence the combination of these equations with Eqs.
(2.33), (2.34), and (2.36) yields

Hp(x ) =24x t}—(192x —288x ~+ 36x ), x & 1 (5.6)

Gz(x)=1+i}, x & 1
T

G (x)=1+—4nx —2(4x —1)'1

(5.7)

in D =1, 2, and 3, respectively.
The corresponding conditional pair distributions are

obtained by use of Eqs. (5.1)-(5.6) and the definition
(2.12). One finds that

2. Hard disks

In the case of hard disks (D =2},we make use of the
void scaled-particle approximations (4.16), (4.21), and
(4.24). These expressions combined with Eqs. (2.33),
(2.34), and (2.36) yield

—4
Ez(x )=exp z

(x —I )+rl(x —1), x & 1
(1—rj)

+4(1—2x )cos ' il, x &11

2x

Gp(x) =1+ 4— g, x & 1
3

2x

(5.8)

(5.9)

4rl(2x —il )

(1—rl)

(5.13)

in D =1, 2, and 3, respectively.
It is important to note that relations (5.1)—(5.9) could

have been obtained by employing the expressions derived
in Sec. IV which relate particle quantities to void quanti-
ties [cf. Eqs. (2.33), (2.34), and (2.36)] and the low-density
expansions of the void quantities already evaluated in
Sec. V [cf. Eqs. (4.3)—(4.11)]. Thus relations (5.1)—(5.9)
confirm the validity of Eqs. (2.33), (2.34), and (2.36)
through the given order in density.

B. Arbitrary density calculations

Here we shall derive, for the first time, expressions for
the particle quantities for arbitrary volume fractions.
This is done using the expressions developed in Sec. II
which relate the void quantities to the corresponding par-
ticle quantities and employing the approximations de-
rived in Sec. IV for the void quantities. These relations
are then computed for selected values of the volume frac-
tion.

Xexp [(x —I )+q(x —1)], x & 1
(1—rl)

(5.14)

Gi(x)= 1—,x &1 .7l

(1—q)~ 2x
(5.15)

Ez(x }=exp[—q[8a(x —1)+12b(x —1)

+24c(x —1)]I, x & 1 (5.16)

3. Hard spheres

For the case of hard spheres (D =3), we shall obtain
the particle quantities in three different approximations:
scaled-particle, Percus- Yevick, and Carnahan-Starling
approximations. The combination of the void scaled-
particle approxiinations (4.17}, (4.22), and (4.25) with
Eqs. (2.33},(2.34), and (2.36) yields
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Hr(x)=24rj(ax +bx+c)
Xexp[ —r)[8a(x —1)+ 12b(x —1)

+24c(x —1)]I, x & 1 (5.17)

Gz(x}=a+—+, x & 1 .
b c
X

(5.18)

Here the density-dependent coefticients a, b, and c are
given by Eqs. (4.18)—(4.20), respectively.

The void Percus-Yevick approximations (4.26)—(4.28)
in conjunction with Eqs. (2.33), (2.34), and (2.36) yields

E (r)05-

Ep(x) =exp
&

[8(1+2g)(x —1)—18r)(x —1)]
(1—rI)

a a a a I i a ~ a I0
0 0.5 1 1.S

Hp(x) = [( I+2r) )x ——3gx ]
24'

(1—7))

Xexp [8(1+2ri)(x —1)
(1—ri)

x & 1 (5.19)
FIG. 4. Particle exclusion probability Ep(r) for distributions

of D-dimensional impenetrable spheres at a sphere volume frac-
tion $2= r) =0.2. Results for D = 1, 2, and 3 are obtained from
(5.10), (5.13), and (5.22), respectively.

—18rj(x —1)], x & 1 (5.20)

(1+2'—3g/2x )Gpx= x)1.
(1—r})'

(5.21)

The use of the void Carnahan-Starling approximations
(4.29), (4.33), and (4.34) in combination with Eqs. (2.33),
(2.34), and (2.36) yields the following expressions for the
particle quantities:

quantities, the Carnahan-Starling expressions (5.22) and
(5.23) are generally found to provide the best agreement
with the data. The Carnahan-Starling particle expres-
sions are very accurate up to $2=0.5. In Figs. 7 and 8,
we plot the predictions of (5.22} and (5.23}, respectively,
for three-dimensional impenetrable spheres at Pz=0. 2
and 0.5 and compare to the corresponding simulation re-
sults of Torquato and Lee. (A standard Metropolis' al-
gorithm was employed to generate 200—6000 realizations

Ep(x) =exp [
—rl[8e(x —1)+12f(x —1)

+24g(x —1}]], x & 1

Hp(x) =24')(ex +fx+g )

X exp [
—

rI[8e (x —1)+ 12f(x —1)

(5.22)

$2~0.2

+24g(x —1)]I, x & 1 (5.23) e-
Gp(x) =e+ —+, x & 1 .

X
(5.24)

Here the density-dependent coefficients e, f, and g are
given by Eqs. (4.30)—(4.32), respectively.

In Fig. 4, we plot the particle exclusion probability
Ep(r) for distributions of D-dimensional impenetrable
spheres at a sphere volume fraction $2=r1=0.2. The re-
sults for D = 1, 2, and 3 are computed from the exact ex-
pression (5.10), the scaled-particle equation (5.13), and
the Carnahan-Starling expression (5.22), respectively.
For fixed r, we observe that the effect of increasing the
dimensionality is to decrease the exclusion probability, as
expected. For similar reasons, one expects the particle
nearest-neighbor probability density Hr(r) to show the
same behavior (see Fig. 5) for large r For r near . o, H~(r)
should increase with increasing dimensionality. In Fig. 6,
we plot the corresponding conditional pair distribution
functions.

Torquato and Lee also obtained E& and H& in their
three-dimensional simulation study. For these particle

trHp(r)

S I k I I s I ~0
0 0.5 1.5

FIG. 5. Dimensionless particle nearest-neighbor probability
density o.Hp(r) for distributions of D-dimensional impenetrable
spheres at a sphere volume fraction P, =r}=0.2. Results for
D =1, 2, and 3 are obtained from (5.11), (5.14), and (5.23), re-
spectively.
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FIG. 6. Conditional pair distribution function Gp(r) for a
distribution of D-dimensional impenetrable spheres at a sphere
volume fraction P&= r1=0.2. Results for D =1, 2, and 3 are ob-
ta&ned from (5.12), (5.15), and (5.24), respectively.

FIG. 8. Dimensionless particle nearest-neighbor distribution
function oH&(r) for a distribution of three-dimensional impe-
netrable spheres of diameter o for values of the sphere volume

fraction /~=0. 2 and 0.5. Solid lines are computed from (5.23),
and circles and squares are Monte Carlo simulation data (Ref.
20).

0.8

0.6

OA

5.3

FIG. 7. Particle exclusion probability Ep(r) for a distribution
of three-dimensional impenetrable spheres of diameter o. for
values of the sphere volume fraction Pz=0. 2 and 0.5. Solid
lines are computed from (5.22), and circles and squares are
Monte Carlo simulation data (Ref. 20).

of 500 hard spheres in a cubical cell with periodic bound-
ary conditions. Simulation details shall be given in Ref.
20.) The agreement of the theory with the computer-
simulation results is seen to be excellent. At fixed r, we
see that Ep(r) decreases as Pz is made to increase, i.e., the
average nearest-neighbor distance decreases with increas-
ing Pz. For large r, Hp(r) also decreases as Pz increases.
However, for r near o, Hp(r) increases with increasing

Pz, as expected.
What is the effect of impenetrability of the spheres on

the particle quantities? We noted earlier that Hertz ob-
tained the particle quantities for fully penetrable spheres.
For any dimensionality, there are several general observa-
tions we can make. First, for r & o., Ez for impenetrable
particles must lie above or equal to E~ for fully penetr-
able particles at the same value of Pz, since for the fortner
it must be unity and for the latter it decreases monotoni-
cally from unity at r =0 because the centers can overlap.
For the same range of r, the converse must be true for Hz
since it is identically zero for hard spheres. Second, for r
very near but greater than o, the aforementioned state-
ment made regarding Ep for r &o. still applies, but Hp
for impenetrable spheres now must be larger than the
corresponding fully penetrable quantity. The explanation
for the latter conclusion is as follows. Since Gz(r) for
hard spheres is always larger than Gp(r) =1 for fully pe-
netrable spheres, then according to (2.12) (and previous
observations) the above statement must be true. Indeed,
Hp attains its maximum value at r =o. and then mono-
tonically decreases with increasing r since Ez(r ) de-
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v'7r

4[1 (1—p ) ']'rz

I (4/3)
2[in(1 —

Pz } ']'
0.4465

[ln(1 —4z} i]ir3 .

(6.4)

(6.5)

At fixed Pz, increasing the dimensionality decreases the
mean nearest-neighbor distance, as expected.

B. Totally impenetrable inclusions

Substitution of (5.10) into (6.2) yields the mean
nearest-neighbor distance for totally impenetrable rods to
be exactly given by

1+hz
2P

(6.6)

(6.7)

where

Q2=
(1—Pz)

4$z(2+ Pz)
b2=

(1—Pz)

(6.8)

(6.9)

and erfc denotes the complementary error function. For
large Pz, we can get from (6.7) the asymptotic expression

I 1—=1+
0. b2

(1—Pz)'=1+
4$z(2+ $z)

(6.10)

In practice, (6.10) is actually relatively accurate for
hz~0. 3.

In the case of three-dimensional impenetrable spheres,
we shall employ the Carnahan-Starling approximation
(5.22) together with (6.2) to give

—=1+ exp —g 8e ~ —1 +12 ~ —1
0 1

+24g(x —1}]Idx, (6.11)

This integration must be carried out numerically. For
large Pz, however, we find the analytical asyinptotic ex-
pression

(1—Pz)'—=1+-
a 12$z(2 —

Pz }
(6.12)

This expression is relatively accurate for Pz ~0.2. Com-
paring the above relations for impenetrable particles to

In the case of a distribution of totally impenetrable disks,
the coinbination of (5.13) and (6.2) yields the result

l—= 1+—,'(n /az)'r exP(bz /4az )erfc[bz/2(az )' ],

(6.3}—(6.5} reveals that the mean nearest-neighbor dis-
tance for fully penetrable particles is always smaller than
the corresponding quantity for hard particles as expected.

In Fig. 11 we plot the dimensionless mean nearest-
neighbor distance I/o. versus the inverse sphere volume
fraction Pz

' for one-, two-, and three-dimensional hard
spheres using results (6.6), (6.7), and (6.11), respectively.
The result for D =3 is computed using a trapezoidal rule.
At fixed Pz, l /a increases with increasing D, as expected.
For the case of D =3, (6.11) gives very accurate estimates
of l/cr for Pz &0.5 or Pz

' &2. Qz=0. 5 is about 80% of
the random close-packing fraction Pz estimated to range
from 0.62 to 0.66 (see Ref. 2). Based on these observa-
tions, result (6.7) for D =2 should give very accurate esti-
mates of I/o for approximately Pz (0.66 or Pz

' ~ 1.52.
For impenetrable disks, Pz has been estimated to range
from 0.79 to 0.84 (see Ref. 2). Moreover, preliminary
simulation results indicate that (6.7) and (6.11) will be rel-
atively accurate up to about 90% of Pz. However, unlike
our exact D = 1 result, Eq. (6.6), which correctly predicts
Pz= 1, our results (6.7) and (6.11) must break down in the
near vicinity of Pz since they both predict Pz= l. In fu-

ture work, we shall study methods to improve our ap-
proximations for Ez and H~ in the near critical region.
Note that if one linearly extrapolates our results for
D =2 and 3 using the linear portions of the curves to the
limit 1/cr= 1, the corresponding voluine fractions fall
within the respective estimated range of ((}'&indicated
above. Such linear extrapolations, however, are some-
what arbitrary.

VII. CONCLUSIONS

All the results for the particle quantities obtained in
this study are new. These include (1) the key equations
(2.33), (2.34), and (2.35), which relate the particle quanti-
ties to the void counterparts; (2) exact integral represen-
tations of Ep, Hz, and Gp [cf. (3.17)—(3.19)] for distribu-
tions of D-dimensional spheres; (3) bounds on the particle
quantities; (4) low-density expansions of the particle
quantities for distributions of D-dimensional spheres [cf.
(5.1)—(5.9)]; (5) arbitrary density calculations for such a
model [cf. (5.10)—(5.24)]; and (6) the mean nearest-
neighbor distance as a function of density for D-
dimensional spheres. In the case of the void quantities,
we obtained, among other results, new relations for Ez,
H~, and Gv at arbitrary density for D =3 in both the
Percus- Yevick approximations [(4.26)—(4.28)] and
Carnahan-Starling approximations [(4.29)—(4.35)]. The
analytical expressions we derive for the particle and void
quantities turn out to be accurate over a wide range of
densities. Exclusion-volume effects associated with
impenetrable-particle systems lead to particle quantities
which are strikingly different from the fully penetrable-
particle counterparts. '
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